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Identification of Minimally Interacting Modules in an Intrinsically
Disordered Protein
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ABSTRACT The conformational characterization of intrinsically disordered proteins (IDPs) is complicated by their conforma-
tional heterogeneity and flexibility. If an IDP could somehow be divided into smaller fragments and reconstructed later, theoret-
ical and spectroscopic studies could probe its conformational variability in detail. Here, we used replica molecular-dynamics
simulations and network theory to explore whether such a divide-and-conquer strategy is feasible for a-synuclein, a prototypical
IDP. We characterized the conformational variability of a-synuclein by conducting >100 unbiased all-atom molecular-dynamics
simulations, for a total of >10 ms of trajectories. In these simulations, a-synuclein formed a heterogeneous ensemble of
collapsed coil states in an aqueous environment. These states were stabilized by heterogeneous contacts between sequentially
distant regions. We find that a-synuclein contains residual secondary structures in the collapsed states, and the heterogeneity
in the collapsed state makes it feasible to split a-synuclein into sequentially contiguous minimally interacting fragments. This
study reveals previously unknown characteristics of a-synuclein and provides a new (to our knowledge) approach for studying
other IDPs.
INTRODUCTION
Intrinsically disordered proteins (IDPs) are a class of
proteins that lack ordered structure under physiological
conditions and exist in a heterogeneous ensemble of confor-
mations (1–3). IDPs are more abundant in higher organisms
and are estimated to comprise large regions (>50 residues)
in ~30% of all eukaryotic proteins (4,5). IDPs are functional
even in the absence of a well-defined three-dimensional
structure, which challenges the long-held belief that the func-
tion of a protein depends on its unique folded structure (6).
IDPs are associatedwith a large number of cellular functions,
including, but not limited to, transcription, translation, signal
transduction, and the regulation of protein assembly (7).
However, the disordered nature of the conformational
ensemble of IDPs makes them particularly susceptible to
oligomerization and amyloidogenesis (8).

The heterogeneous nature of the conformational land-
scape of IDPs has been proposed to play an important role
in their binding to multiple targets and self-aggregation
(9). Unlike the energy landscape of a globular protein that
has a few stable energetic minima, the energy landscape
of an IDP is either weakly funneled or composed of a fuzzy
landscape (6,10). In the weakly funneled model, a weakly
stabilized conformation becomes more stable upon binding
to a target protein or surface (11). In contrast, the fuzzy
landscape model predicts that an IDP does not need to
fold, even in its functional form. Signaling proteins that
employ multivalent binding provide examples of intrinsi-
cally disordered regions that use both a fuzzy landscape
and a weakly funneled landscape within the same protein.
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The motifs on signaling proteins gain structure only after
binding to their partner, whereas the linker regions connect-
ing these motifs function as entropic chains increasing the
intramolecular concentration of multivalent binding
(12,13). It is imperative, therefore, to develop experimental
and theoretical methods to characterize IDPs at high
temporal and spatial resolutions (14,15).

In this study, we consider human a-synuclein, a 140-
residue prototypical IDP, using all-atommolecular-dynamics
(MD) simulations in explicit water. Despite a large amount of
previous work, the nature of its conformational variability in
an aqueous environment and its function remain unknown.
Parkinson’s disease is associated with b-stranded aggregates
of a-synuclein (16,17) and is diagnosed postmortem by the
presence of Lewy bodies in neurons. a-Synuclein consists
of three regions: the N-terminal region (residues 1–60), the
hydrophobic nonamyloid b component (NAC) region (resi-
dues 61–95), and the highly acidic proline-rich C-terminal
region (residues 96–140). NMR and electron paramagnetic
resonance (EPR) studies show that a-synuclein has very
low residual secondary structure (18), even though it is
more compact than an ideal polymer in water (19,20).
Single-molecule atomic force microscopy combined with
Forster resonance energy transfer (FRET) shows that a-syn-
uclein exists in an ensemble of different conformations
(21). a-Synuclein forms either an ordered helix-turn-helix
structure or an elongated a-helix with a disordered
C-terminal tail upon binding to phospholipids (22–24).

