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Obstructive sleep apnea syndrome (OSAS) is associated with 
significant adverse neurobehavioural, cardiovascular, and met-
abolic outcomes. In recent years, studies of autonomic nervous 
system (ANS) function have demonstrated autonomic dys-
regulation in both children1-3 and adults with OSAS.4-7 Studies 
on ANS function and OSAS are important because they can 
potentially provide mechanistic pathways to explain some of 
the important morbidities associated with OSAS, such as hy-
pertension, cardiovascular disease and insulin resistance,8,9 and 
provide a better understanding of how treatment modalities can 
mediate outcomes of OSAS via the ANS.

Several methods have been used to study ANS responses 
in children with OSAS. Pulse arterial tonometry is a nonin-
vasive technique for detecting sympathetic vasomotor tone in 
peripheral vessels using a finger plethysmograph. Increased 
sympathetic activity resulting in vasoconstriction corresponds 
to attenuation of the tonometry signal on the plethysmograph.2 
Heart rate variability estimates sympathetic to parasympathetic 
balance by calculating the ratio of low-frequency to high-fre-
quency band power extracted from electrocardiographic re-
cordings.10 In general, the above methods have demonstrated 
sympathetic predominance in children with OSAS.1,2,11 This 
sympathetic predominance may be mediated by the stimula-
tion of peripheral arterial chemoreceptors by hypoxemia that 
results in increased sympathetic efferent traffic during hypox-
emic episodes. In addition, respiratory events during sleep such 
as apnea/hypopnea may interrupt physiologic sympathetic inhi-
bition during inhalation by vagal circuits.12,13 Finally, arousals 
resulting from OSAS may also induce increased sympathetic 
output.14

Baroreflex sensitivity (BRS), in contrast, evaluates the baro-
reflex function of the ANS. Baroreceptors in the carotid sinus 
and aortic arch relay changes in arterial wall stretch to con-
trol centers in the brainstem from where autonomic outflow is 
modulated, producing changes in cardiovascular variables—
heart rate (HR), heart contractility and vasoconstriction. The 
change in HR in response to changes in arterial blood pres-
sure (ABP) provides a measure of BRS. It can be assessed in 
the time domain for ascending and descending sequences by 
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the slope of regression of HR interval versus ABP and in the 
frequency domain by calculating the α index from spectral 
analysis of variability in HR interval and ABP. The α index is 
the square root of the integration of the ABP and HR interval 
power spectra where the coherence (a measure of correlation) 
between the HR and ABP changes is greater than 0.5. The α 
index is estimated at the low frequency band (0.04 to 0.15 Hz) 
and also the high-frequency band (0.15 to 0.5 Hz), which cor-
responds to the respiratory frequency. Changes in BRS are as-
sociated with an increased risk of developing hypertension and 
cardiovascular disease.15,16

In this issue of SLEEP, Crisalli and colleagues report on the 
extent of restoration of BRS changes in children with OSAS af-
ter adenotonsillectomy.17 Their study follows a cross-sectional 
study by the authors3 demonstrating altered BRS in young chil-
dren with severe OSAS (obstructive apnea-hypopnea index > 5/
hour) in the form of absence of the normal monotonic overnight 
increase in BRS in the ascending and descending sequences 
and high-frequency α index. Severe OSAS was also associ-
ated with lower temporal and spectral BRS indices compared 
to children with mild OSAS and matched controls who were 
healthy non-snoring children. Also, children with mild OSA 
had lower high-frequency α than control children. In the cur-
rent study Crisalli and colleagues used an interventional model 
to test if ANS changes associated with OSAS are reversible 
by tracking BRS in these children with OSAS six months af-
ter tonsillectomy along with their matched controls. This is a 
convenient model since adenotonsillectomy usually resolves or 
significantly mitigates OSAS in children, as was the case in this 
cohort. The authors report increases in all BRS parameters in 
children with severe OSAS following adenotonsillectomy ex-
cept the low-frequency α index, in addition to a restoration of 
the normal pattern of rising baroreflex gain during the night. 
BRS remained mostly unchanged in controls for the duration of 
the study. Of note, the magnitude of improvement in baroreflex 
gain correlated with the change in the apnea-hypopnea index 
and change in arousal index, but not the oxygen desaturation 
index. Thus BRS impairment correlated with severity of OSAS, 
but the data did not have sufficient resolution to discriminate 
between the effects of oxygen desaturation and arousals. Sig-
nificantly, the temporal indices of BRS and the high-frequency 
(respiratory frequency associated) α index in children with se-
vere OSAS remained lower than that of control subjects even 
after 6 months; this may be related to residual mild OSAS or a 
slow restoration of autonomic function. The low-frequency α 
index was not different in the children with severe OSAS from 
controls at six months, but this may be due to power issues 
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from loss of some subjects to follow-up. The authors speculate 
that baroreflex suppression with OSAS leads to reduction in 
the direct inhibition of sympathetic discharge by the barorecep-
tor stimulation, in turn leading to sympathetic predominance, 
particularly at the respiratory frequency from disruption of the 
coordination of the respiratory drive, baroreflex sensitivity and 
sympathetic discharge.

Overall, this study demonstrates that OSAS in children alters 
BRS and that BRS impairments are reversible to a large extent, 
but may persist for prolonged periods after resolution of OSAS. 
These findings are in concordance with other studies that note 
improvement in ANS function using HRV measure in children 
with OSAS after adenotonsillectomy,11,18 but the current study 
has the advantages of a prospective design, larger numbers and 
a comparison group of healthy children who were followed for 
an equivalent interval.

One of the important issues in sleep medicine is establishing 
the thresholds of sleep indices that are associated with patho-
physiologic changes. While normative data have been estab-
lished for polysomnography indices in children,19,20 the diverse 
morbidities of OSAS may be associated with disparate levels of 
various polysomnography indices. This study suggests that au-
tonomic dysfunction is likely to be present with an obstructive 
apnea hypopnea index ≥ 5/hour.

Overall, this study provides compelling evidence of auto-
nomic dysfunction caused by OSAS in children that is at least 
partially reversible with appropriate treatment. However, sev-
eral additional questions are raised by these findings. How 
strongly is the biological effect of altered ANS function associ-
ated with clinical outcomes such as hypertension? Do children 
with significant persistent OSAS have a greater likelihood of 
complications in adult life because of prolonged exposure to 
OSAS? How effective are available treatments in preventing 
complications related to autonomic dysfunction? The answers 
to these interrelated questions will require carefully planned 
longitudinal studies and treatment trials powered by large num-
bers of subjects.
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