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Abstract
The acquisition of sub-sampled data from an array of receiver coils has become a common means
of reducing data acquisition time in MRI. Of the various techniques used in parallel MRI,
SENSitivity Encoding (SENSE) is one of the most common, making use of a complex-valued
weighted least squares estimation to unfold the aliased images. It was recently shown in Bruce et
al. [Magn. Reson. Imag. 29(2011):1267–1287] that when the SENSE model is represented in
terms of a real-valued isomorphism, it assumes a skew-symmetric covariance between receiver
coils, as well as an identity covariance structure between voxels. In this manuscript, we show that
not only is the skew-symmetric coil covariance unlike that of real data, but the estimated
covariance structure between voxels over a time series of experimental data is not an identity
matrix. As such, a new model, entitled SENSE-ITIVE, is described with both revised coil and
voxel covariance structures. Both the SENSE and SENSE-ITIVE models are represented in terms
of real-valued isomorphisms, allowing for a statistical analysis of reconstructed voxel means,
variances, and correlations resulting from the use of different coil and voxel covariance structures
used in the reconstruction processes to be conducted. It is shown through both theoretical and
experimental illustrations that the miss-specification of the coil and voxel covariance structures in
the SENSE model results in a lower standard deviation in each voxel of the reconstructed images,
and thus an artificial increase in SNR, compared to the standard deviation and SNR of the SENSE-
ITIVE model where both the coil and voxel covariances are appropriately accounted for. It is also
shown that there are differences in the correlations induced by the reconstruction operations of
both models, and consequently there are differences in the correlations estimated throughout the
course of reconstructed time series. These differences in correlations could result in meaningful
differences in interpretation of results.
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1. Introduction
The fundamental basis for image formation in magnetic resonance imaging (MRI) is the
discovery that the spatial information of an object can be Fourier encoded in the resonance
spectrum by a magnetic field gradient [1, 2]. Fourier encoded by magnetic field gradients,
the complex-valued spatial frequencies are not measured instantaneously, but rather
individually in a serial fashion, resulting in a long acquisition time for the spatial frequencies
for a volume of images. As such, the measurement of sub-sampled spatial frequencies with
multiple receiver coils, in parallel[3], has become a popular means of reducing image
acquisition time.

The basis of parallel MRI is such that an array of receiver coils are used to acquire spatial
frequencies for reduced field-of-view (FOV) images concurrently, which are combined into
a single full FOV image using a technique such as SENSitivity Encoding (SENSE) [4]. The
SENSE model has become a very popular parallel image reconstruction technique as it does
not have strict restrictions on the layout of receiver coils, and the reduction in time achieved
by sub-sampling the spatial frequencies reduces the requirements on issues such as breath
holding in cardiac imaging [5]. However, the advantage gained in reducing acquisition time
by sub-sampling spatial frequencies has a reciprocal effect on the time and difficulty faced
in reconstructing the sub-sampled data.

When the AMMUST (A Mathematical Model for Understanding the Statistical effects)
framework for analyzing reconstruction and pre-processing operators in [6] was adapted to
represent the SENSE reconstruction model in terms of a real-valued isomorphism in [7], it
was found that when represented in this way, that the complex-valued normal distribution
assumed in the noise between receiver coils imposes a skew-symmetric coil covariance
structure. However, when estimated from two different experimental data sets, it is shown
that this assumption is miss-specified. It is also generally assumed in the literature that there
is an identity covariance structure between the aliased voxels in each of the coil images.
This assumption is also shown to be miss-specified, as there is a non-identity voxel
covariance structure when estimated directly from experimental data. With both the coil and
voxel covariance structures shown to be inappropriately defined when represented in terms
of a real-valued isomorphism, we propose a new image reconstruction model, entitled
SENSE-Image Theoretical Isomorphism Voxel Estimation (SENSE-ITIVE), which uses
both a mathematically correct covariance structure between receiver coils and a non-identity
voxel covariance structure, both observed in real data.

Comparisons between the SENSE and SENSE-ITIVE models are theoretically illustrated on
a time series with 490 scans (TRs) of 96×96 constant circle and Shepp-Logan phantom data,
generated with covariance structures between coils and voxels similar to that of
experimental data. The reconstruction techniques and statistical analysis undertaken in the
theoretical illustration are then carried across to experimentally acquired spherical phantom
and human subject fMRI data. A real-valued isomorphism representation of the complex-
valued coil covariance matrix, as well as the covariance structure between voxels, is
estimated from an experimental time series of 490 scans of a spherical phantom, and an
experimental time series of resting state scans with a human subject. The time series of data
acquisitions in each data set are reconstructed by both models, after which a statistical
analysis is performed comparing the effects that the miss-specified coil and voxel
covariance structures in the SENSE model have on voxel means, covariances, and
correlations. As the results of the study conducted in this manuscript are most significant in
functional connectivity studies, lower resolution 96×96 images were used in both the
theoretical and experimental illustrations.
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The implementation of a real-valued isomorphism in [7] showed that the mapping, or
“unfolding,” of aliased voxels from the receiver coil images into a single combined image
induces a correlation between the aliased voxels from each “fold.” While the SENSE-ITIVE
model itself does not address this issue, a comparison of the correlations induced by the
SENSE and SENSE-ITIVE reconstruction operators illustrates the effects of miss-specified
coil and voxel covariance structures. As presented in [7], the implementation of image
smoothing amplifies the correlation induced between aliased voxels by the SENSE image
reconstruction operators, and thus image smoothing by means of a Gaussian kernel is
applied in both the theoretical and experimental illustrations.

2. Theory
2.1 Linear Framework

The derivation in [8] that allows for the complex-valued inverse Fourier transformation to be
represented in terms of a real-valued isomorphism is the basis on which a statistical analysis
of the linear operations commonly performed in image reconstruction can be performed. The
mathematical formalism of image reconstruction by [8] was generalized by [6] to make use
of a Cartesian linear image reconstruction, and was further extended in [7] to accommodate
sub-sampled data from multiple receiver coils and represent the SENSE model as a linear
operator. Traditionally, the sub-sampling of data occurs by omitting lines of k-space in the
Phase Encoding (PE) direction, although the framework and principle can be applied for any
direction. In this Cartesian framework, the subscript y denotes the PE direction (i.e. bottom-
top), while the subscript x denotes the frequency encode direction (i.e. left-right). For an
acceleration factor (also commonly known as a reduction factor), A, a receiver coil would
only acquire every Ath line of k-space in the PE direction. Thus, a sub-sampled matrix of
spatial frequencies for coil l, FlC, where l = [1,2, …, NC], would be of dimensions (py/A)
×px. In a real-valued isomorphism, a reconstructed complex-valued aliased image from each
coil, in vector form, yl, is represented as a product of a 2D inverse Fourier transformation
operator [8], Ω, with the observed sub-sampled complex-valued k-space spatial frequencies
in vector form, fl, as

(1)

If FlC is a (py/A)×px matrix of sub-sampled two-dimensional complex-valued spatial
frequencies, then the vector of observed k-space spatial frequencies, fl, in Eq. (1) are formed
by stacking the pxpy/A real spatial frequencies on top of the pxpy/A imaginary spatial
frequencies

(2)

where vec(·) is a vectorization operator that stacks the columns of its matrix argument, Re(·)
denotes the real part, and Im(·)denotes the imaginary part. Similarly to the observed k-space
data, if the complex-valued reconstructed image is of dimensions (py/A)×px, then the
reconstructed image vector will consist of pxpy/A real reconstructed image values stacked
above pxpy/A imaginary reconstructed image values, resulting in a reconstructed image
vector y of dimensions 2pxpy/A×1.

To reconstruct sub-sampled complex-valued spatial frequencies from an array of NC
receiver coils, the vectorization in Eq. (2) is applied to each of the NC sub-sampled spatial
frequency matrices, which are in turn concatenated into a single vector, f, with alternating
real and imaginary components. The Ω operation, which can be adjusted to account for intra-
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acquisition decay and magnetic field inhomogeneities acquired in the k-space signal [6, 9] if
T2* or ΔB maps can be obtained, is applied to all NC coils at once by

(3)

The Kronecker product, ⊗, in Eq. (3) multiplies every element of the identity matrix INC by
the entire matrix Ω, generating a block diagonal inverse Fourier reconstruction operator that
reconstructs the sub-sampled spatial frequencies from each coil into reduced FOV aliased
coil image vectors. The reconstructed aliased coil image vectors produced by Eq. (3),

(4)

are stored in a vector comprised of the sub-vectors of reconstructed images from the l=
[1,2,.., NC] coils, with the real reconstructed aliased image values of each coil stacked upon
the corresponding imaginary reconstructed aliased image values.

