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Abstract
Leukemia stem cells (LSCs), which constitute a minority 
of the tumor bulk, are functionally defined on the basis 
of their ability to transfer leukemia into an immunode-
ficient recipient animal. The presence of LSCs has been 
demonstrated in acute lymphoblastic leukemia (ALL), of 
which ALL with Philadelphia chromosome-positive (Ph+). 
The use of imatinib, a tyrosine kinase inhibitor (TKI), 
as part of front-line treatment and in combination with 
cytotoxic agents, has greatly improved the proportions 
of complete response and molecular remission and the 
overall outcome in adults with newly diagnosed Ph+ 
ALL. New challenges have emerged with respect to 
induction of resistance to imatinib via  Abelson tyrosine 
kinase mutations. An important recent addition to the 
arsenal against Ph+ leukemias in general was the devel-
opment of novel TKIs, such as nilotinib and dasatinib. 
However, in vitro  experiments have suggested that 
TKIs have an antiproliferative but not an antiapoptotic 
or cytotoxic effect on the most primitive ALL stem cells. 
None of the TKIs in clinical use target the LSC. Second 
generation TKI dasatinib has been shown to have a 
more profound effect on the stem cell compartment 
but the drug was still unable to kill the most primitive 

LSCs. Allogeneic stem cell transplantation (SCT) re-
mains the only curative treatment available for these 
patients. Several mechanisms were proposed to explain 
the resistance of LSCs to TKIs in addition to mutations. 
Hence, TKIs may be used as a bridge to SCT rather 
than monotherapy or combination with standard che-
motherapy. Better understanding the biology of Ph+ ALL 
will open new avenues for effective management. In 
this review, we highlight recent findings relating to the 
question of LSCs in Ph+ ALL.
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INTRODUCTION
Over the past decades, it has been recognized that tumors 
contain a subpopulation of  cells with biological features 
that are reminiscent of  stem cells[1]. The modern con-
cept of  “cancer stem cell” was promoted by John Dick 
and colleagues, who showed that cells with the ability to 
transfer human acute myeloid leukemia (AML) to NOD/
SCID mice are frequently found exclusively in the CD34+ 
CD38- compartment[2,3]. Stem cells modulate tissue for-
mation, maintenance and repair, based on a complex 
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interaction of  cell-autonomous and cell-no autonomous 
regulatory mechanisms[4]. Classically, these cells could 
be subdivided into more or less primitive subpopula-
tions that are organized in a hierarchy reminiscent of  the 
normal hematopoietic system. A slow cycling fraction 
of  cells is generating a fast cycling fraction. However, an 
alternative hypothesis predicts that all tumor cells have 
the potential to self-renew and recapitulate the tumor 
but with a low probability that any tumor cell enters the 
cell cycle and finds a permissive environment[5]. Acute 
lymphoblastic leukemia (ALL) defines a heterogeneous 
group of  leukemias that express predominantly lymphoid 
cell surface markers[6]. Although proof  of  the existence 
of  a stem cell-like population maintaining ALL has been 
elusive, subpopulations with primitive phenotypes have 
been reported in clinical ALL samples. Response to 
therapy is related to biological characteristics of  the cell 
of  origin and to the primitive stem cell-like population. 
Philadelphia chromosome-positive (Ph+) ALL is regarded 
as a specific entity. The initial treatment of  Ph+ ALL has 
recently been dramatically changed by the introduction of  
Abl tyrosine kinase inhibitors (TKIs). However, cure de-
pends on the eradication of  the leukemia stem cell (LSC). 
This review will discuss current treatment and evidence 
for an ALL stem cell in Ph+ ALL and its relationship with 
new therapeutic advances based on TKI therapy in this 
disease.