It has been well established that MD simulations are
suited to study the conformational landscape of proteins
on the submicrosecond timescale (25,26). However, IDPs
present a challenge to MD simulations. First, efficient
sampling of the phase space of an IDP requires a huge
amount of computational resources. Second, the empirical
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force fields used in MD simulations have been tested on the
dynamics of globular proteins and may contain secondary
structure bias (27,28). As a result, MD simulations must
be rigorously compared against experimental data (26).
Generalized ensemble methods, such as replica-exchange
MD simulations, were developed to sample relevant phase
space efficiently without getting trapped in local minima
(29–31). However, all-atom representations based on these
methods can only be used to study relatively small proteins
in an aqueous environment.

In this work, we developed a strategy by combining MD
simulations and network theory to fragment moderately
sized IDPs into more tractable peptide fragments. We were
motivated to fragment IDPs such as a-synuclein for several
reasons: smaller fragmented IDPs are easier to characterize
both experimentally (e.g., vibrational spectroscopy) and
computationally because most IDPs are moderately large in
size. Furthermore, by reconstituting the conformational vari-
ability of these fragments back to extract the conformational
distribution of the full protein, we should be able to gain new
insights into the disorder-to-order transition exhibited by
IDPs upon binding to their target proteins. In addition, it is
more challenging to express and purify larger IDPs due to
the formation of insoluble inclusion bodies. Therefore, if
a divide-and-conquer approach can be devised, then smaller
fragments of IDPs can be generated from chemical synthesis.
Recently, Ullman et al. (32) reported a similar method that
enumerates the conformational ensemble of an IDP from
conformation of the fragments using the divide-and-conquer
approach. We propose a complementary approach that can
fragment an IDP based on minimally interacting modules.
METHODS

The initial conformations for the partially helical simulation were chosen

based on a 350-ns all-atom MD simulation starting with the NMR structure

(PDB 1XQ8 (22); Fig. S1 in the Supporting Material). In addition, we also

started simulations from the extended helix conformation, which is stable in

a lipid environment. The initial conformations for the random simulations

were generated using the random coil generator (33) (Fig. S2). The protein

was placed in explicit solvent and 150 mM NaCl concentration in all of the

simulations. All simulations were performed using the NPT ensemble with

the OPLS-AA force field (34,35) in GROMACS (36). The OPLS-AA force

field was used for all our simulation because the percentage helicity was

consistent with circular dichroism (CD) measurements of a-synuclein

(Fig. S3). The radius of gyration (Rg) and secondary structure was calcu-

lated using the GROMACS analysis suite. In the network, a node represents

a residue, and edges represent contacts between the residues. Two residues

are said to be in contact if any heavy atoms (nonhydrogen) from the two

monomers are within 4.5 Å of each other in any of the compact states.

We identified the community structure in the network using the Girvan-

Newman algorithm (37). Additional details on the method and parameters

are provided in the Supporting Material.

TABLE 1 Types of simulations performed in this study

Initial conformation Number of simulations Time

Helix turn helix One 350 ns

Partially helical 10 conformations � 5 ¼ 50 100 ns each

Random 50 100 ns each
RESULTS

It remains challenging to characterize the heterogeneous
conformations of IDPs at atomistic resolution (19,26). We
performed >100 MD simulations of monomeric a-synu-
clein starting with different initial conditions for 100 ns
each. These simulations differed in the initial configurations
and/or initial velocities, and can be divided into two sets as
shown in Table 1. Additionally, we considered a few very
long simulations (350 ns) that were started from the known
NMR structure.

We performed a 350-ns simulation starting from the
NMR structure of a-synuclein (22) to study conformations
of a-synuclein that are likely to be present in a lipophilic
environment. We chose eight diverse conformations from
this simulation and started five simulations from each of
these conformations (Fig. S1). In addition, we also started
another five simulations each from the helix-turn-helix
NMR structure and the extended helix conformation of
a-synuclein, which is stable in a lipid environment
(23,24). This set of 50 simulations is labeled ‘‘partially
helical’’ to emphasize that the protein has varying degrees
of helical content in these simulations. In addition, we
also started a second set of 50 simulations from diverse
random coil conformations (labeled ‘‘random’’; Fig. S2).
These 100 MD simulations were run for 100 ns each to
produce a total of 10 ms of simulation trajectories.
Compact states of a-synuclein in water