As described in [7], the vector of reconstructed aliased voxel values from each coil, yl, needs
to be permuted to being ordered by voxel, rather than by coil, such that the SENSE
unfolding operation can be performed on each of the aliased voxels. A complex permutation,
PC, is thus applied resulting in a vector with sub-vectors of length 2NC with the NC real
aliased voxel values stacked upon the NC imaginary aliased voxel values corresponding to
each of the NC receiver coils. For even acceleration factors, it was also shown in [7] that a
Fourier transform shift permutation, PS, needs to be applied such that the unfolding process
performed by the SENSE model results in a centered image. The vector of aliased voxel
values, a, ordered by voxel and shifted according to the choice of acceleration factor A, is
thus

(5)

2.2 The SENSE Isomorphism
The SENSE model makes use of a complex-valued weighted least squares estimation
process in un-aliasing the A voxel values in each of the NC aliased coil images. In the
SENSE model, an aliased voxel j=[1,2,…rp], where rp denotes the total number of aliased
voxels in each reduced FOV coil image, is comprised of a complex-valued vector ajC = ajR +
iajI with NC voxel measurements from the sub-sampled spatial frequencies from each coil,
that are derived by

(6)

In Eq. (6), SjC = SjR + iSjI is a complex-valued sensitivity matrix, of dimension NC×A,
derived from the fully sampled complex-valued coil image sensitivity matrix, vjC = vjR + ivjI
is a vector of length A containing the complex-valued un-aliased scalar voxel values, and
εjC = εjR + iεjI is the complex-valued additive measurement noise vector of length NC. It is
generally assumed that the complex-valued measurement noise, εC, is derived from the
complex-valued normal distribution [10] given by
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(7)

where ΨC = ΨR + iΨI is the complex-valued coil covariance matrix and H denotes the
Hermitian, or conjugate transpose. After a transformation of variables, to represent Eq. (7) in
terms of the aliased voxel values, ajC, it can be shown that the least squares estimate of the
complex-valued true scalar voxel values is

(8)

As the additive measurement noise, derived from the complex-valued normal distribution

provides the covariance between the coils in the SENSE model, when represented as a real-
valued isomorphism,

the complex coil covariance matrix, ΨC, in terms of a real-valued isomorphism, as used in
the SENSE model, is expressed as

(9)

It is of note that the covariance structure presented in Eq. (9) is skew symmetric, assuming
that the real-by-real and imaginary-by-imaginary covariances are equivalent to the real-by-
real covariance. In addition, it is assumed that the real-by-imaginary covariance between
coils is the negative of the imaginary-by-real covariance between coils, which is equivalent
to the imaginary-by-imaginary covariance. It will be shown when estimated from
experimental data that this is not the case and that the covariance in Eq. (9) is miss-
specified, requiring the true covariance structure to be rearranged to accommodate the skew-
symmetric structure. If Eq. (6) is expressed as a real-valued isomorphism

(10)

where aj = (aT
jR,aT

jI)T is a vector of the NC real aliased voxel measurements stacked upon
the NC imaginary aliased voxel measurements, εj= (εT

jR,εT
jI)T is a vector of the NC real

parts of the complex-valued additive noise stacked upon the NC imaginary parts, and vj =
(vT

jR,vT
jI)T is a vector of the A un-aliased real voxel values stacked upon the A un-aliased

imaginary voxel values. The un-aliased scalar voxel values, vj, in Eq. (10) are derived from
a real-valued representation of the complex-valued sensitivity matrix
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where SjR and SjI are the real and imaginary sensitivities for voxel j respectively. Eq. (8) can
thus be represented in terms of a real-valued isomorphism as

or

(11)

where Sj is of dimension 2NC×2A, ΨSE is of dimension 2NC×2NC, and the vector of voxel
measurements a is of dimension 2NC×1. Thus, the isomorphism in Eq. (11) yields an image
space vector, vj, of dimension 2A×1 that is comprised of the A real voxel values stacked
upon the A imaginary voxel values. These A values correspond to the A folds that are
formed via under-sampling the data in k-space by a factor of A. It can be shown that the
estimated complex-valued un-aliased single combined image voxel values in Eq. (8) is
mathematically equivalent to the estimated real and imaginary isomorphism vector of un-
aliased single combined image voxel value in Eq. (11).

In order to carry out the SENSE isomorphism using the linear framework, Eq. (11) is
rewritten as

(12)

where the SENSE unfolding matrix USE is block diagonal with the jth block for aliased
voxel j

and a is the vector of aliased voxel values described in Eq. (5). Provided with the array of
fully sampled coil sensitivities, a coil sensitivity matrix, S, can be constructed by placing the
2NC×2A coil sensitivities, Sj, corresponding to each aliased voxel, j, along the diagonal of a
block diagonal matrix. Assuming an identity covariance structure between voxels, and that
each voxel shares the same coil covariance structure, the covariance structure used in the
weighted least squares estimation in the SENSE model is constructed using the Kronecker
product Irp⊗ΨSE. With the block diagonal coil sensitivity and coil covariance matrices, a
block diagonal SENSE unfolding operator in Eq. (12), USE, is constructed by using the
matrix representation of Eq. (11) as
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(13)

The operator USE will “unfold” the NC real and NC imaginary voxel values in all rp aliased
voxels from the NC coils into A real and A imaginary voxel values for each of A folds

As described in [7], a final permutation, PU, is necessary to reorder the un-aliased real and
imaginary image values in vSE from being ordered by voxel to being ordered by fold, and
then from being ordered by fold to ordered by row, resulting in a vector of all real un-aliased
image values stacked upon all imaginary un-aliased image values

(14)

2.3 The SENSE-ITIVE model
As will be illustrated with experimental data, when the covariance between coils is
estimated from a time series of experimental data, there is a real-by-real, imaginary-by-
imaginary, real-by-imaginary, and an imaginary-by-real covariance between coils

(15)

As the estimated covariance between coils is symmetric, the real-by-imaginary covariance
structure is simply the transpose of the imaginary-by-real covariance. It is important to note
that although derived from the multivariate normal distribution of coil measurements, the
skew-symmetric SENSE coil covariance matrix in Eq. (9) cannot be expressed in this
fashion, unless all elements in ΨSE are zero. The SENSE coil covariance structure, ΨSE, is
therefore miss-specified, requiring a rearrangement of the structure in Eq. (15) such that the
format in Eq. (9) can be accommodated.

In general, the SENSE model is applied on a voxel-by-voxel basis, thus assuming an identity
covariance structure between voxels, and that all voxels use the same covariance structure
between coils. It will be shown when the covariance structure is estimated between voxels
over a time series of images that there is a non-identity voxel covariance structure, ϒ. Given
the miss-specification in both the SENSE coil covariance structure in Eq. (9) and the
covariance between voxels in Eq. (13), consider a new model, entitled the SENSE-Image
Theoretical Isomorphism Voxel Estimation (SENSE-ITIVE), that makes use of a covariance
structure between coils like that in Eq. (15) and a non-identity voxel covariance, as
estimated from the data. The SENSE-ITIVE unfolding operation utilized in un-aliasing the
vector of aliased voxels in Eq. (5) is thus

(16)

With an estimated non-identity voxel covariance, ϒ, the SENSE-ITIVE unfolding matrix is
not a block diagonal matrix, like that of the SENSE unfolding operator in Eq. (13), but
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rather a full matrix. Therefore, to implement a non-identity voxel covariance structure, like
that estimated from real data, it is necessary to make use of a linear isomorphism such as the
one in this manuscript.

As the coil and voxel covariance structures assumed in the unfolding operation in Eq. (16)
are the only differences to that of the SENSE model, the remainder of the operations remain
the same, and thus a vector of un-aliased voxel values, ySI, derived from a vector of sub-
sampled spatial frequencies from NC receiver coils, f, is expressed as

(17)

In addition to the SENSE (SE) and SENSE-ITIVE (SI) reconstruction operations performed
in Eqs. (14) and (17), supplementary pre-processing operators, such as apodization or a
gridding operator for non-Cartesian acquisitions, ink-space [6], OK, and image space post-
processing operators, such as image smoothing, OI, can be incorporated into both models as

(18)

Operators OI, and OK are treated as identity in this study unless stated otherwise. All
operators used to reconstruct the acquired k-space signal in the SENSE and SENSE-ITIVE
models in Eq. (18) can be combined into a single operator for each model as

(19)

and

(20)

respectively.

Provided with a non-identity voxel covariance ϒ, the covariance structure of the k-space
data, acquired from receiver coils, with a coil covariance of Ψ is defined to be

The covariance induced by the reconstruction operators from the SENSE (SE) and SENSE-
ITIVE (SI) models can be evaluated as

If the k-space covariance matrix Γ is assumed to be identity, the covariance induced purely
by the SENSE and SENSE-ITIVE operators reduces to
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(21)

It was illustrated in [7] that the resulting covariance matrix ΣSE/SI is not proportional to an
identity covariance matrix, a result purely from reconstruction and processing operations.
This leads to a nonidentity correlation, and hence induced correlation between voxels by the
SENSE reconstruction operations in Eq. (21). It will be seen when comparing the use of a
mathematically correct coil covariance combined with a non-identity voxel covariance
estimated from the data, as assumed in the SENSE-ITIVE model, that the correlation
induced between the previously aliased voxels by the reconstruction operators in Eq. (21) is
unlike that of the SENSE model, where both the coil and voxel covariance structures are
miss-specified.