Ph (breakpoint cluster region-
Abelson tyrosine kinase)-POSITIVE 
B-LYMPHOBLASTIC LEUKEMIA
In 1960, Nowell and Hungerford described a small G 
group chromosome, the Ph[7]. The Ph+ chromosome is 
the most frequent cytogenetic abnormality in human 
leukemia and can be detected in a range of  2% to 5% 
of  children with ALL[8] and 20% to 40% of  adults with 
ALL[9]. The proportion of  Ph+ ALL cases increases with 
age[10] but in very old persons the proportion decreases 
again[9]. This t(9;22) translocation leads to a head-to-
tail fusion of  the Abelson tyrosine kinase (ABL) proto-
oncogene from chromosome 9 with a 5’ half  of  the 
breakpoint cluster region (BCR) sequences on chromo-
some 22[11]. Transcription of  BCR-ABL results either in 
a 8.5-kilobase (kb) messenger RNA (mRNA) that codes 
for a 210-kb protein when ABL moves to the major BCR 
(M-BCR) or in a 7.5-kb RNA encoding a 190-kb protein 
when it moves to the M-BCR[12]. BCR-ABL proteins 
demonstrate enhanced tyrosine kinase activity compared 
to the normal ABL gene product. P190 exhibits a higher 
transforming potential than p210 in animal models[13]. 
The p190 protein is usually found in 2/3 of  adults with 
de novo Ph+ ALL[14,15]. The constitutively active tyrosine 
kinase product BCR-ABL provides a pathogenetic ex-
planation for the initiation of  Ph+ ALL as well as a criti-
cal molecular therapeutic target. Both possible chimeric 
mRNAs (p210 and p190) can be sensitively and specifi-

cally detected by the real-time polymerase chain reaction 
(RT-PCR)[16]. Recent reports suggest that the expression 
of  the p190 transcript was associated with a significant 
increase in the risk of  relapse[14]. BCR-ABL expression 
in hematopoietic cells is known to induce resistance to 
apoptosis, growth factor independence, as well as altera-
tions in cell-cell and cell-matrix interactions[17]. Clinically, 
patients present with a variable white blood cell count 
and have an increased risk of  developing meningeal leu-
kemia during the course of  treatment, although central 
nervous system leukemia was not significantly more 
frequent (5%) at diagnosis[10]. Ph+ ALL are found almost 
exclusively among B-cell linage ALL (CD10+ precursor 
B-cell ALL). Leukemic cells often present surface expres-
sion of  CD34 antigen (89%), and frequent expression 
of  myeloid markers (15% to 20%)[14]. Additional chro-
mosome abnormalities have been observed in 70% of  
Ph+ ALL patients[18], including mainly 9p abnormalities, 
monosomy 7 or hyperdiploid karyotypes > 50. CD117 is 
typically not expressed and only rarely is t(9;22) seen in 
T-lymphoblastic leukemia. Patients with t(9;22) classically 
have a poor prognosis.