All simulations led to the collapse of a-synuclein into
a stable compact state. The collapse of a-synuclein corre-
sponds to the fast timescale decay (Fig. S4, A and B) in
the Rg, whereas the conformational rearrangements within
the collapsed state led to fluctuations in Rg of the collapsed
states (Fig. 1). These compact states were stable up to
hundreds of nanoseconds, as is evident from the longest
simulation (350 ns; Fig. S4 C). The Rg-values of these
partially collapsed states are in the range of 16–30 Å, with
a mean of 21.1 Å. This corresponds to a hydrodynamic
radius of 27.4 Å, assuming that a-synuclein is partially
collapsed and the ratio of the Rg to the hydrodynamic radius
is close to that of globular proteins (0.77) (38). a-Synuclein
is more compact compared with the Rg expected for a self-
avoiding polypeptide chain of the same size (41.9 Å) (19).
This nonrandom chain-like behavior of a-synuclein is
consistent with experimental observations (19,20,39). The
measured hydrodynamic radius of a-synuclein in water is
26.6 5 0.5 Å and is comparable to the size of a-synuclein
observed in our simulations (20).

The distributions of the mean and standard deviation of
Rg of the various collapsed states are shown in Fig. 1, B
Biophysical Journal 103(4) 748–757



FIGURE 1 Early collapse of a-synuclein. (A) The mean Rg in the 100 simulations is shown as a function of time. (B and C) Histogram of the (B) average

and (C) standard deviation of the Rg of the protein from 50 to 100 ns in the 100 replicas.
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and C. The partially helical simulations tend to form slightly
smaller collapsed states compared with those from random
simulations. In most random simulations, the initial collapse
of a-synuclein fits to a single exponential decay in the Rg. In
addition, Fig. S4 shows that there is no significant change in
the Rg after the initial collapse. Some of these partially
collapsed states contain pores in the protein. In addition,
some of these partially collapsed states contain locally
extended regions in the protein.
Residual secondary structure content in
collapsed coil states

The average helicity of all 100 replica simulations isz9.7%
during the 50-ns interval from 50 to 100 ns. This is consis-
tent with CD measurements showing that the helical content
of a-synuclein is 5–10% at room temperature (40).
However, no significant secondary structure is observed in
the 50 replicas started with random initial conformations
(Fig. 2 A and Fig. S5). In a previous study (41), it was shown
FIGURE 2 (A and B) Probability of the residue displaying a particular second

partially helical simulations.
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that the secondary structure properties of a 13 amino acid
peptide converged only after 225 ns. Therefore, the
secondary structure properties of a-synuclein could not
have converged in these relatively short timescale MD simu-
lations. Regardless, the overall trend and propensities of
secondary structure obtained from the simulations are in
agreement with CD and NMR measurements, as shown
below.

Further characterization of residue-level helical propen-
sity was carried out in the 50 simulations in which the initial
configurations had varying levels of helical content. The
trends observed in these 50 simulations are similar to the
trends observed in all 100 simulations. Even though
predominantly random coils are seen after the first 10 ns,
consistent with experiments (18), the N-terminal region
displays a higher propensity to form transient a-helices
(Fig. 2 B and Fig. S5). In particular, residues 1–25 are
implicated in seeding the interaction of a-synuclein to
sodium dodecyl sulfate (SDS) and phospholipids during
the formation of the helix-turn-helix and extended helix
ary structure in 50 replicas starting from (A) random conformations and (B)
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conformations (42,43), and residues 31–55 have been
proposed to have high affinity for lipid vesicles (43). In
similarity to previous simulations of a-synuclein interacting
with SDS micelles (44), residues 1–25 and 31–55 display
some of the strongest propensities to form helical regions
in water, and the helices do not shift during the timescales
of our simulations (Fig. S6 and Fig. S7).

Consistent with NMR results (18), the NAC and
C-terminal tail exhibit a slight tendency to form b-bridges
and are mostly found in a coiled state. Some of the strongest
strands and bridges are formed between residues 80 and
130. At least part of the region that forms b-sheets in
oligomeric fibrils of a-synuclein (residues 35–100) (45)
also shows a tendency to form b-strands when monomeric
a-synuclein is present in an aqueous environment. The
propensity toward transient b-strands in the C-terminal tail
was slightly higher in the simulations that considered initial
configurations with varying levels of helical content (Fig. 2).
This weak correlation between the formation of b-strands
and the presence of helical content between residues 40
and 90 supports recent observations of a helical intermediate
in 2,2,2-trifluoroethanol (TFE)-induced a-synuclein aggre-
gation into b-stranded fibrils (46), and helix-helix interac-
tions leading to b-sheet formation and propagation (47).
The trends observed in the long-timescale simulations
(350 ns) were similar to those seen in the 100 replica simu-
lations (Fig. S8 and Fig. S9).
Heterogeneous ensemble of collapsed coil states