2.4 SENSE and SENSE-ITIVE Geometry Factor
In order to perform the matrix inverse in the weighted least squares estimation utilized in
both the SENSE and SENSE-ITIVE models, it is necessary for NC to be greater than the
acceleration factor A. If this is not the case, it results in an underdetermined system of
equations and thus poorly conditioned unfolding matrices in Eqs. (13) and (16). It is
common practice for the geometry factor (g-factor) to be used as a means of quantifying the
level of noise amplification between the receiver coils in the array, and describes how well
aliased voxels will be unfolded given the choice of coil geometry in image reconstruction
[11, 12]. Like the SENSE and SENSE-ITIVE unfolding operations, the geometry factor for
the SENSE and SENSE-ITIVE models can be represented in terms of a real-valued
isomorphism as

(22)

and

(23)

where the operator diag(·) forms a vector listing the diagonal elements of its matrix
argument. The two vectors formed by the diag(·) operator in both (22) and (23) are
multiplied on an element by element basis, resulting in vectors gSE and gSI are of length
pxpy, and ordered by voxel. The vectors can thus be unfolded by the same unfolding
permutation, PU, as used in Eq. (14), and finally reshaped into g-factor matrices by un-
stacking the columns and transposing. It can be shown that the SENSE and SENSE-ITIVE
coil covariance structures as well as the non-identity voxel covariance structure, ϒ, are non-
singular, and thus when multiplied by their respective inverse matrices produce an identity
matrix. As such, if the matrix inverses are carried out in Eqs. (22) and (23), in conjunction
with the non-singular nature of the coil and voxel covariance structures and properties of
Kronecker products, that the g-factor for SENSE and SENSE-ITIVE are equivalent.
Therefore, for a given coil geometry, the condition of the 2NC ×2A voxel sensitivity
matrices, S, is the same for both the SENSE and SENSE-ITIVE models, as defined by the g-
factor. It is by this definition of the g-factor that it is necessary to have a acceleration factor,
A, that is neither equivalent nor larger than the number of coils, NC, such that the numerical
condition of the matrix inverse utilized in the SENSE and SENSE-ITIVE least squares
estimations is preserved.
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3. Theoretical Illustration
To theoretically illustrate the differences between the SENSE and SENSE-ITIVE models,
two time series of 490 images with a 96×96 FOV for NC=4 coils were created using a
noiseless circle and Shepp-Logan phantom to respectively simulate the spherical phantom
and human subject data sets in the experimental illustration. For the Shepp-Logan phantom,
the outer rim of the phantom was set to 2.5, the upper oval within the phantom was set to
1.875, the left and right inner ovals were set to zero, with the remainder of the area within
the phantom set to 0.5. These modifications of the standard Shepp-Logan phantom were
chosen to match the maximum and minimum values of the unsmoothed human subject
magnitude, while the circle was set to 2.5 throughout to match the maximum un-smoothed
spherical phantom magnitude. The noiseless circle and Shepp-Logan phantom were
combined with theoretical coil sensitivity profiles [7], a circular coil covariance similar to
that of experimental data and a voxel covariance structure that is assumed to be identity
between voxels outside of the circle/phantom and a Gaussian kernel with a full width at half
maximum (FWHM) of three voxels. The sensitivity profiles for the four coils were
generated by multiplying the noiseless circle and Shepp-Logan phantoms with Gaussian
kernels, with a FWHM of 25 voxels, that were centered along the four edges of the full FOV
images. These profiles therefore had a zero magnitude in space around the circle and
phantom, and a zero phase throughout. The height of the Gaussian kernel in the voxel-
covariance structure was set to 1 with the kernel tapering to 0.1 everywhere within the circle
and phantom, resulting in a profile of the covariance structure similar shape to that of the
real data. The originally induced full FOV voxel covariance structure about the center voxel
for the circle and Shepp-Logan phantom data sets are illustrated in Figs. 1a and 1b,
respectively with green circles placed around the center voxel.

For each TR in the two image time series, a matrix of coil images, Yt, where t varies from 1
to 490, was constructed by

(24)

where M is a 2NC×pxpy matrix with the first NC rows corresponding to the NC real noiseless
coil images, in vector form, and the second NC rows corresponding to the imaginary
noiseless coil images, which are initially zero. The noise matrix Et is also of dimension
2NC×pxpy and generated with matrix normal or Kronecker product covariance structure [13]
by

where PΨ is the first unitary matrix in the singular value decomposition (SVD) of

Q is the second unitary matrix in the SVD of
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and zt is a random matrix variable with elements drawn from the standard normal
distribution. In this illustration, a circular covariance, similar to that estimated from the
experimental data sets, was assumed between coils with

and . A standard deviation of ψ=0.02was used for both the circle and Shepp-Logan
phantom to further scale the coil covariance, Ψ, of each data set to more closely resemble
the corresponding coil covariance matrices from the spherical phantom and human subject
experimental data sets. For each of the 490 TRs, the matrix Yt in Eq. (24) is thus comprised
of NC row vectors corresponding to the real simulated coil images stacked upon NC row
vectors of the imaginary simulated coil images.

To simulate sub-sampling, each of the rows in Yt were reshaped into matrices, by stacking
columns and transposing, and Fourier transformed into k-space, where lines were discarded
in the PE direction for an acceleration factor A=3. A vector of sub-sampled spatial
frequencies for each TR, ft, as described in Eq. (1) was constructed by vectorizing the real
and imaginary components of the spatial frequencies for each of the NC=4 coils, and
stacking them by the same means described in Eq. (4).

3.1 Estimated Coil Covariance and Voxel Covariance Structures
To replicate the procedure to be used in the experimental illustration, the coil and voxel
covariances were estimated from both time series of images using the estimation procedure
outlined in Appendix A. For each TR, the 2NC×2NC real-valued isomorphism representation
of the complex coil-covariance matrix was evaluated from the observed aliased voxel
values, at, by

As assumed by the SENSE model, there is an identity covariance between voxels in the first
iteration of the coil and voxel covariance estimation process, illustrated in Figs. 1c and 1d
for a full FOV voxel covariance, and Figs. 1g and 1h for a reduced FOV voxel covariance
about the center voxel, indicated by green circles, for the circle and Shepp-Logan phantom
data sets respectively. Each voxel in the reduced FOV therefore shares the same coil
covariance structure, allowing the estimated coil covariance matrix to be expressed as

(25)

If this first estimate of the coil covariance, Ψ̂, is partitioned into NC×NC real-valued
quadrants as

(26)
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it will be of the form  and Ψ1 ≈ Ψ4, as this was the structure of the covariance
assumed in generating the data. Assuming the imposed skew-symmetric coil covariance
structure in the SENSE model, the estimated coil covariance in Eq. (25) would be reordered
into

(27)

replacing Ψ2 and Ψ3 with −Ψ4 and Ψ4 respectively. This skew-symmetric reordering of the
first coil covariance in Eq. (27) is thus used as ΨSE in the SENSE unfolding operation in Eq.
(13). As the SENSE-ITIVE model makes use of the non-identity covariance between voxels,
this initial estimation of the coil covariance in Eq. (26) cannot be used. The estimation
process in Appendix A is carried out estimating the coil and voxel covariance matrices until
convergence is attained. In this illustration, six iterations were performed, at which point
both coil and voxel covariance structures did not differ much from one iteration to the next.
If the coil covariance of the final iteration, Ψ̃, is again partitioned into NC×NC real-valued
quadrants as

(28)

it will again be of the form  and Ψ̃1 ≈ Ψ̃4. After the final iteration, the estimated
voxel covariance structure, ϒ̃, is no longer identity, and the final estimation of the coil
covariance in Eq. (27) is used as ΨSE in the SENSE-ITIVE unfolding operation in Eq. (16).
The final estimations of the voxel correlation about the center voxel are illustrated in Figs.
1e and 1f for the reduced FOV circle and Shepp-Logan phantom data sets respectively.

3.2 Image Reconstruction and Statistical Analysis of Theoretically Generated Data
The 490 vectors of spatial frequencies, ft, were then reconstructed with the SENSE and
SENSE-ITIVE models using Eqs. (19) and (20) respectively. It was shown in [7] that the
implementation of image smoothing amplifies the effects of the correlation induced between
voxels by the SENSE image reconstruction operators. As such, the post-processing
operations, OI, in Eqs. (19) and (20) are a smoothing operation, Sm, which applies a
Gaussian smoothing kernel with a FWHM of three voxels to the real and imaginary parts of
each voxel in the reconstructed images. The SENSE and SENSE-ITIVE operators for
reconstructing k-space data are thus

(29)

The magnitude and phase of the complex mean reconstructed images for the circle and
Shepp-Logan phantom data sets are illustrated in Figs. 2a–2h for the SENSE and SENSE-
ITIVE models. It can be seen for both the circle magnitude reconstructed images in Figs. 2a
and 2b and the Shepp-Logan magnitude reconstructed images in Figs. 2c and 2d are very
similar for the SENSE and SENSE-ITIVE models respectively, with differences only on the
order of 10−2. The mean phase images for the circle in Figs. 2e and 2f are also very similar
for the two models, with only minor noticeable differences in empty space. Minor
differences in the phase are also noted between the two models in the inner ovals of the
Shepp-Logan phantom in Figs. 2g and 2h for SENSE and SENSE-ITIVE respectively where
the magnitude is close to zero.
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The difference between the SENSE and SENSE-ITIVE models becomes more distinct when
the standard deviation, and in turn signal-to-noise ratio (SNR) are examined. The standard
deviations illustrated for the circle and Shepp-Logan phantom data sets are illustrated in
Figs. 2i and 2k for the SENSE model and in Figs. 2j and 2l for the SENSE-ITIVE model. As

the reconstructed data is complex-valued, the real and imaginary variances, , and , were
estimated separately, averaged and converted to a standard deviation by taking the square
root. To further illustrate the differences between the two models, the SENSE-ITIVE
standard deviation in Figs. 2j and 2l were subtracted from the corresponding SENSE
standard deviations in Figs. 2i and 2k. These difference images, presented in Figs. 2q and 2s
for the circle and Shepp-Logan phantom respectively, were threshold to one tenth of the
original standard deviation and normalized to being on a scale between −1 and 1.