CURRENT THERAPEUTIC STRATEGIES IN 
Ph+ ALL
TKIs
The Ph+ chromosome has historically been the worst 
prognostic indicator in ALL. The initial treatment of  
Ph+ ALL has been dramatically changed by the introduc-
tion of  ABL TKIs. Imatinib mesylate, 2-phenylamino 
pyrimidine, binds to the ABL-ATP site in a competitive 
manner, stabilizing ABL in its inactive conformation and 
inhibiting its tyrosine kinase activity. Following initial 
studies showing that use of  imatinib mesylate as a single 
agent in Ph+ ALL yielded potential responses but was 
unlikely to be sufficient for long-term disease control, 
the efficacy of  imatinib was explored as front-line treat-
ment combined with chemotherapy, either concurrently 
(simultaneous administration) or sequentially (alternating 
administration)[19-23]. Imatinib was given concurrently at 
400 mg/d for the first 14 d with each cycle of  the hyper-
CVAD regimen[19]. In this study, complete remission (CR) 
rate was 96%. There was no unexpected toxicity related 
to the addition of  imatinib. Similarly, encouraging data 
were reported by the Japanese Adult Leukemia Study 
Group, in which imatinib was started after 1 wk of  induc-
tion therapy and then coadministered with chemotherapy 
during the remainder of  a standard induction[20]. The CR 
rate was 96% (median time to CR: 28 d) and a remark-
ably high molecular response rate became apparent as 
early as 2 mo after starting treatment. Transplant candi-
dates had a better chance of  receiving allogeneic stem 
cell transplantation (SCT) with imatinib-combined regi-
men. Alternating and concurrent imatinib-chemotherapy 
combinations were compared by the German Multicenter 
ALL (GMALL) trial in two sequential patient cohorts[24]. 
Efficacy analyses based on BCR-ABL transcript levels 
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showed a clear advantage of  the simultaneous over the 
alternating schedule, with 52% of  patients achieving PCR 
negativity (vs 19%). Several approaches using imatinib-
based induction therapy have been explored for elderly 
patients. Monotherapy with imatinib was explored in el-
derly patients, who had an extremely poor outcome with 
chemotherapy alone. Imatinib with or without cortico-
steroids resulted in high CR rates of  90% to 100%[22,23,25]. 
With relatively minimal use of  imatinib (600 mg/d for 
phase 2 induction), the Group for Research on Adult 
Acute Lymphoblastic Leukemia showed a higher CR rate 
compared with historical controls[25]. Similar results were 
reported by the Italian group using continuous adminis-
tration of  imatinib (800 mg) only combined with predni-
sone[23]. The German group (GMALL) conducted a ran-
domized study comparing induction therapy with single-
agent imatinib with standard induction chemotherapy[22]. 
Response rate was better with single-agent imatinib (96% 
vs 50%). Achievement of  molecular remission was as-
sociated with longer disease-free survival. Unfortunately, 
imatinib resistance developed rapidly and was quickly fol-
lowed by disease progression. Disease recurrence was re-
lated to a high rate of  ABL mutations in the tyrosine ki-
nase domain (TKD)[26]. Data from the United Kingdom 
Acute Lymphoblastic Leukemia (UKALL)XII/Eastern 
Cooperative Oncology Group 2993 study, in which ima-
tinib (600 mg) was started with phase 2 induction, did 
not initially provide clear evidence that imatinib alters the 
outcome of  the disease[27] but finally showed an advantage 
for the imatinib arm[28]. Studies demonstrated that a quies-
cent population of  LSCs with BCR-ABL kinase domain 

mutations, detectable prior to initiation of  imatinib ther-
apy, gives rise to leukemic cells that persist because they 
are inherently resistant to imatinib (Figure 1)[29]. Quiescent 
LSCs also have high BCR-ABL transcript levels. 

New strategies using second generation TKIs are be-
ing developed to overcome resistance to imatinib. A re-
cent phase Ⅱ study combining the hyperCVAD regimen 
with dasatinib (50 mg bid) for the first 14 d of  each cycle 
showed CR achievement in 93% of  newly diagnosed 
Ph+ ALL, with molecular remissions observed even after 
the first cycle[30]. In a series combining dasatinib (70 mg 
bid) with only steroids, CR was achieved in all cases with 
a very marked clearance of  blasts already at day 22[31]. 
Nilotinib as monotherapy also appeared to have promis-
ing activity and a favorable safety profile[32]. Its use in 
combination with chemotherapy is currently tested. Even 
20-fold more potent BCR-ABL inhibition with nilotinib 
did not induce apoptosis of  quiescent CD34+ cells nor 
did inhibition with a dual SRC-ABL kinase inhibitor[33].

The appearance of  mutations which are most prob-
ably but not exclusively related to resistance led to avoid-
ing induction drugs, such as anthracyclines or alkylating 
agents, which can cause mutational resistance and prefer-
ence for methotrexate, cytarabine and asparaginase. Such 
a trial in older adult patients led to high CR rate and im-
proved survival[34].

