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Velocity-Dependent Actomyosin ATPase Cycle Revealed by In Vitro
Motility Assay with Kinetic Analysis
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ABSTRACT The actomyosin interaction plays a key role in a number of cellular functions. Single-molecule measurement tech-
niques have been developed to study the mechanism of the actomyosin contractile system. However, the behavior of isolated
single molecules does not always reflect that of molecules in a complex system such as a muscle fiber. Here, we developed
a simple method for studying the kinetic parameters of the actomyosin interaction using small numbers of molecules. This
approach does not require the specialized equipment needed for single-molecule measurements, and permits us to observe
behavior that is more similar to that of a complex system. Using an in vitro motility assay, we examined the duration of continuous
sliding of actin filaments on a sparsely distributed heavy meromyosin-coated surface. To estimate the association rate constant
of the actomyosin motile system, we compared the distribution of experimentally obtained duration times with a computationally
simulated distribution. We found that the association rate constant depends on the sliding velocity of the actin filaments. This
technique may be used to reveal new aspects of the kinetics of various motor proteins in complex systems.
INTRODUCTION
The interaction of myosin with actin drives micro- and
macroscopic biological motions, including cell division,
heartbeat, muscle contraction, and others. To elucidate the
dynamic properties of the actomyosin contractile system,
various spectroscopic and microscopic techniques have
been used. For example, the kinetic parameters of the acto-
myosin ATPase cycle have been analyzed spectroscopically
in bulk solution for many years (1). An in vitro motility
assay permits study of the motility of actomyosin, and
the characteristics of various species of myosin related to
their sliding velocity have been studied using such assays
(2–4). Moreover, techniques for measuring the behavior of
molecular motors at nano-pico scale that use a glass micro-
needle or optical tweezers have been developed and used to
understand the elementary process at the single- molecule
level (5,6). In addition, a recently developed high-speed
atomic force microscope has successfully imaged the
motion of functioning single-molecule machines (7).

Using these techniques, the elementary processes and
kinetic mechanisms of motor proteins, such as kinesin,
myosin V, and Chara myosin, have been revealed (8–11).
However, only a handful of specialized laboratories have
the equipment to perform most such nanoscale measure-
ments, therefore only a limited number of investigators
can verify the results by replicating the experiments.
Another difficulty in studying these molecules is that their
behavior as an isolated single molecule does not always
reflect their behavior when functioning in a complex system.
For example, in a muscle fiber, the interaction between actin
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and myosin molecules is restricted by their steric positions.
For axonemal dynein in eukaryotic flagella, a single dynein
molecule attached to the axoneme can produce coordinated
oscillation (12); in contrast, similar oscillation is not re-
ported for the isolated dynein molecules.

To bridge the information from studying a single myosin
molecule with its behavior in a complex system, we devel-
oped a simple method for studying the kinetic parameters
of the actomyosin interaction in an in vitro motility assay
using small numbers of molecules, which does not require
a nanoscale measurement system. We made the assumption
that the actomyosin ATPase cycle could be described by
dividing the actomyosin kinetics into two states, an attached
state (from A-M-ADP-Pi to A-M-ATP) and a detached state
(fromM-ATP to M-ADP-Pi), as shown in Fig. 1. To describe
the kinetic scheme between the attached state and the
detached state, we defined q and p as the rate constants
for the dissociation and association of the actin filament.
To determine these parameters during sliding, we used an
in vitro motility assay with sparsely distributed heavy mero-
myosin (HMM) on a glass surface. Here, we focused not on
the actin filaments’ sliding velocity, but on the time spent in
continuous sliding. The sliding of a single actin filament was
supported by one or more myosin molecules on the glass
surface. The sliding duration time depended on the number
of cross-bridges, N, the association rate constant p, and the
dissociation rate constant q. We performed the in vitro
motility assay with various densities of skeletal muscle
HMM and ATP concentrations. The distribution of sliding
duration times obtained from the assay was then verified
by fitting the curve against the distribution, which was
obtained from a kinetic model. From the fittings, we esti-
mated the parameters for the actomyosin interaction and
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FIGURE 1 Actomyosin ATPase cycle, with the association rate constant

p and dissociation rate constant q. p is the association rate constant for the

detached state (M-ATP to M-ADP-Pi) and q is the dissociation rate constant

for the attached state (A-M-ADP-Pi to A-M-ATP) in the actomyosin

ATPase cycle.
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investigated their properties, especially those of the associ-
ation rate constant p.
MATERIALS AND METHODS