Within these standard deviation difference images, there are three regions to consider. The
first region is defined by the areas in space on the left and right of the circle and phantom in
which the standard deviation of the SENSE-ITIVE model is greater than that of the SENSE
model, as indicated by the lighter blue regions in Figs. 2q and 2s. The second region is on
the left and right within the circle and phantom in which there was no previous aliasing,
where the SENSE-ITIVE model again appears to have a slightly greater standard deviation
to that of the SENSE model. The third region to consider is the remainder of the circle and
phantom as well as the areas in space above and below the circle and phantom in which
aliasing previously occurred. It is evident in these aliased regions that the SENSE model has
a higher standard deviation to that of SENSE-ITIVE model. With SNR evaluated as (mean
magnitude)/(standard deviation) in each voxel, the increased standard deviation in the
SENSE model within the areas that were previously aliased results in a lower SNR in Figs.
2m and 2o by comparison to the SENSE-ITIVE model in Figs. 2n and 2p with a higher
SNR. This difference is most evident in the blue regions of Figs. 2r and 2t where the SNR of
the SENSE-ITIVE model was subtracted from the SNR of the SENSE model, threshold to
one tenth the scale of the original SNR values, and normalized to being on a scale between
−1 and 1. The difference in the SNR in space in Figs. 2r and 2t appears to be close to zero as
the region outside the circle and phantom is close enough to zero in the magnitude of both
models that the SNR becomes virtually zero in turn. In the un-aliased portion of the circle
and phantom, the SENSE model appears to have an increased SNR to that of the SENSE-
ITIVE model. The use of a miss-specified coil and voxel covariance structure assumed by
the SENSE model therefore only appears to have a theoretical advantage over the SENSE-
ITIVE model, in which the coil and voxel covariance structures are estimated from the data,
in the areas in which there is no aliasing within the object.

Correlations are presented about the center voxel estimated over the time series, and
compared to the operator-induced correlation about the center voxel using Eq. (21). To
observe the correlation induced purely by the SENSE and SENSE-IVITE operators in Eq.
(29), correlation induced between voxels is derived by

(30)

where DO=diag(OSE/SIOT
SE/SI)is a diagonal matrix of the variances from the diagonal of the

covariance matrix ΣSE/SI= OSE/SIOT
SE/SI and the −1/2 superscript denotes that the diagonal

elements are square rooted and inverted. The real-valued isomorphism correlation matrix
produced by Eq. (30) can be partitioned into quadrants as
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where any row, j, of each quadrant denotes the correlation between voxel j and all other
voxels in the reconstructed image for the respective complex denomination. The correlation
about voxel j can be generated by dividing the jth row of corr(ΣSE/SI) into px vectors of 1×py,
each of which denoting a column of the reconstructed image, stacking the row vectors into a
matrix, and finally transposing. Given that magnitude-only data has become the gold
standard in image analysis, a magnitude-squared analysis is undertaken in this study as it can
be shown that the correlation between magnitude-squared data is asymptotically equivalent
to the correlation between magnitude data [6]. Although the correlation can be observed
about any voxel in the full FOV images, the correlations observed in this study will all be
about the center voxel for consistency. A small green circle is placed about the center voxel
of the three folds, corresponding to the choice of acceleration factor A=3, to draw the
readers eye to correlations above a threshold of 0.15 between the center voxel and the
corresponding voxels previously aliased with the center voxel in the center of the upper and
lower folds.

The real, imaginary, real/imaginary, and magnitude-squared operator induced correlations
about the center voxel, derived using Eq. (30), along with the correlations about the center
voxel estimated from the reconstructed time series of the circle data set are presented in Fig.
3 for both the SENSE and SENSE-ITIVE models. As illustrated in [7], the application of
image smoothing results in clusters of voxels correlated with one another, rather than
individual voxels. It can be seen in the real, imaginary and magnitude-squared operator
induced correlations for the SENSE model in Figs. 3a, 3b, and 3d as well as the
corresponding correlations for the SENSE-ITIVE model in Figs. 3i, 3j and 3l that the center
voxel shows a positive correlation with a circular cluster of voxels in the center of the image
as well as a negative correlation with a cluster of voxels in the center of the upper and lower
folds. While the sign of these correlations is the same for both models, it is of note that the
SENSE-ITIVE model, which makes use of a more mathematically accurate coil covariance
structure as well as an estimated non-identity voxel covariance structure, induces slightly
larger clusters of voxels in the center of the upper, lower, and center folds. The operator
induced correlations between the real and imaginary components (real/imaginary) are
presented in Figs. 3c and 3k for the SENSE and SENSE-ITIVE models respectively. It can
be seen that the center voxel has a very low correlation with a small cluster of voxels in the
upper fold for both models, and it is of note that there is no correlation induced in the center
voxel itself by either model. The correlation between the imaginary and real is not presented
in this manuscript as it is simply the transpose of the correlation between the real and
imaginary.

Although the size of the clusters of voxels in the middle region of the upper, lower and
center folds correlated with the center voxel estimated over the time series in Figs. 3e–3h for
the SENSE model and Figs. 3m–3p for the SENSE-ITIVE model vary in size and shape, it is
important to note that there are clearly clusters of correlated voxels with the sign and
position as the clusters of correlated voxels induced by the operators. The cluster of
correlated voxels in the center of the FOV is larger for the SENSE model in the real,
imaginary, and magnitude-squared correlations in Figs. 3e, 3f, and 3h than that of the
SENSE-ITIVE model in Figs. 3m, 3n, and 3p, contrary to the behavior in the corresponding
operator induced correlations. Despite the increased size of the operator induced correlations
of the SENSE-ITIVE model in Figs. 3i, 3j, and 3l, it would appear that neglecting to
incorporate a more accurate voxel covariance structure in the SENSE model results in an
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increased spread of correlations estimated over the time series in Figs. 3e–3h to that of the
SENSE-ITIVE model in Figs. 3m–3p. In the real/imaginary correlations estimated for the
SENSE model in Fig. 3g, the correlations in all three folds appear to be larger than those in
the SENSE-ITIVE model in Fig. 3o. It is important to note that in all correlations estimated
about the center voxel throughout the time series, it is the weaker correlations that vary in
shape between models, while the size of the clusters of stronger correlation in the center of
each fold more closely resemble the clusters of correlated voxels induced by the respective
reconstruction operators of both models.

The real, imaginary, real/imaginary, and magnitude-squared operator induced correlations
about the center voxel, derived using Eq. (30), along with the correlations about the center
voxel estimated throughout the reconstructed time series of the Shepp-Logan phantom data
set are presented in Fig. 4 for both the SENSE and SENSE-ITIVE models. The general
behavior of the real, imaginary, and magnitude-squared operator induced voxels correlated
with the center voxel as a result of the SENSE model in Figs. 4a, 4b, and 4d and the
SENSE-ITIVE model in Figs. 4i, 4j, and 4l are not unlike the corresponding operator
induced correlations of the circle data set, presented in Fig. 3. A significant difference,
however, is noted between the correlations observed throughout the circle and Shepp-Logan
phantom time series. In the real, imaginary, and magnitude-squared correlations estimated
about the center voxel, one can see an oval shaped cluster of correlated voxels in the center
of each fold for the SENSE model in Figs. 4e, 4f, and 4h, while the estimated SENSE-
ITIVE correlations in Figs. 4m, 4n, and 4p are smaller and more circular in shape. The shape
of the correlations observed in the SENSE model are consistent with the shape of the region
in the center of the previously reduced FOV coil images where there is the most overlap of
the phantom as well as the center of the reduced FOV voxel covariance structure estimated
for the Shepp-Logan phantom data set in Fig. 1f. As the Shepp-Logan phantom occupies
more of a full FOV image than the circle, there will be a considerably larger overlap of high
signal within the aliased images for the Shepp-Logan phantom than in the aliased images for
the circle. With a larger overlap in the aliased images, it is therefore to be expected that there
will be a larger correlation in the previously aliased regions of the reconstructed images. As
the size of these correlations is reduced in the SENSE-ITIVE model in Figs. 4m, 4n, and 4p,
where the non-identity voxel covariance in Fig. 1f is incorporated into the reconstruction, it
is evident that the miss-specified voxel covariance structure in the SENSE model does not
appropriately account for this overlap of aliased voxel values, resulting in an increased
spread of correlation throughout the reconstructed images. In the magnitude squared
correlations in Figs. 4h and 4p, both models show a zero correlation within the inner ovals
where the magnitude, and in turn SNR, are both zero.

While all of the clusters in the real, imaginary, real/imaginary, and magnitude-squared
estimated time series correlations for both the circle and Shepp-Logan phantom data sets
reconstructed by the SENSE and SENSE-ITIVE models appear to change in shape and size,
it is of note that the areas of strongest correlation are still in the center of each fold. While
the correlations in this study are presented for acceleration factors of A=3, it is therefore to
be expected that these correlations would be even stronger and more spread out throughout
the image if a higher reduction factor were used. As stated in [7], this could have serious
functional connectivity implications should one draw conclusions as to where these
correlations stem from without a prior understanding of the correlations induced by image
reconstruction operators such as SENSE and SENSE-ITIVE.

