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Abstract
Urinary excretion of albumin (UAlb) is used clinically as a marker of diabetic nephropathy (DN).
Although DN was thought to be a unidirectional process, recent studies demonstrated that a large
proportion of patients diagnosed with DN reverted to normoalbuminuria. Moreover, despite the
normoalbuminuria, one-third of them exhibited reduced renal function even during the
microalbuminuric stage. This study was performed to investigate whether urinary angiotensinogen
(UAGT) level may serve as a useful marker of the early stage of experimental type 1 diabetes
(T1DM). T1DM was induced by a single intraperitoneal injection of streptozotocin. Control mice
were injected with citrate buffer. Two days after streptozotocin injection, half of the mice received
continuous insulin treatment. Our data showed that UAlb excretion was increased 6 days after
streptozotocin injection compared to controls, whereas UAGT excretion was increased at an
earlier time point. These increases were reversed by insulin treatment. The UAGT to UAlb ratio
was increased in diabetic mice compared to control mice. Furthermore, the increased AGT
expression in the kidneys was observed in diabetic mice. These data suggest that UAGT might be
useful as a novel early biomarker of activation of the renin–angiotensin system in experimental
type 1 diabetes.
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Introduction
Microalbuminuria is the most commonly used early clinical indicator of diabetic
nephropathy (DN) in both type 1 and type 2 diabetic patients (1, 2). Previously, DN was
thought to be a unidirectional process that starts with microalbuminuria and leads to end-
stage renal failure (3). Therefore, the presence of albumin (Alb) in the urine has been
considered predictive of the subsequent development and clinical progression of DN.
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However, it was recently shown that a large proportion of type 1 diabetic patients with DN
revert to normoalbuminuria, of which one-third of them exhibited reduced renal function
even during the microalbuminuric stage (4). Therefore, a more sensitive and specific marker
for DN, rather than urinary Alb (UAlb) excretion, is needed. The mechanisms of DN
pathogenesis are multifactorial (5, 6). In 1985, a clinical trial indicated that the activation of
the intrarenal renin–angiotensin system (RAS) had a potential role in the mechanism of DN
(7). Since then, it has been reported that angiotensin-converting enzyme (ACE) inhibitors,
angiotensin II-receptor blockers (ARBs), or a dual blockade of the RAS (ACE inhibitors and
ARBs) provide renoprotection in patients with type 1 (8, 9) or type 2 (10 – 14) diabetes, and
some reports show the result is independent of systemic blood pressure changes (10, 13).

Others and we have previously reported that the intrarenal RAS plays an important role in
the progression of DN (15 – 20). Especially, angiotensinogen (AGT) expression in the
kidneys is consistently increased in the diabetic condition. Moreover, urinary AGT (UAGT)
level was enhanced in Zucker diabetic fatty type 2 diabetic rats (21) and db/db type 2
diabetic mice (22). Recent evidence suggests that AGT is constitutively released not only in
the liver but also in the proximal tubules of the kidney (6). AGT is the only known substrate
for renin, which is the rate-limiting enzyme of the RAS (23, 24). Because the concentration
of AGT is close to the Michaelis-Menten constant for renin, not only renin levels but also
AGT levels are thought to affect the formation rate of angiotensin peptides (25, 26).

Recently, clinical studies showed that UAGT level could be a potential marker of the
intrarenal RAS status in diabetes (27, 28). In hypertensive DN patients who received ARBs,
urinary levels of AGT, Alb, inflammatory markers, and oxidative stress, as well as blood
pressure were decreased. This suggests that the renoprotective effect of ARBs may involve
suppression of intrarenal AGT levels in the patients with type 2 diabetes (27). Furthermore,
an increase in UAGT levels was higher in normoalbuminuric patients with type 1 diabetes
compared to control subjects, even though increased AGT was not observed in plasma (28).
These observations suggest that UAGT may function as a candidate early marker for
intrarenal RAS activation. To confirm our hypothesis, we investigated UAGT levels using a
streptozotocin (STZ)-induced type 1 diabetic mouse model with clear onset of diabetes. This
model does not have complications related to obesity and hyperlipidemia that are also
associated with RAS activation; therefore, we can investigate the role of AGT after the
induction of hyperglycemia, demonstrating the importance of UAGT level in patients with
type 1 diabetes.