Proteins

Skeletal muscle myosin was extracted from rabbit skeletal muscle by Guba-

Straub solution (0.3 M KCl, 0.1 M KH2PO4 (pH 6.5)) and purified by the

method of Hynes et al. (13). Skeletal HMM was prepared by a-chymo-

tryptic digestion of purified myosin (14). Skeletal HMMwas frozen rapidly

with liquid N2 and stored at �80�C until usage. G-actin was extracted from

rabbit skeletal muscle acetone powder by the method of Spudich and

Watt (15). The G-actin was polymerized to F-actin, which was labeled

with tetramethylrhodamine-phalloidin (Life Technologies, Carlsbad, CA),

following the method of Yanagida et al. (16). All the experimental proce-

dures and rabbit care followed the regulations for animal experiments

and related activities at Tohoku University.
Actomyosin interaction kinetics

A scheme of the kinetic interactions of actin and myosin, with rate

constants, is shown in Fig. 1. Here, we defined the combined rate constant

for the reactions from A-M-ADP-Pi to M-ATP as q, and those from M-ATP

to A-M-ADP-Pi as p; using the combined rate constants p and q, Fig. 1 is

simplified to

Attach %
q

p
Detach Scheme 1

The rate constant q for the actomyosin dissociation during sliding in

Scheme 1 is then expressed using the parameters in Fig. 1 as follows.

(For details, see Fig. S1 in the Supporting Material.):

q ¼ k�PD$kT ½ATP�$k�A

kT ½ATP�$k�A þ k�PDðkT ½ATP� þ k�A þ k�TÞ (1)

where k-PD represents k�P$k�D=ðk�P þ k�DÞ. The reported rate constants

for the individual substeps of the actomyosin working cycle (k-P, k-D, kT,

k-T, and k-A) were used to calculate the dissociation rate constant q.
In vitro motility assay

The in vitro motility assay was performed as described in Harada et al. (3)

with some modifications. Coverslips (24 � 32 mm and 18 � 18 mm; Mat-

sunami, Osaka, Japan) were coated with silicone by immersing them in 5%
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(v/v) Sigmacote (Sigma-Aldrich, St. Louis, MO) in heptane. A 9 � 18 �
0.2-mm flow cell was constructed, and then 0.1–0.3 mg/mL HMM solution

was applied to the flow cell and adsorbed onto the silicone-coated coverslip

by incubating for 1 min at room temperature. Unbound HMM was washed

awaywith awashing buffer (WB: 25mMKCl, 5mMMgCl2, 20mMHEPES

(pH 7.8)), which was then replaced with WB containing 0.5 mg/mL bovine

serum albumin to block the remaining surface on the silicone-coated

coverslip. After 1 min of incubation, the flow cell was set onto an inverted

microscope (IX70;Olympus, Tokyo, Japan) equippedwith a charge-coupled

device camera (Neptune 100; Watec, Yamagata, Japan) and an objective

lens (UplanApo 100�/1.35; Olympus). The motility solution (WB contain-

ing 10 nM tetramethylrhodamine-phalloidin-labeled F-actin, 4.5 mg/mL

glucose, 0.22 mg/mL glucose oxidase, 0.036 mg/mL catalase, 0.5% 2-mer-

captoethanol, 3 mM phosphoenolpyruvate (Sigma-Aldrich), 20 units/mL

pyruvate kinase (Sigma-Aldrich), and 10–500mMATP) was vortexed vigor-

ously for 30 s just before the assay to shorten the labeled F-actin. After add-

ing the motility solution to the flow cell, the labeled F-actin was observed,

and the movement of the actin filaments was video-recorded. The observa-

tion was performed at 30 5 1.0�C.
The lengths of the actin filaments moving on the HMM were determined