Even though a-synuclein forms compact states of similar
size during different simulations, it still exhibits a heteroge-
neous distribution of conformations. In a typical IDP, one
would expect internal contacts to be formed and broken at
random, resulting in a large standard deviation in distance
between residues. We found that a-synuclein was trapped
in local energy minima for >50 ns in all 100 replica
simulations. To determine whether the minima observed
in all 100 simulations were the same, we calculated the
average distance and standard deviation of distance
FIGURE 3 Tertiary contacts in a-synuclein. (A) Average distance and (B) stan

state of all 100 simulations. (C) Probability distribution of the distance between
between the heavy atoms of different residues in each
compact state.

The resulting distance matrix over a combined trajectory
is shown in Fig. 3, A and B. We prepared the combined
trajectory by concatenating the final 50 ns of all 100
100-ns MD simulations. During this time period, the protein
is compact in each of these simulations. If the same contacts
had formed in all of the simulations, the distance between
the residues in these contacts would be small in all of the
simulations. Hence, the mean distance and standard devia-
tion of distance between these residues in the combined
trajectory would also be small. However, there are no
contacts between sequentially distant regions of the protein
that are common to all the compact states formed in these
simulations (Fig. 3 A). Consistent with this, most of the
sequentially nonlocal regions that were structurally close
in any of the simulations display large deviations in distance
(Fig. 3 B). A cluster analysis of the combined trajectory also
displays a similar trend, because only a few clusters are
common to distinct replicates (Fig. S10). Thus, the compact
states formed in the different simulations consist of a hetero-
geneous ensemble of conformations. The long-timescale
simulation of a-synuclein confirms that the tertiary contacts
are long-lived (Fig. S11). This justifies our decision to
consider many short simulations rather than one long simu-
lation to explore the phase space of a-synuclein efficiently.

Ferreon and co-workers (24) introduced FRET labels on
residues 7 and 84 of a-synuclein and observed a wide range
of FRET efficiencies between these two residues in an
aqueous environment. In other words, the distance between
these two residues displays a broad distribution. In wild-
type human a-synuclein, glycines are present in these two
positions. We plot the probability distribution of the distance
between these two residues in the replicas in Fig. 3 C.
Consistent with the FRET data, the simulation data show
a broad range of distances between the two residues in
the compact states, with an average distance of 33.2 Å.
Although the protein is compact in our simulations, the
distance between residues far off in sequence can display
a broad range of distances.
dard deviation of distance between residues in a-synuclein in the collapsed

the Ca atoms of Gly-7 and Gly-84 in the random MD simulations.
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FIGURE 4 Network analysis. The nodes and edges in a-synuclein are

colored according to the community to which they belong. The nine

communities of a-synuclein in the combined trajectory are shown in red

(residues 1–14), cyan (residues 15–31), tan (residues 32–42), green

(residues 43–55), black (residues 56–68), yellow (residues 69–86), silver

(residues 87–105), orange (residues 106–123), and pink (residues 124–

140). Intercommunity edges are shown in blue.
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Fragmentation based on network theory

Here, we implement a network-based approach that can be
used to optimally identify minimally interacting fragments
of a-synuclein. The physical basis for the module bound-
aries in our approach relies on the observation that residues
that are not in contact exert the least influence on each
other’s conformation. In globular proteins, residues in the
same domain have a larger density of contacts compared
with residues belonging to different domains. Also, some
of the individual domains of a multidomain protein are
capable of folding and functioning independently of each
other. Therefore, we assume that the conformation of any
residue within a module is highly dependent on other resi-
dues within the same module.

We build this network based on trajectories from MD
simulations. In the network, a node represents a residue in
the protein, and an edge represents a contact between two
residues. The edges are weighted by the frequency of
contacts in our simulations (see Materials and Methods).
Then, a community analysis of this network generated
from MD simulations is used to identify the fragments
that influence each other the least in the full-length a-synu-
clein. Nodes within a community are densely connected,
and relatively fewer edges connect nodes in different
communities. In other words, residues occurring in different
communities are expected to have the least effect on each
other’s motions and conformations. The communities can
contain residues that are spatially close in a majority of
the simulations (see Fig. S12) but not close in sequence.

