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Abstract
A method involving electron paramagnetic resonance spectroscopy of a site-selectively spin-
labeled peripheral membrane protein in the presence and absence of membranes and of a water-
soluble spin relaxant (chromium oxalate) has been developed to determine how bee venom
phospholipase A2 sits on the membrane. Theory based on the Poisson-Boltzmann equation shows
that the rate of spin relaxation of a protein-bound nitroxide by a membrane-impermeant spin
relaxant depends on the distance (up to tens of angstroms) from the spin probe to the membrane.
The measurements define the interfacial binding surface of this secreted phospholipase A2.

Many interfacial enzymes such as phospholipases are water-soluble and must bind to the
membrane-water interface in order to hydrolyze components of the membrane. Although the
high-resolution structures of aqueous forms of several phospholipases and lipases are known
(1), there are no reports that reveal the positioning of an interfacial enzyme at the
membrane-water interface. The same can be said for most membrane-bound proteins. In the
case of 14-kD secreted phospholipases A2 (sPLA2s), such as bee venom phospholipase A2
(bvPLA2), the interfacial recognition surface is thought to surround the active site slot; the
latter is a deep cavity into which a single phospholipid molecule enters to reach the catalytic
residues (2) (Fig. 1). Here we describe a high-resolution structure determination tool based
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on electron paramagnetic resonance (EPR) spectroscopy that allows peripheral membrane
proteins such as sPLA2s to be oriented with respect to the membrane-aqueous interface.

EPR methods have been developed that make use of protein site-specific spin labeling and
spin relaxants for probing the membrane penetration depth of segments of integral
membrane proteins that pass through the membrane (3). In theory developed below, it will
be shown that the efficiency of relaxation of a protein-bound nitroxide spin probe by a
water-soluble spin relaxant such as tris(oxalato)chromate(III) (Crox) is dependent on the
positioning of the membrane with respect to the spin probe, even when the probe is exposed
to the aqueous phase. By measuring the Crox-dependent relaxation of several nitroxides
placed at defined locations on the surface of bvPLA2, both in the presence and absence of
membranes to which the enzyme binds, it is possible to position the enzyme on the
membrane.

In order to apply this method to bvPLA2, 13 site-selectively spin-labeled enzymes were
prepared (4), 12 with the spin label located on or near the putative interfacial recognition
surface (1,2) and 1 with the probe on the opposite side. The ability of Crox to relax the spin
label of each bvPLA2 mutant can be quantified by obtaining the continuous-wave EPR
spectra as a function of microwave irradiation power. This series of experiments was carried
out in the presence and absence of 10 mM Crox for the enzyme in the aqueous phase or
bound to small unilamellar vesicles of the nonhydrolyzable, anionic phospholipid 1,2-
dimyristoyl-snglycero-3-phosphomethanol (DTPM) (5). bvPLA2 binds tightly to such
vesicles (6). For each data set, the power dependence of the peak to peak height of the
central line of the first derivative EPR spectrum, ΔY, was fit by least squares to the power
saturation rollover equation (3,7)

(1)

where  is the microwave amplitude in gauss, P0 is the power incident on the
sample, and α is the conversion efficiency factor for the resonator (5) (4.5 G/W1/2). The
quantities c, ε, and P2 were allowed to vary during curve fitting. The parameter c is a scaling
factor, and P2 is a power parameter that depends only on the properties of the nitroxide (7):

(2)

Here, R1 and R2 are the spin lattice and spin-spin relaxation rates (in gauss) and are related
by the electron gyromagnetic ratio γe to the relaxation times T1 and T2 as shown (7). The
parameter ε is a measure of the curvature of the power dependence and is 3/2 for a
homogenous line and 1/2 for a completely inhomogeneous line shape (7). This parameter
enables us to obtain very high-quality fits to the data, as it absorbs the effects of
inhomogeneous broadening and partially slowed rotational tumbling of the nitroxide.

The change in the fitted value of P2 on addition of Crox is taken as a measure of the effect of
this metal on relaxation. The presence of Crox increases both R1 and R2 as follows (8):

(3)
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where χ is the relaxivity of Crox (9) and the superscript zero refers to the absence of Crox.

The quantity ΔP2 is defined as the difference in P2 values in the presence and absence ( )
of Crox:

(4)

Thus, ΔP2 is directly proportional to the concentration of Crox in the vicinity of the spin

probe; because , the term that is quadratic in [Crox] is small and neglected (8). ΔP2
is measured in the presence and absence of DTPM vesicles, and these two quantities are
used to obtain the exposure factor (Φ) as follows:

(5)

The superscript “local” refers to the effective concentration of Crox near the spin label and
the presence of the membrane reduces this concentration. The equality on the right side of
Eq. 5 follows directly from Eq. 4. The quantity 1 – Φ is a measure of the ability of the
membrane to shield the protein-bound nitroxide from Crox in the aqueous phase (there is
negligible Crox in membranes).