from their fluorescence intensity. First, a standard curve showing the rela-

tionship between the length of the filaments (>1 mm, measured from the

fluorescence image) and their fluorescence intensity was obtained using

Image J (http://rsb.info.nih.gov/ij/). Using the standard curve, the lengths

of the filaments (0.24–0.52 mm) were then determined from their fluores-

cence intensity. The lengths are listed in Table S1 in the Supporting Mate-

rial. The sliding movement of long actin filaments over 1 mm was also

observed, but we did not include these observations in our analysis, because

the filaments took a long time to dissociate, therefore they underwent

bleaching or left the observed portion of the screen before dissociating.

We also did not include actin filaments for which the fluorescence intensity

corresponded to a length <0.24 mm, to exclude inaccurate length estimates

and the effects of photobleaching.
Determination of the number of HMM molecules
adsorbed on the coverslip

The density of HMM molecules on the coverslip was estimated from

sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)

followed by densitometry using Image J. The HMM adsorbed on the cover-

slip was eluted with 30 mL of SDS sample buffer (1% SDS, 6.25 mM Tris-

HCl (pH 6.8), 10% glycerol, 10% 2-mercaptoethanol). This elution was

performed twice so that no HMM remained. The eluate was collected

and boiled for 5 min, and SDS-PAGE was performed using the buffer

system of Laemmli (17). The separated HMM was stained by Coomassie

Brilliant Blue G-250 solution (Bio-Safe Coomassie G-250 stain, Bio-Rad

Laboratories, Hercules, CA). The signal intensities of the HMM were

analyzed by Image J. The intensities were compared with those of known

quantities of HMM, and a standard curve between the concentration of

applied HMM and the density of HMM molecules on the coverslip was

made (see Fig. S2). The random distribution of HMM molecules on the

coverslip was confirmed by analyzing the number, autocorrelation, and

nearest-neighbor distance of the positions of the labeled F-actin under rigor

conditions (see Fig. S3).
Measurement of the duration time of the
actomyosin interaction

In the in vitro motility assay, labeled short actin filaments are floated in

a flow cell, and the microscope is focused on the coverslip to which

HMM molecules are adsorbed. The actin filaments in solution touch the

glass surface by their Brownian motion, where they interact with the

HMM. By using fully shortened actin filaments and sparsely distributed

HMM molecules, we could examine the actin filaments, which attached

http://rsb.info.nih.gov/ij/
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to the coverslip, showed sliding movement, and then detached after a while

(Fig. 2 A). We analyzed the actin filaments that moved >0.2 mm during an

interaction time of 0.066–10 s at a motor speed of <7 mm/s. These

measurement criteria excluded the nonspecific binding of actin filaments

on the glass surface, and the shot noise of the measurement system. In addi-

tion, actin filaments that showed an instantaneous speed of >7 mm/s in

random directions or large fluctuations in the direction perpendicular to

the surface (i.e., a change in fluorescence intensity of ~65%, whereas the

change for normal sliding movement is ~15%) were also excluded, to

distinguish the normal sliding movement from Brownian movement. We

measured the time interval between the moment the actin filament ap-

peared on the surface (t0) and the moment it disappeared (t0 þ t), and

defined the time interval as the duration time for the actomyosin interaction

(t). Histograms for t were then made showing the ratio of the number of

actin filaments that maintained the actomyosin interaction for 0 to t to

the total number of observed actin filaments (all histograms are shown in

Fig. S4).
Estimation of kinetic parameters of the
actomyosin ATPase cycle

The sliding of an actin filament is supported by one or more HMM mole-

cules on the glass surface. When the actin filaments slide, the number of in-

teracting HMM molecules, i, changes with time. The probability that i

HMMmolecules interact with actin at the same time (Pi) can be represented

as a function of the number of available cross-bridgesN, the association rate

constant p, and the dissociation rate constant q (Fig. 2 B). Overall, each state

can be described by a simultaneous differential equation of the Nth order

(Fig. 2 C). The probability of attached states, Pattach, is the sum of the prob-

ability of each state (except P0):