4. Experimental Application and Analysis
To further illustrate the difference between the SENSE and SENSE-ITIVE models, two sets
of data were acquired from an array of 8 receiver coils with a 3.0 T General Electric Signa
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LX magnetic resonance imager. The first set of data was of a spherical agar phantom, while
the second set was a series of non-task images of a human subject. Both data sets were
comprised of nine 2.5 mm thick axial slices that are 96×96 in dimension for a 24 cm FOV,
with the phase encoding direction oriented as anterior to posterior (bottom-top in images). In
functional connectivity MRI, images are acquired over time and statements are made about
the correlations between voxels or regions. The methodology described here is applicable to
matrix sizes larger than the 96×96 one illustrated here. However, it is rare to have matrix
sizes larger than 96×96 in fMRI. Acquired for a series of 510 TRs, the data sets had a
repetition time(TR) of 1 s, an echo time(TE) of 42.8 ms, an effective echo spacing of 768
ms, a flip angle of 45°, and an acquisition bandwidth of 125 kHz. The first 20 TRs were
discarded to account for T1 effects and because the echo time had been varied (in the human
data), resulting in 490 TRs that were all acquired under the same conditions. All of the
remaining 490 images from coils 1, 3, 5, and 7 were used in estimating both the sensitivity
maps and the coil and voxel covariances, from NC=4 equally spaced coils, to be used in
image reconstruction. Sub-sampling was simulated for an acceleration factor of A=3 by
deleting lines of k-space in each of the fully acquired coil images in the PE direction.

Both the spherical phantom data and the human subject data were acquired with a custom
Echo Planar Imaging (EPI) pulse sequence and reconstructed using locally developed image
reconstruction software. The centerline of k-space for each receiver coil was acquired with
three navigator echoes in order to estimate the error in the center frequency and group delay
offsets between the odd and even k-space lines [6]. As EPI techniques are susceptible to
dynamic fluctuations in the homogeneities of the main magnetic field from factors such as
respiration and out of field motion, the global, temporal phase structure was corrected in
both data sets after unfolding to account for field shifts associated with gradient heating and
radio frequency phase variation [9]. Additionally, to account for drift in the gradients, a
plane was fit to and subtracted from the phase of each image for each coil in the time series
using the technique outlined in [14]. This procedure effectively eliminates the ripple effect,
noted in the human subject phase in Fig. 10 of [7], from the correlation images in Fig. 11 of
[7].

Traditionally, the raw coil sensitivity maps would be derived by normalizing the surface coil
sensitivities in each voxel by the corresponding body coil sensitivities [11]. As a body coil
was not utilized for either of the scans, the raw coil sensitivity maps were thus normalized
by dividing the coil sensitivities by an average of the coil sensitivities in each voxel.
Alternatively, a square root of the sum of squares of the coil sensitivities in each voxel could
be used [11, 12]. However, little difference was observed between the root sum of squares
sensitivity map and the simple complex average, and thus the simple complex average
sensitivity maps were used in this study as they provide both magnitude and phase images,
when the root sum of squares sensitivities do not have a phase. Magnitude and phase images
are necessary to utilize all of the data in a complex-valued time series model [15, 16].

4.1 Phantom Data
To bridge the gap between the theoretical illustration in Section 3 and the application to the
human subject data to follow, a spherical agar phantom was scanned. Unlike a human
subject, the phantom is not prone to respiratory movement or physiological effects, and thus
provides a good baseline for experimental observations. Coil sensitivity maps were
estimated using a simple complex average over the time series of spherical phantom coil
images, while coil covariances and voxel covariances were estimated from the time series
using the estimation process outlined in Appendix A. An analysis is performed on the
statistical properties of reconstructed images both with a skew-symmetric coil covariance
combined with an identity voxel covariance, as assumed by the SENSE model, and then
with a coil and voxel covariance estimated directly from the data, consistent with the
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SENSE-ITIVE model. Voxel means and variances are observed through reconstructed
magnitude, phase, standard deviation, and SNR images. The correlation between voxels
throughout the time series are estimated and illustrated about the center voxel. These
correlations are compared to the operator induced correlations from the respective models
using the estimated sensitivity maps, coil covariance structure, and voxel covariance
structure, presented on a magnitude image for the respective model.

4.1.1 Estimated Coil Covariance and Voxel Covariance Structures—The coil and
voxel covariance structures to be used in the reconstruction of the spherical phantom data set
were estimated via the estimation procedure outlined in Appendix A. Provided with an
identity covariance between voxels in the first iteration, the initial estimation of the coil
covariance structure is denoted Ψ̂. To gain a better understanding of the covariance structure
between coils, an average covariance was formed by partitioning Ψ̂ into NC×NC real-valued
quadrants as in Eq. (26), and taking the mean of the diagonals of each quadrant. As an array
of 4 coils was used, the main diagonal of the coil covariance represents the coil of interest,
the second and fourth supra and sub diagonals correspond to the neighboring coils, and the
third supra and sub diagonals correspond to the opposite coil. This averaged covariance
structure was then transformed into the correlation matrix in Table 1 by

where DΨ is a diagonal matrix of the variances from the diagonals of Ψ̂, and the superscript
−1/2 denotes the reciprocal of the square root of DΨ.

When comparing the different quadrants of the correlation structure in Table 1, it can be
seen that Ψ3 = Ψ2

T and Ψ1 ≈ Ψ4, just as in the SENSE-ITIVE model introduced in Eq. (15)
of this manuscript, where ΨRI=ΨIR

T and ΨR = ΨI. Upon closer inspection of the real and
imaginary components of the coil correlation in Table 1, one can see that the correlation
between the coils along the main diagonals and their neighbors follow a circular structure
(as was used in the theoretical illustration). To accommodate the skew-symmetric coil
covariance structure estimated with an identity voxel covariance in the SENSE model, the
coil correlation in Table 1 was reordered into the skew-symmetric coil covariance structure
in Eq. (27), as presented in Table 2, and then used in the SENSE unfolding operation in Eq.
(13).

The estimation process in Appendix A was carried out for 6 iterations, estimating the coil
and voxel covariance structures to be used in the SENSE-ITIVE model until both Ψ̃ and ϒ̃
did not vary much from one iteration to the next. The final estimation of the coil correlation,
Ψ̃, is listed in Table 3. Again, if the correlation in Table 3 were divided into quadrants such

as in Eq. (28), one can see that  and Ψ̃1 ≈ Ψ̃4 as assumed by the SENSE-ITIVE
model in Eq. (15), and used in the SENSE-ITIVE unfolding operation in Eq. (16).

To observe the covariance structure estimated over the time series between voxels, the row
of the estimated voxel covariance, ϒ̃, corresponding to the voxel of interest is reshaped into
a matrix, by unstacking rows. The covariance about the center voxel for acceleration factors
A=1 and A=3 are illustrated for the estimated non-identity voxel covariance in Figs. 5a and
5c, and for an identity voxel covariance in Figs. 5b and 5d, where the center voxel in each
image in Fig. 5 is indicated with a green circle. The apparent aliasing noted in Fig. 5a is a
result of Nyquist ghosting that has not been completely removed. It is clearly evident that
the assumption made in the SENSE model that there is an identity covariance between
voxels in Fig. 5b and 5d is unlike that estimated from the experimental time series in Figs.
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5a and 5c. In reconstructing the time series of aliased coil images, the reduced FOV identity
voxel covariance in Fig. 5d is thus used in the SENSE model, while the estimated reduced
FOV voxel covariance in Fig. 5c is used in the SENSE-ITIVE model.

4.1.2 Image Reconstruction and Statistical Analysis of Spherical Phantom
Data—As noted in [7], the incorporation of image smoothing, as is common practice in
fMRI, amplifies the correlations and effects of the image reconstruction operators. As such,
a Gaussian smoothing kernel with a FWHM of three voxels was applied to each of the
reconstructed images in the time series for both models. Once the time series was
reconstructed, the mean, standard deviation, SNR, and correlation were evaluated in each
voxel.

The magnitude and phase of the mean complex-valued images over the 490 images of the
time series reconstructed by the SENSE model are presented in Figs. 6a and 6c, and in Figs.
6b and 6d for the SENSE-ITIVE. While both the magnitude and phase images appear very
similar in nature, there are very minor differences between the two models in empty space
and in the regions above and below the phantom in the phase images in Figs. 6c and 6d.
These regions are present as a result of a combination of aliasing and Nyquist ghosting that
has not been completely removed, leading to minor differences in these regions between the
two models.

Observing the standard deviation within each voxel over the time series in Figs. 6e and 6f
for the SENSE and SENSE-ITIVE models respectively, one can see that there is a lower
standard deviation both in the area surrounding the phantom and within the phantom itself
for the SENSE model than that of the SENSE-ITIVE model. This is most apparent in Fig. 6i,
where the standard deviation of the SENSE-ITIVE model in Fig. 6f is subtracted from the
standard deviation of the SENSE model in Fig. 6e, threshold to one-tenth the standard
deviation in Figs. 6e and 6f, and normalized to being on a scale from −1 to 1. In Fig. 6i, it is
evident that the SENSE model only exhibits a higher standard deviation in areas where
aliasing once occurred above, below, and within the phantom itself. In both models, the
areas of lowest standard deviation are within the centers of the upper and lower folds where
aliasing occurred and in the sides of the phantom in the center fold where no aliasing
occurred. As SNR is evaluated as (mean magnitude)/(standard deviation) in each voxel, the
lower standard deviation in the SENSE model gives rise to a higher SNR in these regions, as
presented in Fig. 6g, and a slightly increased SNR within the phantom itself to that of the
SENSE-ITIVE model in Fig. 6h. This is most evident in the yellow regions of Fig. 6j, where
of the SNR of the SENSE-ITIVE model in Fig. 6h is subtracted from the SNR of the SENSE
model in Fig. 6g, threshold to one-tenth the SNR in Figs. 6g and 6h, and normalized to being
on a scale from −1 to 1. Seeing as the SENSE model does not appropriately represent the
covariance between either voxels or coils, the residual effects of aliasing may be miss-
represented, leading to a seemingly artificial increase in SNR, as it is within these aliased
regions in the phantom that the difference between the SNR of the SENSE and SENSE-
ITIVE models appears to be the greatest. As this artificial increase in SNR noted in the
SENSE model is observed in the three areas in which the most overlap occurred in the
aliased images, should an acceleration factor higher than A=3 be used, one would expect the
SNR to be over-estimated even more if the covariance structure between voxels is not
appropriately accounted for.