In this study, we tested the hypothesis that increased UAGT excretion is present prior to the
onset of UAlb in STZ-induced type 1 diabetic mice, and UAGT might be useful as an early
biomarker of activation of the RAS in experimental type 1 diabetes.

Materials and Methods
Research design

All procedures and protocols used in this study were approved by the Institutional Animal
Care and Use Committee of the Tulane University Health Sciences Center. Animals used in
this study were male Hsd:ICR mice (CD-1®; Harlan Laboratories, Indianapolis, IN, USA).
Mice were maintained in 12-h light/dark cycles with access to food and water ad libitum
(29). At 6 weeks of age, CD-1 mice received a single intraperitoneal injection of 200 mg/kg
STZ (Fisher Health Care, Houston, TX, USA) dissolved in 0.05 M citrate buffer, pH 4.5 (n
= 10). Citrate buffer alone was used in control mice (n = 10, day 0) (29, 30). Two days after
STZ injection (day +2), half of the mice (n = 10) received sustained-release insulin implants
(LinBit®; insulin release rate: approximately 0.1 unit/day per pellet for over 30 days, 1 pellet
per mouse) (LinShin Canada, Inc., Scarborough, Ontario, Canada) (31, 32). Body weight
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and postprandial blood glucose (Glucometer, One Touch Ultra®; LifeScan Inc., Milpitas,
CA, USA) were monitored 1 day prior to STZ injection (Before Treatment) and daily
thereafter. Twenty-four-hour urine samples were collected on day −2 (Before Treatment),
day +3, and day +6 using metabolic cages (Hatteras Instruments, Southbank Drive Cary,
NC, USA). Water consumption was measured on day −2 (Before Treatment), day +3, and
day +6. Seven days after STZ injection (day +7), all mice were sacrificed and kidney
samples were harvested.

Enzyme-linked immunosorbent (ELISA) assays
Urinary neutrophil gelatinase–associated lipocalin (UNGAL), Alb, and AGT analyses were
performed with ELISA kits according to the manufacturer’s instructions. Using 24-h urine
samples, the UNGAL concentration was examined by a mouse NGAL ELISA kit®

(Cedarlane, Burlington, NC, USA) (33). UAlb excretion and UAGT excretion were
measured using mouse albumin ELISA® (Immunology Consultants Laboratory, Inc.,
Newberg, OR, USA) (34) and the mouse total angiotensinogen assay kit® (Immuno-
Biological Laboratories Co., Ltd., Takasaki) (21), respectively. The ratio of UAGT to UAlb
(UAGT/UAlb) was calculated using each data set (ng·µg−1). Using urinary excretion levels
of Alb, AGT, and UAGT/UAlb ratio, we calculated the %change in UAlb, %change in
UAGT, and %change in UAGT/UAlb using the following formula:

Urinary protein (UPro) assay
UPro excretion over a 24-h period was evaluated using the Bradford protein assay (Bio-Rad,
Hercules, CA, USA) (35). As a standard, rat serum protein (Chondrex, Redmond, WA,
USA) was used.