Pattach ¼
XN

i¼ 1

PiðtÞ:
FIGURE 2 Concept of the duration time of the interaction between one

actin filament and several HMM molecules. (A) Schematic diagram of

the experiment. (B) Scheme of the interaction between one actin filament

and NHMMmolecules, with an association rate constant p and dissociation

rate constant q. (C) Simultaneous differential equation of the Nth order

for the duration time of the actomyosin interaction. Pi(t) is the probability

at time t that i HMM molecules interact with the actin filament at the

same time.
By calculating the summation with a program constructed by Mathema-

tica (Wolfram Research, Champaign, IL), the duration time of the actomy-

osin interaction was simulated (Fig. S5). Comparing the simulation with the

experimentally obtained histograms, the values of N, p, and q with the high-

est coefficient of determination were determined.
RESULTS

Duration time depends on the ATP concentration
and the density of HMM

The binding of single actin filaments to the HMM-coated
surface, sliding movement, and subsequent dissociation
were observed (Fig. 3, A–D, see also Movies S1–S4). Even
in the situation of short actin filaments (0.24–0.52 mm) on
sparse HMM molecules (633–1900 molecules/mm2), the
smooth sliding movement of the filaments was clearly
observed. The filaments’ sliding velocity depended on the
ATP concentration (Fig. 3 E), although the velocities were
slower than those reported previously using an in vitro
motility assay at the same ATP concentration (see Discus-
sion). The duration time decreased as the ATP concentration
increased (Fig. 3 F), and it increased as the HMM density
increased (Fig. 3 G).
Estimation of the association rate constant p

Histograms of the proportion of interactions that were main-
tained for a certain duration time t are shown in Fig. 4, A–I.
The histograms revealed a similar tendency as the average
duration time (Fig. 3, F and G). That is, the average duration
time decreased as the ATP concentration increased (Fig. 4,
A–I, rightward), whereas the distribution shifted to the lon-
ger side as the density of HMMmolecules increased (Fig. 4,
A–I, downward).

Next, the histograms were fitted with the calculated dura-
tion time obtained from the kinetic model (Fig. 2, B and C),
to estimate the association rate constant of the actomyosin
interaction. The fitting was performed as follows. For the
prediction of N, the band model (Fig. 4 J and (2)) and the
nearest neighbor distance model (3) were examined (see
also Fig. S6). Considering that the actin filaments examined
in this study were much shorter than the persistence length
of actin filaments (15 mm (16), ), the filaments could be
assumed to be rigid rods, therefore we used the band model
with a 30-nm band width (Fig. S6). According to this model,
N was determined as N ¼ 0:03� r� L (Fig. 4 J). In this
study, the HMM density r (633–1900 molecules/mm2) and
the length of actin filaments L (0.24–0.52 mm) resulted in
an N of 6.0–20.3. For the prediction of q, the reversal reac-
tions in Fig. 1 were neglected, because they are slow enough
to ignore (18,19). Therefore, from Eq. 1, q was determined
to be 11.3–150 s�1 with 200 s�1 for k-PD, 1.2 mM

-1s�1 for kT,
2000 s�1 for k-A, and 10–500 mMATP (1,20–22). The calcu-
lated duration time was then obtained from the kinetic
model with N, q, and p. We then determined the p that
Biophysical Journal 103(4) 711–718



FIGURE 3 Measurement of the duration time of

the actomyosin interaction. (A–D) Examples of

actin sliding under the following conditions: (A)

945 HMM molecules/mm2 and 30 mM ATP, (B)

945 HMM molecules/mm2 and 500 mM ATP, (C)

1267 HMM molecules/mm2 and 30 mM ATP, and

(D) 1267 HMM molecules/mm2 and 500 mM

ATP. (E) Relationship between ATP concentration

and the sliding velocity of actin filaments under

all the experimental conditions: 10 and 13 mM

ATP, 633–945 HMM/mm2; 20 and 30 mM ATP,

633–1900 HMM/mm2; and 50–500 mM ATP,

945–1900 HMM/mm2. Error bars indicate SE for

351–925 observations. (F) An example of the rela-

tionship between ATP concentration and average

duration time, at 1267 HMMmolecules/mm2. Error

bars indicate SE for 107–160 observations. (G) An

example of the relationship between HMM density

and the average duration time, at 250 mM ATP.