Power saturation rollover curves for the mutant in which isoleucine 2 is replaced with spin-
labeled cysteine (I2C-sl) and K66C-sl are shown in Fig. 2 along with the fit to Eq. 1. Values
of ε and P2 for all mutants are listed in (10), and values of Φ are listed in Table 1. Ideally,

one would expect  to be independent of the presence of the membrane, but it is not (10,
11). K66C-sl has its spin label on the face of bvPLA2 that is opposite the putative interfacial
recognition surface, and, as expected, Φ for this mutant is close to unity (maximum
exposure; Fig. 2 and Table 1). At the other extreme are I2C-sl, K14C-sl, and I78C-sl, which
display values of Φ close to zero (Fig. 2 and Table 1), and thus the membrane confers nearly
complete protection from Crox relaxation on these nitroxides. The other nine mutants
display Φ values of intermediate magnitude (Table 1).

The key to understanding the data in Table 1 is that the highly negative surface electrostatic
potential of DTPM vesicles reduces the concentration of anions in solution near the
membrane relative to their bulk concentrations. This results from the Boltzmann equation,
which says that the concentration of Crox is a function of the electrostatic potential due to
the membrane

(6)

Here CCrox (r) is the molar concentration of Crox at a normal distance r from the membrane;
ψ(r) is the electrostatic potential; zCrox is the charge on Crox; and F, R, and T have their
usual meanings Poisson’s equation describes the electrostatic potential around any set of
charges, and for a planar membrane surface of uniform charge density, the potential depends
only on r. The final result is the Poisson-Boltzmann equation appropriate for a planar
charged membrane (12), which can be written as a first-order differential equation as
follows:
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(7)

Here Ci is the bulk molar concentration of each electrolyte of charge zi in solution, and ε is
the dielectric of bulk water (a value of 78). Given the experimental value of ψ(0) = − 77 ± 3
mV for our system (13), Eq. 7 can be solved numerically to obtain ψ(r), and CCrox (r) is
obtained using Eq. 6.

Theoretical exposure factors Φ (r) can be calculated as

(by analogy to Eq. 5) and compared with experimental Φ values (Table 1) to obtain the
normal distance of each spin label to the membrane. To do this, it was assumed that the x-
ray structure determined for bvPLA2 in solution (14) is maintained for the enzyme at the
interface and that the membrane that contacts the enzyme is a plane. Marquardt-Levenberg
regression analysis (15) was carried out by varying the protein-to-membrane distance and
the Euler angles for the rotation of bvPLA2 about its center. Several trials were executed
with systematic variation of the initial conditions. In all cases, the analysis converged to a
single bvPLA2-membrane orientation. Figure 3 shows the remarkably good fit of
experimental Φ to calculated Φ (16–18) and Fig. 1 shows the derived structure. The data in
Table 1 and (10) also show that values of Φ are significantly larger when the neutral spin
relaxant nickel(ethylenediaminediacetic acid) is used instead of Crox, proving that there is a
significant electrostatic component to Φ.

Because the effect of Crox on the EPR parameters was measured for bvPLA2 in solution and
bound to membranes, to a first approximation the effect of the electrostatic potential at each
nitroxide due to the protein alone is removed from the problem because Φ is the ratio
(ΔP2)+membrane/ (ΔP2)−membrane Strictly speaking, this is true if the electrostatic potential at
each spin label of the protein-membrane complex is equal to the sum of the potentials from
the membrane and protein alone. To examine this in more detail, we numerically solved the
nonlinear Poisson-Boltzmann equation for bvPLA2 bound to DTPM vesicles as given by
Fig. 1 in 50 mM monovalent salt solution and for enzyme and vesicles alone (19). The
electrostatic potential of the complex was generally similar to the sum of the potentials due
to enzyme and vesicles alone. Very close to the membrane [near spin labels at positions 2
and 14, for which values of Φ near zero were measured (Table 1)], however, the low-
dielectric enzyme enhances the negative electrostatic potential of DTPM vesicles by causing
the Faraday electric field lines to bend around it and increase in density (20). However, this
does not affect the conclusion that these residues are closest to the membrane. Overall, the
results suggest that the first-order approach of simply ignoring the nonlinear electrostatic
effects is valid.