The theoretical correlations induced about the center voxel from Eqs. 19 and 20 for the
spherical phantom purely by the SENSE and SENSE-ITIVE reconstruction operators,
derived by Eq. (30), are presented in Figs. 7a–7d and 7i–7l respectively, while the
correlations estimated throughout the time series of reconstructed images are presented
about the center voxel in Figs. 7e–7h for the SENSE model and in Figs. 7m–7p for the
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SENSE-ITIVE model. All correlation images are presented with a threshold of 0.15, and
superimposed on top of a magnitude underlay for the respective models. In all images of
Fig. 7, green circles have been placed about the center voxel of the upper, lower, and middle
folds to remind the reader of the previously aliased voxels in the center of the three folds.
The real, imaginary, and magnitude-squared operator induced correlations about the center
voxel for the SENSE model in Figs. 7a, 7b, and 7d closely resemble those in the theoretical
illustration in Figs. 3a, 3b, and 3d while the SENSE-ITIVE correlations in Figs. 7i, 7j, and 7l
appear to be slightly larger in the center voxel and are no longer confined to a small circular
cluster in the center of each fold as they were in the theoretical illustration in Figs. 3i, 3j, and
3l. Both the SENSE and SENSE-ITIVE operator induced real/imaginary correlations about
the center voxel in Figs. 7c and 7k have noabove threshold correlated clusters of voxels in
the center of the upper, lower or center folds. It is of note that the shape of the clusters of
operator induced correlated voxels in the SENSE-ITIVE model are larger than those of their
theoretical counterparts in Fig. 3. The fact that these clusters are larger for the SENSE-
ITIVE model than that of the SENSE model is consistent with what was observed in the
theoretical illustration, and would suggest that the inclusion of a more accurate voxel
covariance structure will more accurately represent the correlation structure inherent in the
data.

Without the physiologic effects and the issues that arise with movement in human subject
data sets, the correlations estimated throughout the time series for the spherical phantom
data set provide an excellent means of observing the degree to which operator induced
correlations affect the overall correlation structure of the data. The real, imaginary, real/
imaginary and magnitude squared correlations estimated about the center voxel throughout
the time series for the SENSE model presented in Figs. 7e–7h appear remarkably similar to
the corresponding operator induced correlations of the SENSE model in Figs. 7a– 7d. It is
interesting to note that while the real and magnitude squared correlations estimated over the
theoretical time series reconstructed by the SENSE model in Figs. 3e and 3h exhibited
slightly larger clusters of induced correlations about the center voxel than the corresponding
SENSE-ITIVE correlations in Figs. 3m and 3o, the correlations estimated throughout the
time series of spherical phantom images reconstructed by the SENSE-ITIVE model in Figs.
7m and 7p display a larger positive correlation in the center of the image to the SENSE
model in Figs. 7e and 7h. Upon observation of the full FOV voxel covariance structure in
Fig. 5a, it is apparent that there is Nyquist ghosting that has not been entirely removed from
the spherical phantom data set. While the Nyquist ghost above and below the phantom is not
a part of the phantom itself, there is clearly a non-zero signal in these regions. This will have
the same effect as for a larger object in terms of the amount of overlapping signal in the
aliased images, and consequently a larger correlation structure becomes evident in the
SENSE-ITIVE reconstructed time series in Figs. 7m and 7p as a more accurate voxel
covariance structure is used. While the imaginary estimated correlation for the SENSE
model in Fig. 3f also showed a larger correlation in the center of the image, the imaginary
correlation in Fig. 7f estimated about the center voxel for the spherical phantom shows a
small circular cluster of positively correlated voxels instead. Unlike the real/imaginary
correlation estimated in the SENSE reconstructed images in Fig. 7g, the estimated real/
imaginary correlation in the SENSE-ITIVE reconstructed images show a minor scattering of
non-zero correlations throughout the image in Fig. 7o.

The fact that the correlations estimated throughout the time series exhibit a structure very
similar to the operator induced correlations in both the SENSE and SENSE-ITIVE models
indicates that the correlations estimated over the time series could prove very misleading in
functional connectivity studies. For magnitude squared correlations in particular, which are
asymptotically equivalent to the gold standard magnitude used in most studies today [6], if
one did not account for operator induced correlations, one could easily, and mistakenly,

Bruce et al. Page 19

Magn Reson Imaging. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



assume that there is a strong positive correlation between the center, anterior, and posterior
regions of the phantom. Using the SENSE model, with a miss-specified coil and voxel
covariance structure, the correlation estimated throughout the time series is not as accurately
represented as it is in the SENSE-ITIVE model, in which the covariance between coils and
voxels is estimated from the data set and used in the reconstruction process.

As the acceleration factor of A=3 was selected for this study, there are three clusters of
voxels correlated with the center voxel. Should one for instance increase the number of coils
to NC=8 and the acceleration factor to A=6, the number of folds would double from that of
this study, and thus the number of operator induced clusters of voxels correlated with the
center voxel would increase to 6 in turn. (This result can be generalized to a larger number
of coils and a larger acceleration factor and thus a larger number of clusters of voxels.)
These correlations could have even more serious functional connectivity implications as
they would make one easily conclude that the center voxel is correlated with a cluster of
voxels in the center of each of the 6 folds, when in fact they are merely a byproduct of the
voxel mapping scheme used in the SENSE and SENSE-ITIVE models.

4.2 Human Subject Data
Unlike a static spherical phantom, data acquired for a human subject is prone to respiratory
movement and physiological effects. Coil sensitivity maps, coil covariances and voxel
covariances were estimated from the time series of human subject images by the same
means to that of the phantom data set. The SENSE model again assumes a skew-symmetric
coil covariance structure and an identity covariance between voxels and therefore made use
of the re-arranged coil covariance structure in Eq. (27), estimated from the first iteration of
the estimation process in Appendix A. The coil and voxel covariance structures of the
SENSE-ITIVE model were estimated by allowing the estimation to run for six iterations, at
which point neither covariance structure varied much from one iteration to the next.

4.2.1 Image Reconstruction and Statistical Analysis of Human Subject Data—
As with the theoretical illustration and phantom data sets, a Gaussian smoothing kernel with
a FWHM of three voxels was applied to each of the reconstructed images in the time series
for both models. Provided with estimates of the coil and voxel covariance structures for both
models from the human subject data, each of the 490 images in the time series were
reconstructed by the respective models, after which an analysis was performed on the
means, standard deviation, SNR, and correlation in each voxel over the time series. The
estimated voxel correlation about the center voxel, indicated by a green circle, for a full
FOV reconstruction of the human subject data set is presented in Fig. 8a with the identity
voxel covariance about the center voxel for a full FOV assumed by the SENSE model in
Fig. 8b. The apparent aliasing noted above and below the brain in Fig. 8a is a result of
Nyquist ghosting that has not been completely removed. The corresponding reduced FOV
voxel correlations about the center voxel are presented in Figs. 8c and 8d for the SENSE-
ITIVE and SENSE models, respectively. As with the spherical phantom illustration, it is
evident that the correlation about the center voxel is not identity, as assumed by the SENSE
model. In reconstructing the time series of aliased coil images for the human subject, the
reduced FOV identity voxel covariance in Fig. 8d is therefore used in the SENSE model,
while the estimated reduced FOV voxel covariance in Fig. 8c is used in the SENSE-ITIVE
model.

The magnitude and phase of the mean complex-valued images over the 490 images of the
time series of human subject data reconstructed by the SENSE model are presented in Figs.
9a and 9c, and in Figs. 9b and 9d for the SENSE-ITIVE As in the spherical phantom data
set, it is difficult to distinguish the difference between the mean magnitude and phase of
each model, despite numerical differences. The mean phase images for the SENSE and
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SENSE-ITIVE models in Figs. 9c and 9d only exhibit minor differences between the two
models in the space surrounding the brain, particularly in the regions above and below the
brain where both aliasing and Nyquist ghosting previously occurred.

Similar to the spherical phantom illustration, the standard deviation of the SENSE model in
Fig. 9e appears to be slightly lower in space and within the brain to that of the SENSE-
ITIVE model in Fig. 9f. This is most apparent in Fig. 9i, where the standard deviation of the
SENSE-ITIVE model in Fig. 9f is subtracted from the standard deviation of the SENSE
model in Fig. 9e, threshold to one-tenth the standard deviation in Figs. 9e and 9f, and
normalized to being on a scale from −1 to 1. It is evident in Fig. 9i that the only regions in
which the standard deviation of the SENSE model is greatest is in the lower portion of the
brain, as well as in the aliased regions above and below the brain. As such, the SNR, defined
to be (mean magnitude)/(standard deviation) in each voxel, is greater throughout the brain
for the SENSE model in Fig. 9g than that of the SENSE-ITIVE model in Fig. 9h. This is
most evident in yellow regions within the brain of Fig. 9j, where of the SNR of the SENSE-
ITIVE model in Fig. 9h is subtracted from the SNR of the SENSE model in Fig. 9g,
threshold to one-tenth the SNR in Figs. 9g and 9h, and normalized to being on a scale from
−1 to 1.