Quantitative real-time RT-PCR
RNAs were extracted from the tissues using the RNeasy Mini kit® (QIAGEN, Valencia,
CA, USA) according to the manufacturer’s instructions. Expression of the AGT gene in the
kidney was examined using the Brilliant II QRT-PCR Master Mix kit, 1-Step® (Stratagene,
Santa Clara, CA, USA) following the RTPCR conditions according to the manufacturer’s
instructions. Quantitative real-time RT-PCR was performed as previously described (36,
37). Data from quantitative real-time RT-PCR were normalized to β-actin mRNA
expression. Primer sequences were as follows: AGT, forward primer 5′-TAT CCA CTG
ACC CAG TTC TT-3′, reverse primer 5′-AAG TGA ACG TAG GTG TTG AAA-3′, probe
5′-/6-FAM/CTG TGA CAG GGT GGA AGA TGA ACT TGC CA/3BHQ-1/3′; β-actin,
forward primer 5′-ATC ATG AAG TGT GAC GTT GA-3′, reverse primer 5′-GAT CTT
CAT GGT GCT AGG AGC-3′, probe 5′/-6-FAM/TCT ATG CCA ACA CAG TGC TGT
CTG GT/3BHQ-2/3′.

Immunohistochemical (IHC) staining
The level of expression of AGT protein in the kidneys was examined by IHC as described
previously (37, 38). Renal sections were fixed in 4% paraformaldehyde, embedded in
paraffin, and deparaffinized in xylene. Then, 3-µm-thick tissue sections were prepared by an
out-sourcing company (Mass Histology Service, Worcester, MA, USA). IHC was performed
with an automated system (Autostainer; Dako, Carpinteria, CA, USA) and slides were
counterstained with hematoxylin. The primary antibody against rat polyclonal AGT was
obtained from Immuno-Biological Laboratories Co., Ltd. Semi-quantitative analysis of the
level of immunoreactivity was evaluated in a blind manner using a semi-automatic image
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analysis system that employed the Image-Pro plus software (Media Cybernetics, Bethesda,
MD, USA) as previously described (37 – 40).

Statistical analyses
All data are presented as the means ± S.E.M. Data of the animal profiles, urine samples, and
AGT expression were evaluated by the one-way repeated-measures ANOVA or one-way
factorial ANOVA with Dunnett’s test as a post-hoc test. P < 0.05 was considered to be
statistically significant. All of the computations, including data management and statistical
analyses, were performed with JMP software (SAS Institute, Cary, NC, USA).

Results
Animal profiles

The postprandial blood glucose levels and body weights of the mice are shown in Fig. 1.
The postprandial blood glucose levels were elevated 1 day after STZ injection with respect
to those in the control group. Two days after STZ injection, all mice were diabetic (> 400
mg/dl) (30). The change in postprandial blood glucose was relieved by insulin treatment
during the experiment (Fig. 1A). Body weights of the diabetic mice were significantly lower
than those of the control mice. Insulin treatment offset this change (Fig. 1B).

Water consumption and urine volume
Water consumption by mice of the STZ group was markedly greater than that of the control
group 3 and 6 days after STZ injection (P < 0.01 vs. control). This effect was relieved by
insulin treatment (Fig. 1C). The 24-h urine volume in mice of the STZ group was markedly
greater than that of the control group 3 and 6 days after STZ injection (P < 0.01 vs. control).
The change in urine volume was mitigated by insulin treatment (Fig. 1D).

Measurement of UNGAL concentration and temporal profiles of UAlb, UAGT, and UPro
excretions

It is known that STZ occasionally induces acute kidney injury (AKI). Before the assays
using urine samples, the UNGAL concentration (ng/ml) was measured, as it may be used as
an early biomarker of AKI (cut-off line: UNGAL concentration higher than 200 ng/ml) (41).
As a result, all mice used in the assays were precluded of AKI (urine samples on day +6:
control group, 35 ± 7 ng/ml; STZ injection group, 24 ± 4 ng/ml; STZ injection + LinBit
insulin implant group, 46 ± 12 ng/ml).