The role of hematopoietic SCT in Ph+ ALL
Allogeneic SCT from a related or unrelated donor has 
historically been the standard form of  consolidation in 
Ph+ ALL, with 27% to 65% of  long-term survival in 
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Figure 1  Effect of tyrosine kinase inhibitor on Philadelphia chromosome-positive acute lymphoblastic leukemia and their stem cell counterparts. Therapy 
with tyrosine kinase inhibitor (TKI) results in the depletion of cycling leukemia cells (of which progenitor cells) without eliminating the Leukemia stem cells (LSCs), then 
the latter can regenerate the tumor after that therapy is halted. This seems to explain why TKI treatment needs to be chronic and why future drug development needs 
to be focused on agents that stike at the core of tumors by destroying stem cells.
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patients grafted in first CR[28,35,36]. The aggressivity of  the 
disease often resulted in a rapid relapse prior to transplant 
and only 30% to 50% of  patients in first remission even-
tually underwent allogeneic SCT. The relapse-free surviv-
al advantage of  the patient developing acute or chronic 
graft-vs-host disease (GVHD) and the description of  
PCR conversion after developing GVHD have suggested 
that Ph+ ALL was particularly sensitive to the graft-vs-
leukemia effect[37]. The recent incorporation of  TKIs into 
standard ALL therapy has resulted in improved remission 
induction rates of  95%, with 50% to 70% of  patients 
achieving molecular negativity. More patients were able 
to receive SCT in first CR, resulting in improved overall 
survival rates of  43% to 78% with 1-3 years of  follow-
up[20,21,24,38,39]. The combination of  imatinib and multiagent 
chemotherapy did not result in increased toxicity and did 
not unfavorably affect allogeneic SCT. The molecular de-
tection of  the BCR-ABL fusion mRNA by PCR has been 
shown to be an effective method for monitoring disease. 
BCR-ABL levels before transplantation are prognostic. 
Patients who are in remission morphologically and mo-
lecularly have the best outcome, whereas those who are 
molecularly positive, although still in conventional remis-
sion, suffer a relatively higher relapse rate[40]. Results after 
allogeneic SCT may be improved by the use of  imatinib 
as maintenance. Patients remaining BCR-ABL positive af-
ter allogeneic SCT can achieve molecular remission with 
imatinib and survive long-term. Thus, post-transplant 
imatinib can reduce the relapse rate. However, imatinib 
should not be given before 6 to 8 wk after transplanta-
tion to avoid cumulative toxicity. Duration of  TKI main-
tenance remains open, either for 2 years or stopped after 
repeated minimal residual disease negativity.

RESISTANCE TO TKIs
The effectiveness of  imatinib alone is limited by the rela-
tively frequent development of  resistance. Mechanisms 
that have been implicated in resistance include rapid 
drug efflux[41], amplification of  the BCR-ABL gene[42], 
reduced binding affinity of  imatinib to the ATP-binding 
site due to genetic changes[43], and BCR-ABL indepen-
dence resulting from secondary transforming events[44]. 
As in chronic phase myeloid leukemia (CML), secondary 
resistance in Ph+ ALL is frequently associated with point 
mutations in the TKD of  BCR-ABL[43,45]. Among these 
resistance mechanisms, dose escalation of  imatinib or 
the use of  more potent ABL inhibitors could resolve the 
first events, while only the use of  multitargeted inhibitors 
could restore sensitivity in the other mechanisms. ABL 
TKD mutations generally are comprised of  two cat-
egories: mutations that directly impede contact between 
imatinib and Bcr-Abl, such as the gatekeeper mutations 
T315I and F317L[46], and mutations that alter the spacial 
conformation of  the BCR-ABL protein by affecting the 
P-loop containing the ATP-binding pocket and/or the 
activating loop[45]. To date, more than 50 ABL TKD mu-
tations have been identified. Data on the frequency and 