A clear result of the present study is that bvPLA2 sits on the membrane surface rather than
digging into the membrane. This is consistent with monolayer pressure studies showing poor
penetration of sPLA2 into an anionic phospholipid monolayer at the air-water interface (21).
The opening to the active site slot of bvPLA2 faces the membrane (Fig. 1); however, this
opening is not firmly against the membrane. This result is unequivocal as several diagnostic
spin labels (at positions 51, 53, 82, 85, and 92) are clearly not as close to the membrane as
those at positions 2 and 14 (Table 1). This implies that the alkyl chains of a long-chain
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phospholipid bound in the active site slot of the enzyme at the interface are partly in contact
with the interior of the bilayer, with the hydrophobic walls of the active site slot, and with
solvent water [because these experiments were done in the presence of CaCl2, a molecule of
DTPM occupies the active site of bvPLA2 at the interface (22)].

The surface of bvPLA2 that contains the opening to the active site slot contains eight
cationic residues and only one anionic residue. bvPLA2 and other sPLA2s bind more tightly
by orders of magnitude to anionic vesicles than to zwitterionic ones, and it has been
hypothesized that these surface cations drive interfacial binding by means of electrostatics.
However, our recent study shows that these cationic residues, individually and collectively,
are not very important for interfacial binding, because mutating them to glutamates has
virtually no effect on the binding of bvPLA2 to anionic vesicles (23). The present study
shows that the membrane contact surface of bvPLA2 corresponds to a prominent patch of
hydrophobic residues found on all sPLA2s and that all basic residues except K14 are not in
close contact with the membrane [see figure 1 of (23)]. The hydrophobic residues are not
deeply inserted into the hydrophobic interior of the bilayer but somehow provide a
microinterfacial environment that drives interfacial binding to the “polar” phospholipid
headgroups (23). The nature of these interactions remains to be understood It is interesting
to note that interfacial binding of cellulases to the “hydrophilic” surface of microcrystalline
cellulose is driven by hydrophobic residues, including tryptophans on a cellulose-binding
domain (24) Finally, the structure shown in Fig 1 provides a physical basis for the kinetic
data that indicate that the interfacial recognition and catalytic sites are distinct (22).

The docking technique described in this study should be useful for determining the relative
position of any macromolecule of virtually any size and of known three-dimensional
structure with respect to any surface with known electrostatic properties, as long as there are
no gross conformational changes in the structures of the components when they bind to each
other However, useful membrane proximity data should also be obtainable for flexible
membrane-bound peptides.
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Fig. 1.
bvPLA2 (gray) positioned on the membrane surface (purple) with the use of the EPR data in
Table 1 and the theory developed in this study. The nitrogen and oxygen of each spin label
(N-O•) are colored blue and red, respectively. The distance from each spin label to the
membrane is as shown in Fig. 3. Spin labels 13 and 15 are hidden from view. A short-chain
phospholipid analog inhibitor in the active site slot, as seen in the x-ray structure (14), is
shown in green (1). This inhibitor is replaced by a DTPM molecule in these studies. Each
membrane sphere has a radius of 2.2 Å, and thus there are about three spheres per
phospholipid. The image was created with MOL-SCRIPT and Raster3D (25).
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Fig. 2.
Power saturation rollover curves for I2C-Sl and K66C-sl. Curves are shown for bvPLA2
mutant in buffer with and without Crox ([Crox] and buffer) and bound to membranes with
and without Crox ([Crox] + DTPM and DTPM). The fit to Eq. 1 is shown by the solid lines.
The units of ΔY are arbitrary.
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Fig. 3.
Regression analysis of the bvPLA2-membrane orientation. The solid line shows calculated
values of Φ as a function of the distance from the spin label to the membrane (r), and the
circles are the experimental Φ as a function of the modeled distance from the spin label to
the membrane for each residue.
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Scheme 1.
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Table 1

Exposure factor Φ for spin-labeled bvPLA2s.

Mutant Φ*

I2C-SI 0.01 ± 0.04

N13C-Sl 0.38 ± 0.03 (0.78 ± 0.04)†

K14C-Sl 0.03 ± 0.02

S15C-Sl 0.17 ±0.02 (0.32 ±0.03)†

R23C-Sl 0.33 ± 0.02

F24C-Sl 0.25 ±0.13

T51C-Sl 0.30 ± 0.03

T53C-Sl 0.30 ± 0.01

K66C-Sl 0.85 ± 0.08

I78C-Sl 0.01 ± 0.01

F82C-Sl 0.27 ±0.12

K85C-Sl 0.58 ±0.13

D92C-Sl 0.44 ± 0.03

*
Calculated according to Eq. 5 with the use of the experimental EPR data (10).

†
Numbers in parenthesis were obtained with the use of 10 mM nickel(ethylenedia-minediacetic acid) instead of Crox.
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