Analysis from the previous section (Heterogeneous
ensemble of collapsed coil states) showed that a-synuclein
is composed of a heterogeneous ensemble of compact states
that are stabilized by tertiary contacts. Therefore, we per-
formed a community analysis on the network formed by
the combined trajectory of all 100 compact states. This
ensures that the contact network is an approximate represen-
tation of the IDP’s ensemble of conformations. The commu-
nity analysis produced nine communities (Fig. 4). These
fragments should minimally affect each other’s conforma-
tions in the full-length protein on average. These communi-
ties are all contiguous in sequence, as only sequentially
local contacts are formed in a majority of the compact
states.

The beginning of the NAC region (residues 61–68) is in
the same community as the end of the N-terminal region
(residues 56–60). Similarly, the beginning of the C-terminal
region (residues 96–105) and the end of the NAC region
(residues 87–95) are in the same community. In other words,
the conformations displayed by the NAC region in full-
length a-synuclein are dependent on the conformation of
certain regions in the N- and C-terminal regions. This
implies that fragmenting a-synuclein into the N-terminal,
NAC, and C-terminal regions may not be fruitful. Thus,
the heterogeneous nature of a-synuclein collapsed states
Biophysical Journal 103(4) 748–757
allows us to split the protein into fragments regardless of
whether it is collapsed or not.

We evaluated the convergence of the communities by
considering the network analysis on trajectories derived
by the combination of six different sets of 50 simulations.
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To prepare these trajectories, we split the 50 random and 50
partially helical simulations into two sets of 25 simulations
each. We prepared six trajectories by combining any two
sets of simulations from the original four sets of simulations.
The community analyses based on five of these trajectories
are very similar to the communities presented in Fig. 4. In
the network analysis of the 50 partially helical simulations,
one of the communities is formed by a combination of
residues in the N-terminal helix and the C-terminal helix
due to persistent contacts between these regions in these
simulations (Fig. 5 and Fig. S11). The community analysis
was also performed on the network derived from the four
FIGURE 5 Robustness of modules. This community distribution in two

of the 10 test cases contains modules with sequentially distant regions.
sets of 25 simulations. The community analyses in three
of the four combined trajectories are similar to the commu-
nities derived from the 100 simulations. This indicates that
the network analysis of a-synuclein converges in 25 or 50
simulations unless certain contacts are persistent in these
sets of simulations.

We also performed a network analysis with contacts that
persisted for 1–75% of the frames in the combined trajectory
(Fig. S13). Regardless of the chosen cutoff for contacts, the
results are similar, with sequentially contiguous residues
forming communities. This is because in the absence of
persistent nonlocal contacts, the local contacts dominate
over the nonlocal contacts, and the modules are formed by
contiguous segments of the protein. Transient nonlocal
contacts can be formed when the conformation of the full-
length IDP is built from parts of the protein, and such
contacts may be important for the function of IDP or to
inhibit aggregation (32).
Verification of the proposed modularity
of a-synuclein

We carried out three independent tests to verify the modu-
larity ofa-synuclein with a frequency cutoff of 50% to define
an edge in the network (Fig. 6). The first test verified that
residues within amodule have a higher probability of contact
with other residues from the samemodule. The mean contact
probability of residues (all pairs) within a community is 0.28,
whereas the mean contact probability of residues belonging
to different communities is 0.01. In other words, any two
residues within a module have a much higher probability
of being in contact during our simulations than residues
belonging to two different communities.

Second, we measured the mutual information between all
pairs of torsion angles in a-synuclein to verify that there
FIGURE 6 Modularity of protein. The average probability of contact

between any two residuesbelonging to the sameordifferentmodules is plotted.
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were no correlated motions between residues from two
different modules. We also carried out a control study on
a folded protein for comparison. For a globular protein,
we show that regions with high density of contacts are corre-
lated to one another (Fig. S14 A). Thus, we confirm that
residues in a community of a globular protein are highly
correlated to one another (48). Here, we show that the
motions of residues in different communities of a-synuclein
are not correlated to one another (Fig. S14 B).