incidence of  mutations in Ph+ ALL have been relatively 
sparse. However, the German group showed that ABL 
mutations could be detected in nearly 40% of  patients 
at the time of  diagnosis in imatinib-naïve patients (P-
loop mutations in 80% and T314I mutation in 17%)[26]. 
At the time of  recurrence, ABL mutations were found 
in 84% of  cases (P-loop mutations in 57% and T315I 
mutation in 19%). The mutated clone then consistently 
represented the dominant population. Almost all patients 
with mutant BCR-ABL detected before imatinib therapy 
had the same mutation at relapse. Remission duration did 
not differ significantly between patients with or without 
a detectable early mutation. Imatinib initially suppressed 
the dominant, unmutated leukemic population, without 
simultaneous outgrowth of  the pre-existing mutant sub-
clones. However, these pre-existing mutant clones almost 
invariably give rise to eventual relapse. To significantly 
improve outcome, it would be necessary to eliminate 
clones harboring mutations during the early phase of  
treatment, before they have acquired additional resistance 
mechanisms. The cause for relapse has been related to 
TKI resistance of  the LSCs and/or immune tolerance of  
leukemic cells. In vitro experiments have suggested that 
TKIs have an antiproliferative, but not a proapoptotic 
or cytotoxic effect on the most primitive Ph+ stem cells 
(CD34+ CD38- cells)[47,48]. Second generation TKI dasat-
inib has been shown to have a more profound effect on 
the stem cell compartment when compared to imatinib 
or nilotinib, but the drug was still unable to kill the most 
primitive CD34+ CD38- LSCs in vitro[48]. However, recent 
analyses in CML with successful TKI therapy have dem-
onstrated the eradication of  most Ph+ CD34+ CD38- 
cells from the central bone marrow[49]. Selective chemical 
inhibition of  Src family kinases decreases growth and ex-
pression of  stem cell genes, including Oct3/4 and Nanog, 
involved in self  renewal and survival of  LSCs[50].

Resistance attributable to kinase domain mutations 
can lead to relapse despite the development of  second-
generation compounds, including dasatinib and nilotinib. 
Despite these therapeutic options, the cross-resistant 
BCR-ABL T315I mutation remains a major clinical chal-
lenge. The first evaluations of  AP24534 present this drug 
as a potent multi-targeted kinase inhibitor active against 
T315I and all other BCR-ABL mutants[51-54]. AP24534 
could be the next treatment of  choice in hematological 
malignancies with Ph+ chromosome, particularly Ph+ 
ALL known for its frequent occurrence of  T315I muta-
tion. However, its potential action on LSCs is still un-
known.

LSCs IN ALL
ALL defines a heterogeneous group of  leukemias. Re-
ports assessing the cell of  origin have been contradictory. 
Discrepancies may be related to the heterogeneity of  the 
disease. In ALL and other malignancies, compelling re-
search suggests that a population of  cancer stem cells is 
able to regenerate or self-renew, resulting in therapeutic 