Error bars indicate SE for 104–148 observations.
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yielded the highest coefficient of determination between the
histogram and the calculation (e.g., Fig. 4 E, see also
Fig. S7). All the data analyzed and the parameters obtained
are shown in Table S1.
Association rate constant p depends on the
sliding velocity of the actin filaments

The values of p thus estimated were plotted against the ATP
concentration (Fig. 5 A). The association rate constant for
M-ADP-Pi binding to actin is reported to be 30 s�1 (20);
however, the value of p estimated in this study depended
on the ATP concentration. When p was plotted against the
sliding velocity v, which was also ATP-dependent (Fig. 3 E),
they showed a linear relationship (Fig. 5 B, open circles);
that is, p ¼ a$v; where a ¼ 23.5 (1/s)/(mm/s), and the range
of pwas 7.30–76.6 s�1, corresponding to a v range of 0.480–
3.03 mm/s. The linear relationship was maintained even if
the ATP dissociation from the A-M-ATP ternary complex
(k-T, 500 s�1) was taken into consideration (Fig. 5 B, closed
circles).
Biophysical Journal 103(4) 711–718
DISCUSSION

We showed that the duration time, i.e., the time during
which short actin filaments slide continuously on a sparsely
coated HMM surface, depended on the ATP concentration
and on the density of HMM on the coverslip (Fig. 3, F
and G). These experimental results contained the informa-
tion about the kinetics of the actomyosin ATPase cycle
during sliding. By analyzing these results with a simple
kinetic model (Fig. 2), we were able to estimate the associ-
ation rate constant p during sliding under various experi-
mental conditions. From this estimation, we found that
the association rate constant increased linearly with the
sliding velocity of the actin filaments (Fig. 5 B). This linear
relationship was still maintained when the number of cross-
bridges was overestimated compared with the band model-
estimated number (Fig. S8).

When the in vitro motility assay is performed with a low
density of HMM and short actin filaments (0.24–0.52 mm),
the sliding velocities of the actin filaments may become
slow. In previous studies on the relationship between the



FIGURE 4 Experimentally obtained histograms of the duration time of

actomyosin interactions with the calculated duration time. (A–C) 945

HMM molecules/mm2; (A) 30 mM, (B) 100 mM, and (C) 250 mM ATP.

(D–F) 1267 HMM molecules/mm2; (D) 30 mM, (E) 100 mM, and (F) 250

mM ATP. (G–I) 1900 HMM molecules/mm2; (G) 30 mM, (H) 100 mM,

and (I) 250 mM ATP. Dotted line in each histogram represents the duration

time obtained computationally. Each bin represents the ratio of the number

of actin filaments that maintained the actomyosin interaction from t0 to t to

the total number of observed actin filaments (n ¼ 104–160 for each panel).

In E, dotted lines were drawn with N¼ 16, q¼ 75, and p¼ 23, 28, 32.7, 38,

43 (from left to right). (J) Schematic diagram of the band model. L, length

of actin filaments; r, the density of HMM molecules; w, the band width.