The theoretical correlations induced about the center voxel for the human subject purely by
the SENSE and SENSE-ITIVE reconstruction operators are presented in Figs. 10a–10d and
10i–10l respectively, while the correlations estimated throughout the time series of
reconstructed images are presented about the center voxel in Figs. 10e–10h for the SENSE
model and in Figs. 10m–10p for the SENSE-ITIVE model. It is of note that the estimated
correlations of the time series reconstructed with the SENSE model in Figs. 10e–10h are
effectively the same as the estimated correlation images in Figs. 11 in [7], in which the
ripple effect was noted due to shifts in the gradients that had not been accounted for using
the phase adjustment in [14]. All correlation images are presented with a threshold of 0.15,
and superimposed on top of a magnitude underlay for the respective models, with green
circles placed about the center voxel of the upper, lower, and middle folds to remind the
reader of the previously aliased voxels in the center of the three folds. The brain presented in
the human subject data set occupies a smaller proportion of the full FOV images than the
spherical phantom. As such, there is less overlap of the brain in the aliased images and thus
unlike the spherical phantomdata sets. With less overlap, the operator induced correlations
about the center voxel for both the SENSE and SENSE-ITIVE models are very similar in the
case of the human subject data set to those illustrated in the theoretical illustration in Fig. 4.
The real, imaginary and magnitude-squared operator induced correlations for the SENSE
model in Figs. 10a, 10b, and 10d and for the SENSE-ITIVE model in Figs. 10i, 10j, and 10l
have a cluster of voxels positively correlated with the center voxel in the center of the FOV
and a negatively correlated cluster of voxels in the center of the upper and lower folds, and
are all confined to within the area defined by the green circles. These clusters are in general
very slightly larger for the SENSE-ITIVE model than they are for the SENSE model,
although not as large as those observed for the SENSE-ITIVE model in the spherical
phantom data set in Figs. 7i, 7j, and 7l. The real/imaginary induced correlation images about
the center voxel in Figs. 10c and 10k do not show any clusters of correlated voxels for either
of the models.

In the correlations estimated throughout the time series of images reconstructed by both the
SENSE and SENSE-ITIVE models, one can observe negative clusters of voxels, correlated
to the center voxel, in the upper and lower folds of the real and magnitude squared
correlation images in Figs. 10e and 10h for the SENSE model, and Figs. 10m and 10p for
the SENSE-ITIVE model, with positive clusters of correlated voxels in the center. These
correlations directly align with the corresponding operator-induced correlations in Figs. 10a
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and 10d for the SENSE model and Figs. 10i and 10l for the SENSE-ITIVE model. Although
the operator induced correlations of both models exhibited negative imaginary correlations
in the upper and lower folds with a positive imaginary correlation in the center fold in Figs.
10b and 10j, it is primarily the positive correlation in the center fold that is apparent in the
estimated imaginary correlations for the human subject in Figs. 10f and 10n for the SENSE
and SENSE-ITIVE models respectively. Additionally, while there was no noticeable real/
imaginary induced correlation for either model in Figs. 10c and 10k, there is clearly a non-
zero real/imaginary correlation estimated from the SENSE and SENSE-ITIVE reconstructed
images in Figs. 10g and 10o respectively, that appears similar in nature to the imaginary
correlations in Figs. 10f and 10n. While the estimated correlations for both models appear
very similar in nature in the human subject data set, upon close observation one can see that
the correlations of the SENSE model are slightly greater than those of the SENSE-ITIVE
model, as noted in the theoretical illustration in Fig. 4. This increased correlation of the
SENSE model is most likely a result of an inappropriate representation of the estimated
voxel covariance structure presented in Fig. 8c. These correlations could have serious
functional connectivity implications as one could mistakenly conclude that the clusters of
correlated voxels in the center of the three folds possess a correlation of a biological origin
without realizing the artificial source of the correlation.

Discussion
The mathematical framework outlined in [6] and [8] that allows image reconstruction
operators to be expressed as matrices, and thus used to determine the statistical effects that
each operator induces on the mean, covariance, and correlation of the data to be
reconstructed, was expanded upon in [7] to represent the SENSE image reconstruction
process as a linear isomorphism. It has been shown that when represented in terms of a real-
valued isomorphism, the skew-symmetric coil covariance and identity voxel covariance
structures, assumed by the SENSE model, are inappropriately defined when compared to the
covariance structures estimated from both spherical phantom and human subject data sets.
As such, a model that adjusts the SENSE model to account for both of these miss-
specifications, entitled SENSE-ITIVE, has been proposed. The SENSE-ITIVE model uses a
more mathematically correct coil covariance structure in conjunction with an estimated
voxel covariance structure.

To illustrate the effects of using different coil and voxel covariance structures, a two part
theoretical illustration was presented with a time series of constant circle and Shepp-Logan
phantom images. Both time series were generated using a theoretical circular coil covariance
structure similar to that in real data and a Gaussian voxel covariance structure, scaled and
modified to mimic the real data. It was shown that the correlation induced about the center
voxel by the SENSE image reconstruction operators was slightly less than that of the
SENSE-ITIVE model, but the SENSE model illustrated an increase in standard deviation as
well as the correlation estimated over the time series in the areas of previously aliased
voxels. This increase in standard deviation was in turn marked by a decrease in the SNR
within the circle and phantom in all regions where voxels were once aliased due to the sub-
sampling process. The SENSE model was thus shown to have a theoretical advantage over
the SENSE-ITIVE model, in terms of SNR, only in regions where aliasing was minimal.

The validity of the covariance adjustments made to the SENSE model with the SENSE-
ITIVE model have been verified with experimental data, for both a spherical phantom and a
human subject, acquired from a 3.0 T GE Signa LX magnetic resonance imager. The coil
covariance used in the SENSE model was derived in the first iteration of the coil and voxel
estimation process in which an identity voxel covariance structure was assumed. This
covariance was then reordered to match the skew-symmetric coil covariance in the SENSE
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model. The estimation process of the coil and voxel covariance structures in both the human
subject and spherical phantom data sets were carried out until both the coil and voxel
covariance structures did not vary much from one iteration to the next. At this stage, the
estimated covariance structures between coils and voxels were used in the SENSE-ITIVE
model, without being rearranged to being skew-symmetric as in the SENSE model.

Both data sets were reconstructed using the SENSE and SENSE-ITIVE reconstruction
operators, with image smoothing applied after reconstruction. In both data sets, both models
showed similar behavior in mean magnitude and phase images. The standard deviation
within both the spherical phantom and brain appeared to be lower for the SENSE model.
This was unlike that of the theoretical illustration, giving the SENSE model an artificial
increase in the SNR of the experimental data sets as a result of the miss-specified coil and
voxel covariance structures.

The correlations induced by the image reconstruction operators were shown to be consistent
in both the spherical phantom and human subject data sets with the theoretical illustration
for both models, with the exception of the SENSE-ITIVE model showing slightly larger
clusters of correlated voxels in the spherical phantom data set. In the spherical phantom data
set, there was a clear resemblance between the operator induced correlations and those
estimated over the time series. This operator-induced correlation could have serious
implications in functional connectivity studies, as one would mistakenly conclude that there
is a correlation between the center voxel and a cluster of voxels in the anterior and posterior
regions of the brain, when in fact it is merely a consequence of using a reconstruction model
that incorporates a voxel-mapping scheme, such as SENSE and SENSE-ITIVE.

It is of note that the study outlined in this manuscript addresses only the assumptions made
in the SENSE model introduced in [4]. While many improvements have been made to the
original SENSE model with the advent of techniques such as Compressed Sensing [17],
these improvements are beyond the scope of this study. However, it is important to note that
irrespective of the parallel image reconstruction model used, when sub-sampled data is used
to generate missing information in either the image or spatial frequency domain, a
correlation is induced between voxels as a result of the image reconstruction process.

Traditionally, the image reconstruction process in the SENSE model is performed on a
voxel-by-voxel basis. However, in order to make use of both the more accurate
representation of the coil and voxel covariance structures, it is necessary to use a linear
isomorphism, such as the one outlined in both [7] and this manuscript, where all voxels are
reconstructed at once. The only disadvantage of such a procedure is the computational
requirements that the linear operators utilize. The times (in seconds) required for a PC with
dual quad-core processors and 24 Gb of RAM to generate the SENSE and SENSE-ITIVE
operators, reconstruct a time series with 490 TRs on NC=4 coils, sub-sampled with A=3, and
estimate the operator induced correlations are illustrated in Figs. 11a, 11b, and 11c
respectively for images of size 24, 42, 60, 78, 96, and 114. It is evident in Fig. 11a that
incorporating a non-identity voxel covariance structure into the SENSE-ITIVE model
requires more time to build the reconstruction operators than for the SENSE model, where
an identity covariance is used. Likewise, it is apparent in Fig. 11b that the reconstruction of
the time series for SENSE is faster than for SENSE-ITIVE. The times in Fig. 11b are to be
expected since the SENSE operators are sparse while the SENSE-ITIVE operators are not,
and thus the time for the multiplication of a matrix and a vector is decreased. It was found,
however, that for a larger FOV, the use of a sparse representation of the SENSE operators
becomes inefficient when the operator induced correlation matrix is determined, and thus a
full representation of the operators were used. As the SENSE and SENSE-ITIVE operators
are of the same dimension, it is therefore to be expected that the times for estimating the
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operator induced correlations will be equivalent, as shown in Fig. 11c. The apparent
exponential increase in time with the size of the image to be reconstructed for the processes
in Figs. 11a, 11b, and 11c is confirmed in Fig. 11d, where the log of the total time for the
SENSE and SENSE-ITIVE programs to be run appears linear.