47 June 26, 2012|Volume 4|Issue 6|WJSC|www.wjgnet.com

Thomas X. Ph+ ALL stem cells



resistance and disease progression. A number of  stud-
ies indicate that quiescent LSCs are resistant to therapies 
that target rapidly dividing cells. However, the marked 
differences in response to therapy could be related to the 
different characteristics of  the cell of  origin, and to the 
existence and relative importance of  a primitive LSC pop-
ulation for a given ALL subtype. Rearrangements of  the 
T-cell receptor or the immunoglobulin heavy chain genes 
support the theory that T- and B-lineage ALL originate in 
cells already committed to the T- or B-cell lineages. In vivo 
xenotransplantation model showed that CD34+ CD38+ 
CD19+ and CD34+ CD38- CD19+ cells from pediatric 
patients with B-ALL initiate B-ALL in primary recipients, 
whereas the recipients of  CD34+ CD38- CD10- CD19- 
cells showed normal human hematopoietic repopula-
tion[55]. Furthermore, transplantation of  CD34+ CD38+ 
CD19+ cells resulted in the development of  B-ALL in 
secondary recipients, demonstrating self-renewal capacity. 
In T-ALL, cells capable of  long-term proliferation have 
been demonstrated in the CD34+ CD4- and CD34+ CD7- 
cell subfractions[56]. In TEL/AML1 rearranged ALL, the 
earliest population that consistently conferred leukemia to 
immunocompromised mice has been defined as CD34+ 
CD38– CD19+[57,58]. Engraftment was also reported from 
a more differentiated CD34– CD19+ subpopulation[59], 
questioning the existence of  a strict hierarchy in this type 
of  ALL. Normal individuals may have B cells harbor-
ing a TEL/AML1 fusion that never undergo leukemic 
transformation, suggesting a ‘multi-hit’ model of  leuke-
mogenesis, in which TEL/AML1-positive precursor cells 
constitute a pre-leukemic pool[60]. In hyperdiploid ALL, it 
appears that some cases have leukemia-initiating activity 
in populations consistent with later mid-stage B-cell de-
velopment[61]. Only CD34+ CD10– or CD34+ CD19– cells 
resulted in reliable leukemic engraftment in ALL samples 
with normal karyotype[62]. MLL-AF4-positive cells were 
reported in high frequency in the CD34+ CD19– com-
partment. These cells, carrying an immature phenotype, 
suggest a developmental stage prior to commitment to 
the lymphoid lineage[59]. The microenvironment may play 
an important role in determining lineage fate in MLL-
rearranged leukemias[63,64].

LSCs IN BCR-ABL-POSITIVE ALL
CD34+ stem cells cannot be effectively killed by BCR-
ABL kinase inhibitor imatinib treatment both in vitro and 
in vivo[47,65]. BCR-ABL transcripts are still detectable in 
CD34+ cells after a long-term treatment with imatinib[65], 
suggesting that these LSCs cannot be eradicated through 
inhibiting BCR-ABL kinase activity. Similarly, imatinib 
does not eradicate LSCs in mice[66]. These results in-
dicate that some unknown pathways contribute to the 
maintenance of  survival and self-renewal of  LSCs. The 
LSCs seem to be biologically distinct from their more 
differentiated progeny. Therefore, the agents acting 
against the more mature blasts will not be as efficient in 
eradicating the LSCs. Divisional asymmetry and environ-

mental asymmetry are two mechanisms responsible for 
asymmetric cell division. In the first case, specific cell-
fate determinants redistribute unequally among daughter 
cells, of  which one receives these determinants, while 
the other proceeds to differentiation. In the other case, a 
LSC would first undergo a symmetric division. However, 
only one cell remains in the bone marrow niche and con-
serves stem cell fate, while the other cell enters a different 
microenvironment and subsequently produces signals ini-
tiating differentiation. Identification of  novel genes that 
play critical role in regulating the function of  LSCs can 
contribute to the development of  new therapeutic strate-
gies through targeting LSCs.