Using urine samples from mice that were non-exhibitive of AKI, UAlb, UAGT, and UPro
excretion were measured. Before STZ injection and on day +3 after STZ injection, UAlb
excretion was not different among the 3 groups. However, UAlb excretion increased 6 days
after STZ injection (130.0 ± 31.8 µg/day) with respect to the controls (52.5 ± 8.4 µg/day) (P
= 0.0159). This change was completely negated by insulin treatment (40.8 ± 5.8 µg/day)
(Fig. 2A). UAGT excretion was higher in the STZ group (249.2 ± 63.5 µg/day) than in the
control group (19.7 ± 4.9 µg/day) (P = 0.0006) 3 days after STZ injection, and it continued
to increase in the STZ group (349.6 ± 89.1 µg/day) while the control group (15.9 ± 2.2 µg/
day) stayed constant 6 days after STZ injection (P = 0.0002). This change was also
completely negated by insulin treatment (on day +3: 74.5 ± 24.6 µg/day, on day +6: 67.3 ±
15.5 µg/day) (Fig. 2B). UPro excretion was not significant in all groups (Fig. 2C).

Ratio of UAGT/UAlb and the %change in UAlb, UAGT, and UAGT/UAlb
The UAGT/UAlb ratio (ng·µg−1) was statistically higher in the STZ group than in the
control group 3 and 6 days after STZ injections (P < 0.01) (Fig. 3A). This effect was
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completely mitigated by insulin treatment. Although the %change in UAlb did not differ
significantly between the control and STZ groups 3 days after STZ injection, the %change in
UAlb increased 6 days after STZ injection (131.2% ± 46.3%) with respect to the controls
(16.9% ± 13.0%) (P = 0.0105). This change was completely abolished by insulin treatment
(−31.9% ± 8.6%) (Fig. 3B). The %change in UAGT was higher in the STZ group (1875.7%
± 657.7%) than in the control group (91.2% ± 53.9%) (P = 0.0044) 3 days after STZ
injection and continued to increase in the STZ group (3985.9% ± 1362.4%) with respect to
the control group (76.5% ± 41.6%) (P < 0.00001) 6 days after STZ injection. This change
was also completely abolished by insulin treatment (on day +3: 476.5% ± 179.0%, on day
+6: 385.1% ± 112.9%) (Fig. 3C). The %change in UAGT/UAlb ratio was higher in the STZ
group (892.2% ± 297.9%) than in the control group (64.1% ± 52.9%) (P = 0.0046) 3 days
after STZ injection and continued to increase in the STZ group (2103.0% ± 555.0%) with
respect to the control group (60.7% ± 37.8%) 6 days after STZ injection (P = 0.0007). This
change was also completely abolished by insulin treatment (on day +3: 242.8% ± 95.7%, on
day +6: 742.7% ± 213.9%) (Fig. 3D).

AGT mRNA expression in the kidneys of STZ-induced diabetes with or without insulin
treatment

Kidney samples harvested 7 days after STZ injection were used to detect AGT mRNA
levels. Increased AGT mRNA expression in the kidneys was observed in diabetic mice (P <
0.01), and this increase was negated with insulin treatment (Fig. 4A).

AGT protein expression in the kidneys of STZ-induced diabetes with or without
normalization with insulin treatment

Kidney samples harvested 7 days after STZ injection were used to detect AGT protein
levels. IHC staining for AGT protein (Fig. 4: B, C, and D) was clearly of greater intensity in
the kidneys (especially in the proximal tubules) of diabetic mice than in those of control
mice (P < 0.05), and this effect was mitigated by insulin treatment (Fig. 4E).

Discussion
In this study we demonstrate that UAGT and UAlb excretion is elevated in STZ-treated
T1DM mice. The following novel findings emerged: UAGT excretion accompanied by the
intrarenal AGT expression increase earlier than UAlb after STZ injection compared to
controls. Moreover, the UAGT to UAlb ratio is increased in diabetic mice compared to
control mice. Our data revealed conclusive evidence that UAGT is an early biomarker of
increased RAS in T1DM.