FIGURE 5 Dependence of the association rate constant of the actomy-

osin interaction on its sliding velocity. (A) Relationship between ATP

concentration and the estimated association rate constant. At these

ATP concentrations, the actin filament moved at 0.480–3.03 mm/s (see

Fig. 3 E). Bars indicate SE (n ¼ 3–8). (B) Relationship between the

sliding velocity (obtained from Fig. 3 E) and the estimated association

rate constant. Open circles, without reversible ATP binding (slope, solid

line: 23.5 5 1.39 (1/s)/(mm/s) (mean 5 SE), coefficient of determi-

nation R2, 0.936). Closed circles, with reversible ATP binding (slope,

dotted line: 19.4 5 1.32 (1/s)/(mm/s) (mean 5 SE), coefficient of deter-

mination R2, 0.922). Bars indicate SE (for p, n ¼ 3–8; for velocity, n ¼
351–925).
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cross-bridge number and the sliding velocity at 30�C
(2,4,23), the sliding velocity at a low HMM density was pre-
dicted to be 3.5–5.0 mm/s. In this study, the maximum
sliding velocity extrapolated to a saturated ATP concentra-
tion was 3.36 5 0.137 mm/s (mean 5 SE) at 30 5 1.0�C
(Fig. 3 E), which roughly matches the predicted value. We
conclude that the sliding velocities in this study were slower
than those previously reported (4–7 mm/s at 30�C in
(2,4,23); 8 mm/s at 22�C in (3)), because of the low HMM
density and short actin filaments, and not because of inac-
tivity of the HMM.

The association rate constant for the binding of M-ADP-
Pi to actin has been investigated from the kinetics of the
ATP hydrolysis of myofibrils (20) and by experiments in
solution (21,22). From measurements using myofibrils, the
association rate constant was determined to be 30 s�1,
calculated using the values of the phosphate burst, and the
transient and steady-state hydrolysis of ATP. However, the
relationship between shortening velocity and ATP hydro-
lysis was not studied, so the possibility remained that the
association rate constant is depending on sliding velocity.
In the experiments performed in solution, the second-order
association rate constant, which depends on the concentra-
tion of actin, was studied. In this situation, the association
rate constant in solution does not always reflect the charac-
teristics of the actomyosin motile system, because there is
no geometric restriction. In any case, the dependence of
the association rate constants on the sliding velocity was
not reported.

The distance between the binding sites on an actin
filament that participate in cross-bridge formation (path
distance) is 36 nm, as determined from electron micro-
graphs (24), x-ray diffraction (25), and studies using optical
tweezers (26–28), and it is assumed that actomyosin inter-
acts in the same manner in an in vitro motility assay. Taking
into account the reports (24–28) described previously and
the actomyosin ATPase cycle (Fig. 1), the association rate
constant, M-ADP-Pi to A-M-ADP-Pi, in the motile system
should be considered from the rate at which myosin moves
from one binding site to the next, which depends on the
shortening velocity.

Our finding that the association rate constant p depended
on the sliding velocity of the actin filaments is reasonable,
because irrelevant interactions with actomyosin would
occur if the association rate constant was a fixed value.
That is, given that an actin filament slides on HMM mole-
cules at v mm/s, each HMM molecule will interact with
the actin filament every v (mm/s)/p (s�1). If we assume
that p is a fixed value, 30 s�1, and the myosin-binding sites
Biophysical Journal 103(4) 711–718



FIGURE 6 Summary of the actomyosin ATPase cycle and kinetic

parameters. The wavy arrows in the ATPase cycle represent the probable

rate-limiting step. (A and B) Kinetic parameters at the low HMM

density described in this study. The dissociation rate constants q at (A)

10 mM and (B) 500 mM ATP were calculated from Eq. 1. The values of

the association rate constants p were obtained in this study. (C) Kinetic

parameters at high HMM density estimated using the values for ATP

concentration and sliding velocity reported in Harada et al. ((3); 2 mM

ATP, 11.2 mm/s at 30�C, in vitro motility) and Pate et al. (31); 5 mM

ATP, 16.3 mm/s at 30�C, muscle fiber). The association rate constant p

was calculated using the slope of Fig. 5 B and the sliding velocity reported

in (3,31).
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are located every 36 nm on an actin filament, a myosin
molecule can bind a proper binding site while other myosin
molecules propel an actin filament at> 1.08 mm/s (¼ 36 nm
� 30 s�1). On the other hand, when the sliding velocity is <
1.08 mm/s, each myosin molecule will bind an arbitrary
position on an actin filament (e.g., every 18 nm at 0.5
mm/s). This latter result does not agree with previous find-
ings about the myosin-binding sites on an actin filament
(26–28).