Given the central role that LSCs play in leukemia 
maintenance, studies have focused on identifying path-
ways of  proliferation, self-renewal and survival that are 
differentially active in LSCs rather than normal hemato-
poetic stem cells. The expression of  p190 or p210 BCR-
ABL fusion forms is sufficient to cause leukemia in 
animal models[67]. The JAK-STAT, Ras-Raf-MEK-ERK, 
PI3K-AKT, c-Myc, SAPK-JNK and NF-κB pathways 
are among the pathways activated by BCR-ABL. Those 
pathways are involved in cell proliferation and inhibition 
of  apoptosis. Ph+ ALL is also characterized by a high 
degree of  genomic instability that is induced by the BCR-
ABL protein, as demonstrated by the increased frequency 
of  DNA insertions and deletions present in BCR-ABL 
pre-leukemic mice[68]. Ph+ ALL often presents aberrant 
splicing of  key genes in lymphoid development, such as 
BTK and SLP-65, and deleterious mutations of  IKZF1, 
a gene that encodes the zinc-finger transcription factor 
Ikaros[69,70]. The aberrant splicing of  SLP-65 and BTK in 
B-cell precursors results in shorter transcripts that halt 
lymphoid maturation[71]. The deletion of  exons of  IKZF1 
results in a dominant negative form of  Ikaros that lacks 
the DNA-binding domain. This mutated form halts 
B-cell differentiation and contributes to the expression 
of  some myeloid specific genes[70]. Its overexpression 
may also contribute to resistance to TKIs[72]. A common 
additional mutation in Ph+ ALL is the deletion of  9p21, 
compromising the INK4A-ARF gene[73]. The activation 
of  p14ARF induces cell cycle arrest and apoptosis through 
p53 activation and Arf-null BCR-ABL+ cells induce more 
severe leukemia in irradiated mice recipients. Another 
particularity of  Ph+ ALL is the dependence of  BCR-
ABL transformation on Src kinases that do not appear to 
be required for the induction of  CML[74]. However, CML 
progression to lymphoid blast crisis may also depend on 
Src kinases as lymphoid blast crisis cells are also depen-
dent on Lyn for survival, to a higher extent than myeloid 
blast crisis CML cells, suggesting a lineage-specific signal-
ing pathway or mechanism[75].

In contrast with CML, if  Ph+ ALL is lineage re-
stricted, one should find the Ph+ only in lymphoid cells. 
However, original studies in patients did not yield such 
a clear cut distinction. Involvement of  the myeloid 
compartment has been reported for Ph+ ALL[76]. The 
Ph could be detected in both mature myeloid cells and 
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myeloid colony-forming units, suggesting that at least 
in some patients the leukemia-initiating event occurs in 
a primitive cell that has not already undergone lineage 
commitment[77]. An alternative explanation would be that 
BCR-ABL ALL blasts reacquire specific lineage promis-
cuity. Recent functional studies conclude that LSC in 
Ph+ ALL is a primitive cell lymphoid that is restricted as 
it will not originate from myeloid or erythroid colonies, 
although the studies differ on the characterization of  this 
LSC. The CD34+ CD38- CD19- cell compartment has 
been shown to be involved in patients with p210 BCR-
ABL ALL but not in those with p190 BCR-ABL ALL[58]. 
The p210 BCR-ABL transcript could also be identified 
in CD34+ CD33+ and CD34- CD33+ myeloid precursors, 
which was not the case for the p190 transcript. However, 
CD34+ CD38- CD19- p210-positive cells did not induce 
leukemia in NOD/SCID mice. This contrasts with other 
results showing NOD/SCID engrafting leukemic cells 
only in the CD34+ CD38- subfraction and not in the 
CD34+ CD38+ cells[78]. The CD34+ CD19- cells have also 
been shown as the most undifferentiated leukemia pro-
genitors in patients with Ph+ ALL but they did not differ-
entiate into myeloid colonies[79].

CONCLUSION
By definition, cure of  leukemia requires eradication or 
transcriptional control of  LSCs. To date, little is known 
regarding the efficacy of  TKIs in the longer term. Al-
though reduction in the number of  LSCs by TKI therapy 
is feasible, quiescent LSCs are likely to survive to TKIs 
combined with chemotherapy. Allogeneic transplantation 
remains therefore the treatment of  choice, preferably in 
first CR. However, a more complete understanding of  
the biology of  Ph+ chromosome is needed in order to 
cure patients who cannot receive allogeneic SCT. Patients 
with Ph+ ALL may be heterogeneous. The determination 
of  residual populations of  quiescent Ph+ cells is impor-
tant for evaluating response in treated patients. Specific 
inhibition of  LSCs in Ph+ ALL is a suitable approach to 
developing a cure for this disease in the future. Several 
gene products required by LSCs have been shown to be 
potential targets for inhibiting LSCs. The mechanisms by 
which involved pathways regulate the function of  LSCs 
need to be further studied.
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