In our study we have used STZ to induce T1DM. STZ is widely used to induce type 1
diabetes in rodent models (30, 42, 43). However, it is known that in some cases STZ can
induce AKI. STZ is an unusual aminoglycoside containing a nitrosoamino group, which can
cause acute toxic injury to the kidney (44). Therefore, before the assays using urine samples,
the UNGAL concentration was measured to detect AKI. NGAL concentration is usually
used as an early biomarker of AKI (41, 45). The mice used in this study did not exhibit AKI,
only exhibiting the expected signs of STZ-induced type 1 diabetes.

UAGT excretion is higher in patients with type 1 diabetes compared to control subjects (28).
Despite the importance of the RAS in the development of DN, the significance of intrarenal
RAS, especially the role of AGT, in the early stage of T1DM is not yet fully elucidated.
Here, we investigated UAGT level as a candidate marker of activation of the RAS in type 1
diabetes. STZ-induced type 1 diabetic mice showed typical symptoms of diabetes mellitus
and insulin treatment ameliorated these changes in agreement with short-term investigation
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studies (46, 47). After development of type 1 diabetes, we observed increases in excretion
levels of UAlb and UAGT in diabetic mice compared to control and insulin-treated groups.
These observations indicate that urinary excretions of AGT and Alb were increased in the
STZ-treated mice compared to the control animals. An important observation is that the
augmented excretion level of AGT in the urine was apparent before the development of
increased Alb levels. This could be because the UAGT level is highly sensitive to the onset
of nephropathy. Furthermore, our data showed that the ratio of UAGT to UAlb was
significantly higher in the STZ group than in the control group. Because insulin treatment
mitigated the increased excretion of UAlb and UAGT, it is thought that increased glucose
level induced elevated UAlb and UAGT excretions. Although we have measured a late-
appearing marker of kidney injury, UPro excretion, we did not find any significant
difference between groups. Our results indicate that augmented UAGT level might
potentially serve as a novel, early biomarker of intrarenal RAS activation in experimental
type 1 diabetes. These findings could lead to earlier diagnosis of diabetic complications and
start of medical treatment. They also suggest that we should re-assess the clinical
significance of RAS blockade.

In the investigation of biomarker using urinary samples, the suspicion that enhanced UAGT
excretion in a diabetic model is just a non-specific consequence of damaged glomerular
filtration barrier remains. To address this issue, we monitored AGT expression in the
kidneys. AGT mRNA and protein expression in the kidneys, especially in the proximal
tubules, were increased in the STZ group compared to the control group. This finding is
congruent with previous reports demonstrating that intrarenal AGT is formed primarily in
the proximal tubule cells and is enhanced in diabetic conditions (17, 18, 21, 48, 49).
Although the detailed localization of AGT mRNA and protein in the convoluted and straight
proximal tubules has not been yet clarified (50 – 54), our recent data suggest that AGT
mRNA in the straight tubules and AGT protein in the convoluted and straight proximal
tubules are important and need to be investigated in future studies (55). The data in the
kidneys may rule out the possibility of a damaged glomerular filtration barrier. Because
these increased mRNA and protein levels were ameliorated in the insulin-treated group, we
suggest that increased blood glucose induces intrarenal AGT mRNA and protein expression
and a subsequent increase in UAGT excretion.

The pathogenesis of DN is clearly multifactorial (5, 6, 56, 57). The activation of the
intrarenal RAS has been shown to have a potential role in the mechanism of DN (6, 19, 29,
58 – 60), as shown in large-scale clinical trials (8 – 13). Recently, the Randomized
Olmesartan and Diabetes Microalbuminuria Prevention (ROADMAP) study (13) provided
novel insights that olmesartan, an ARB, was associated with delayed onset of
microalbuminuria, even though blood pressure control in the patients with type 2 diabetes
was excellent. This result suggests the possibility of preemptive treatment of ARB for the
delay or prevention of microalbuminuria in diabetes (14). Based on the outcome of this
large-scale clinical trial, we expect the intrarenal AGT to have an important role in the
development of DN because we already reported that ARB treatment suppressed intrarenal
and urinary AGT in animal studies (16, 61) as well as in clinical studies (27, 62).