To improve upon the times in Fig. 11, it would be most beneficial if both sparse matrices
were used wherever possible and parallel matrix multiplication techniques, such as PUMMA
[18] and SUMMA [19], are employed. Despite these computational requirements, however,
the benefits of using a linear framework, such as the one in [6] and [7], allows for an
analysis to be performed on the statistical implications of the image reconstruction
operations. It has been illustrated that this is of particular importance when operators that
perform a mapping of data from multiple receiver coils to multiple folds to un-alias an
aliased image, such as in the SENSE and SENSE-ITIVE models, are used.
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Appendix A. Voxel and Coil Covariance Estimation
Provided with a time series of NTR complex-valued, aliased, k-space arrays of dimension
px×py/A, the covariance structure between voxels and the covariance between coils can be
estimated in an iterative fashion. Let V denote a pxpy/A×2NC×NTR real-valued array
comprised of the NC real and NC imaginary vectorized components of the image-space
images from the NC coils in each TR. From the 3D array V, the mean can be taken in the
third dimension to estimate the mean image, V ̄. With an initial assumption that the
covariance between voxels, ϒ, is identity, the coil covariance Ψ is assumed to be equivalent
in each voxel as Γ= Irp⊗Ψ. Thus, the coil covariance can be estimated as

where rp denotes the total number of voxels in the px×py/A aliased images. This initial
estimate of the coil covariance structure can then be used to estimate a covariance between
all voxels, ϒ̂, in the aliased coil images as

At this stage, the voxel covariance matrix can be translated into a correlation matrix, as there
is little difference in the reconstruction and induced operator correlations. With this estimate
of the voxel covariance, the coil covariance structure can be re-estimated in the second
iteration to account for the covariance between voxels as

Similarly, the covariance structure between voxels can be re-estimated provided with the
updated coil covariance

This iterative process can be repeated until a desired level of convergence criteria is met for
both the coil and voxel covariance structures. In this study, convergence was determined by
the iteration in which both the voxel and coil covariance structures were of full rank. The
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final covariance between the voxels of the aliased images from the array of receiver coils is
denoted
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Figure 1.
Correlation about the center voxel a) used in generating the circle data set, b) used in
generating the Shepp-Logan phantom data set, c-d) assumed by the SENSE model for full
FOV image reconstruction, e) reduced FOV estimated voxel correlation from circle time
series, f) reduced FOV estimated voxel correlation from Shepp-Logan phantom time series,
g-h) reduced FOV identity correlation assumed by the SENSE model.
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Figure 2.
a)SENSE (SE) circle mean magnitude, b) SENSE-ITIVE (SI) circle mean Magnitude, c)SE
Shepp-Logan Phantom (SLP) mean magnitude, d) SI SLP mean Magnitude, e) SE circle
mean Phase, f) SI circle mean phase, g) SE SLP mean Phase, h) SI SLP mean phase, i) SE
circle standard deviation, j) SI circle standard deviation, k) SE SLP standard deviation, l) SI
SLP standard deviation, m) SE circle SNR, and n) SI circle SNR images, o) SE SLP SNR, p)
SI SLP SNR images, q) normalized difference SE-SI standard deviation of circle, r)
normalized difference SE-SI SNR of circle, s) normalized difference SE-SI standard
deviation of SLP, and t) normalized difference SE-SI SNR of SLP. Smoothing (Sm) was
applied with a Gaussian kernel with a FWHM of 3 voxels.
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Figure 3.
A comparison between a) SENSE (SE) real, b) SE imaginary, c) SE real/imaginary, d) SE
magnitude-squared operator induced correlation about the center voxel, and e) SE real, f) SE
imaginary, g) SE real/imaginary, h) SE magnitude-squared estimated correlation about the
center voxel over the time series of the circle with, i) SENSE-ITIVE (SI) real, j) SI
imaginary, k) SI real/imaginary, and l) SI magnitude-squared operator induced correlation
about the center voxel and m) SI real, n) SI imaginary, o) SI real/imaginary, and p) SI
magnitude-squared estimated correlation about the center voxel over the time series of the
circle. Correlations presented with a threshold of 0.15 for operators with an identity
estimated voxel covariance structure assumed. Smoothing was applied with a Gaussian
kernel with a FWHM of 3 voxels.
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Figure 4.
A comparison between a) SENSE (SE) real, b) SE imaginary, c) SE real/imaginary, d) SE
magnitude-squared operator induced correlation about the center voxel, and e) SE real, f) SE
imaginary, g) SE real/imaginary, h) SE magnitude-squared estimated correlation about the
center voxel over the time series of the Shepp-Logan Phantom with, i) SENSE-ITIVE (SI)
real, j) SI imaginary, k) SI real/imaginary, and l) SI magnitude-squared operator induced
correlation about the center voxel and m) SI real, n) SI imaginary, o) SI real/imaginary, and
p) SI magnitude-squared estimated correlation about the center voxel over the time series of
the Shepp-Logan Phantom. Correlations presented with a threshold of 0.15 for operators
with an identity estimated voxel covariance structure assumed. Smoothing was applied with
a Gaussian kernel with a FWHM of 3 voxels.

Bruce et al. Page 30

Magn Reson Imaging. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Spherical phantom voxel correlation estimated about center voxel for a) full FOV and c)
reduced FOV with an acceleration factor of A=3. By contrast, the identity voxel correlation
about the center voxel assumed by the SENSE model for b) full FOV and d) reduced FOV
with an acceleration factor of A=3.
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Figure 6.
a)SENSE (SE) mean magnitude, b) SENSE-ITIVE (SI) mean magnitude, c) SE mean phase,
d) SI mean phase, e) SE standard deviation, f) SI standard deviation, g) SE SNR, h) SI SNR,
i) normalized difference SE-SI standard deviation, and j) normalized difference SE-SI SNR
images from real phantom data. Smoothing (Sm) was applied with a Gaussian kernel with a
FWHM of 3 voxels.
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Figure 7.
A comparison between a) SENSE (SE) real, b) SE imaginary, c) SE real/imaginary, d) SE
magnitude-squared operator induced correlation about the center voxel, and e) SE real, f) SE
imaginary, g) SE real/imaginary, h) SE magnitude-squared estimated correlation about the
center voxel over the time series of the Spherical Phantom with, i) SENSE-ITIVE (SI) real,
j) SI imaginary, k) SI real/imaginary, and l) SI magnitude-squared operator induced
correlation about the center voxel and m) SI real, n) SI imaginary, o) SI real/imaginary, and
p) SI magnitude-squared estimated correlation about the center voxel over the time series of
the Spherical Phantom. Correlations presented with a threshold of 0.15 for operators with an
identity estimated voxel covariance structure assumed. Smoothing was applied with a
Gaussian kernel with a FWHM of 3 voxels.
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Figure 8.
Human subject voxel correlation estimated about center voxel for a) full FOV and c)
reduced FOV with an acceleration factor of A=3. By contrast, the identity voxel correlation
about the center voxel assumed by the SENSE model for b) full FOV and d) reduced FOV
with an acceleration factor of A=3.

Bruce et al. Page 34

Magn Reson Imaging. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 9.
a)SENSE (SE) mean magnitude, b) SENSE-ITIVE (SI) mean magnitude, c) SE mean phase,
d) SI mean phase, e) SE standard deviation, f) SI standard deviation, g) SE SNR, h) SI SNR,
i) normalized difference SE-SI standard deviation, and j) normalized difference SE-SI SNR
images from human subject data set. Smoothing (Sm) was applied with a Gaussian kernel
with a FWHM of 3 voxels.
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Figure 10.
A comparison between a) SENSE (SE) real, b) SE imaginary, c) SE real/imaginary, d) SE
magnitude-squared operator induced correlation about the center voxel, and e) SE real, f) SE
imaginary, g) SE real/imaginary, h) SE magnitude-squared estimated correlation about the
center voxel over the time series of the Human Subject with, i) SENSE-ITIVE (SI) real, j) SI
imaginary, k) SI real/imaginary, and l) SI magnitude-squared operator induced correlation
about the center voxel and m) SI real, n) SI imaginary, o) SI real/imaginary, and p) SI
magnitude-squared estimated correlation about the center voxel over the time series of the
Human Subject. Correlations presented with a threshold of 0.15 for operators with an
identity estimated voxel covariance structure assumed. Smoothing was applied with a
Gaussian kernel with a FWHM of 3 voxels.
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Figure 11.
Computation times, in seconds, for a) building the SENSE and SENSE-ITIVE
reconstruction operators for images of size 24, 42, 60, 78, 96, and 114 with NC=4 coils,
subsampled by A=3, b) reconstructing a time series of 490 TRs, c) estimating the operator
induced correlation. The log of the total time shown to be linear in d).
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