Next, let the number of cross-bridgesN or the dissociation
rate constant q be simulated using our technique when p
is assumed to be 30 s�1. When N is estimated with p ¼
30 s�1, k-PD ¼ 200 s�1, kT ¼ 1.2 mM-1s�1, k-A ¼ 2000 s�1,
N increases as the ATP concentration increases (Fig. S9 A).
This is, however, unlikely. When q is estimated with p ¼
30 s�1 and the band model-derived N (band width ¼
30 nm), kT and k-PD are estimated to be 5.0 5 1.0 mM�1s�1

and 69 5 10 s�1, respectively (Fig. S9 B). Although q can
be estimated when the association rate constant p is a
fixed value, the irrelevant interactions mentioned previously
would occur. From these considerations, it is unlikely that
the association rate constant p is a fixed value in an in vitro
motile system. However, because the kinetics of ADP release
is expected to be affected by the load (29), it is still possible
that the k-PD changes as the sliding velocity increases. To
clarify the dependence of q on sliding velocity, it may be
necessary to use conditions in which Pi or the ADP release
step become rate-limiting (e.g., high ATP concentration,
high density of HMM molecules).

Therefore, we propose that the association rate constant p,
which depends on the sliding velocity, can be defined as the
reciprocal of the time required for actin filament to move
36 nm. In considering the actomyosin interaction during
sliding, the axial Brownian rotation of the short actin fila-
ments would not matter, because the attached myosin mole-
cules will suppress it, even during the sliding movement.
Although it was reported that actin filaments slide with rota-
tional motion in an in vitro motility assay (30), such motion
would not influence cross-bridge formation, because the
degree of the rotation is small (one revolution per sliding
distance of 1 mm).

The rate-limiting step of the actomyosin ATPase cycle
(Fig. 1) could depend on the sliding velocity. It is thought
that at low ATP concentrations the rate-limiting step is the
ATP-binding step, whereas at high ATP concentrations, it
is the ADP- or Pi- release step. In addition to these rate-
limiting steps, cross-bridge formation in an in vitro motile
system could also be rate-limiting when the sliding velocity
is slow, at low ATP concentrations. Under our experimental
conditions (a low density of HMM and 10–500 mM ATP),
the association rate constant p would become the rate-
limiting step, because of the slow sliding velocity (Fig. 6,
A and B). When actomyosin slides faster than examined in
this study (e.g., Harada et al. (3) and in muscle fibers (31),
which contain many myosin molecules and mM levels of
Biophysical Journal 103(4) 711–718
ATP), cross-bridge formation is not rate-limiting (Fig. 6
C. From Fig. 5 B, >8.44 mm/s sliding velocity gives >198
s�1 for the p). In this case, the dissociation rate constant
q, especially for ADP release, will become a rate-limiting
step for the actomyosin ATPase cycle (32).

The technique reported here is unique because the param-
eters for actomyosin interaction during the sliding move-
ment can be estimated, which is in contrast to solution
experiments. Moreover, we can estimate the parameters
without using any sophisticated nanoscale measurement
techniques, such as optical tweezers or glass microneedles.
Therefore, analyses and verifications can be performed in
many laboratories for various motor proteins in different
systems. Using this technique, we revealed the velocity-
dependent association of actomyosin. Our findings suggest
that the velocity affects the chance of association. In other
words, the actual concentration of an actin filament in-
creases as it slides; in addition, the likelihood that a myosin
molecule will associate with actin increases when other
myosin molecules propel an actin filament. This means
that myosin molecules could cooperatively bind to sliding
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actin filaments in an actomyosin motile system. In addition,
actomyosin is thought to interact cooperatively by changes
in the actin-filament structure upon myosin attachment
(33,34). The cooperative structural change of actin filaments
and our findings together indicate that the actomyosin inter-
action in vivo is accelerated when it is sliding. Thus, func-
tions such as muscle contraction and cell division take
place in a highly cooperative manner. It is reasonable that
the actomyosin contractile system is constructed to perform
its function very efficiently. The velocity-dependent associ-
ation found in this study may be a key feature for coordi-
nating the performance of multiple myosin molecules
through a single actin filament in the hierarchical structure
of muscle and other actomyosin systems.
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