Various proteins, such as urinary type IV collagen, adiponectin, and advanced glycation end
products, have been implicated as potential markers of DN (63 – 65). However, such
divergent findings have complicated the search for a reliable biomarker. AGT is the only
known substrate for renin, which is the rate-limiting enzyme of the RAS (23, 24).
Upregulation of AGT levels may lead to elevation of the angiotensin peptide levels (25, 26).
Our recent studies in diabetic models have documented the involvement of AGT in
activation of the RAS (16, 27, 28). While intrarenal renin expression is also increased in
diabetic animals (16), some in vitro reports (66 – 72) supported that high glucose augmented
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AGT gene expression using a cell line of rat immortalized renal proximal tubular cells.
Using the same cell line, it was also reported that the insulin treatment inhibited the
stimulatory effect of high glucose on the expression of AGT. Thus, AGT plays an important
role in the mechanism of high glucose–induced AGT expression and the development of
diabetic complications including nephropathy.

A shortcoming of this study is the exclusion of a long-term study for the role of AGT in the
development and progression of DN. However, it was repeatedly shown that STZ-induced
T1DM leads to DN in long-term studies (29 – 32). Here, we focused on the initial increase
of UAGT in a short-term study and showed that increased UAGT may signal the
development of RAS. Moreover, we have reported on the augmented AGT expression and
RAS activation in the progression of DN (16 – 18). Based on our previous data and the
results of this study, we are projecting future clinical studies to focus on the role and
mechanisms of AGT in the onset of nephropathy and the progression of kidney dysfunction,
as well as their relationships.
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Fig. 1.
Changes in postprandial blood glucose (A), body weight (B), water consumption (C), and
urine volume (D) in control, STZ-induced type 1 diabetic, and LinBit insulin–treated
diabetic mice before and after a single intraperitoneal injection of STZ. Data are expressed
as the mean ± S.E.M. *P < 0.05, **P < 0.01 vs. control mice. STZ, streptozotocin.
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Fig. 2.
Changes in UAlb (A), UAGT (B), and UPro (C) excretion in control, STZ-induced diabetic,
and LinBit insulin–treated diabetic mice. Urine samples were collected before STZ injection
and on days +3 and +6 after STZ injection. Data are expressed as the mean ± S.E.M. *P <
0.05, **P < 0.01 vs. control mice. UAlb, urinary albumin; UAGT, urinary angiotensinogen;
UPro, urinary protein; STZ, streptozotocin.
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Fig. 3.
Ratio of UAGT/UAlb (ng·µg−1) (A) and %change in UAlb (B), UAGT (C), and UAGT/
UAlb (D) in control, STZ-induced diabetic, and LinBit insulin–treated diabetic mice were
calculated using urinary excretion data. Data are expressed as the mean ± S.E.M. *P < 0.05,
**P < 0.01 vs. control mice. UAGT, urinary angiotensinogen; UAlb, urinary albumin; STZ,
streptozotocin.

Kamiyama et al. Page 14

J Pharmacol Sci. Author manuscript; available in PMC 2012 September 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
AGT mRNA expression (A) and immunohistochemical localization of AGT protein (B, C,
D, and E) in the kidneys of control, STZ-induced diabetic, and LinBit insulin–treated
diabetic mice. We used kidneys on day +7 after STZ injection. Immunohistochemical
staining (magnification, × 200; scale bar, 50 µm) shows increased AGT in the kidneys of
diabetic mice (C) compared with control (B) or LinBit insulin–treated diabetic mice (D).
AGT protein expression levels are indicated in panel E. Data are expressed as the mean ±
S.E.M. *P < 0.05, **P < 0.01 vs. control mice. AGT, angiotensinogen; STZ, streptozotocin.
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