Interestingly, the mutual information analysis shows that
a-synuclein behaves similarly to a self-avoiding polymer
chain model. We find that the size of a-synuclein is smaller
than the mean Rg of a self-avoiding polymer in good solvent
(Rg ¼ 41 Å), indicating that a-synuclein behaves like a self-
avoiding polymer in a poor solvent (Rg ¼ 20 Å) (49). For
ideal polymers, such as a random flight chain, the contact
probability of two residues depends on the sequence separa-
tion between the two residues (50). When such a polymer
collapses, the conformational space available to each
residue in the protein decreases, leading to an increase in
the probability of contacts between residues. In such a poly-
mer, we should be able to split the protein into sequentially
contiguous modules that are nearly independent of one
another. However, it is difficult to predict the junctions of
these modules without such a network analysis formulation.

Finally, we solidified our assertion by measuring the
modularity of the network. This analysis assesses whether
the network is highly modular in nature. Modularity is the
fraction of edges for each node that fall within the commu-
nity to which it belongs minus the fraction that would be
expected if the edges were distributed randomly (37). It is
positive if the number of edges within communities exceeds
the number expected on the basis of chance. The modularity
of networks constructed for real-world problems, such as
communities in social networks and authorship networks,
lies in the range of 0.4–0.7 (37). The modularity for
the contact network of a-synuclein is 0.83, indicating that
this network is highly modular in nature. This indicates
that there are very few strong contacts between residues
belonging to different communities.
DISCUSSION

Despite the use of both experimental and simulation
approaches, the atomistic details of the conformational vari-
ability of an IDP remain elusive. The unstructured flexible
regions of an IDP, which play an important role in its func-
tion, present a challenge because they are influenced by
properties such as temperature, pH, ionic strength, and
solvent. It is challenging to achieve convergence in simula-
tions of a large IDP such as a-synuclein from a single or
a few long-timescale simulations (51). However, the proba-
bility of converging to the experimental ensemble is more
likely with many short simulations (19). Therefore, it is
critical to compare both the local and global properties of
Biophysical Journal 103(4) 748–757
many shorter-timescale simulations with the corresponding
properties measured experimentally. Such a comparison
may indicate whether the ensembles generated computa-
tionally are similar to the true ensemble. It is still possible
that we may not have a proper ensemble when we group
many short-timescale simulations with equal weight. Given
experimental data, one could use Bayesian statistics to
calculate the relative population (or weights) of different
states that are most consistent with experimental data, as
shown in a recent study (32).

We find that a-synuclein adopts a heterogeneous
ensemble of collapsed coil states, as suggested by many
experimental studies (16–19,52–54). These collapsed states
are stable up to hundreds of nanoseconds in our simulations.
The Rg-values of the different collapsed coil states converge
in different simulations and are very similar (z16–30 Å) at
room temperature. The sizes of these collapsed states are
comparable to the experimentally measured hydrodynamic
radius of a-synuclein (26.6 5 0.5Å) (20).

An interesting question is whether a-synuclein is able to
preserve any stable secondary structural features when it
attains a collapsed coil state in such a rapid manner.
Although the secondary structure content does not converge
in different 100-ns simulations, the average of all 100 simu-
lations matches the corresponding measured quantities. We
find that the protein forms z10% helical content, as
observed in CD (40), Raman (55), and infrared measure-
ments (56). Consistent with NMR experiments (18), the
N-terminal half of the protein displays a propensity to
form a a-helical structure in the simulations. In addition,
the C-terminal tail of monomeric a-synuclein forms tran-
sient b-strands in the presence of a-helices in the N-terminal
half of the protein in these simulations. These b-strands are
formed in regions that overlap with the regions that form b-
strands in fibrils of a-synuclein (45).

The all-atom MD simulations also capture the formation
of heterogeneous collapsed states that are stabilized by
tertiary contacts between distant regions of the protein.
Consistent with paramagnetic and residual dipolar coupling
studies using NMR (19,54,57) and FRET measurements
(39,53), some of these collapsed states are stabilized by
heterogeneous contacts between the N- and C-terminal
regions. However, most of the contacts are heterogeneous
(58). Even though the nature of the stable compact state
from different simulations depends on the initial configura-
tion, we do not observe any interchange between different
compact states during the timescales of these simulations.

Importantly, our network analysis shows that even in
cases where an IDP forms heterogeneous collapsed states,
there are modules that collapse independently of one
another. We show that the modules identified using just 25
or 50 simulations are similar to those identified using all
100 simulations. One of the predictions of our method is
that residues in a-synuclein that affect each other are
sequentially contiguous. This is consistent with previous
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nuclear Overhauser effect measurements by NMR showed
that only residues up to i5 6 occur close in space to residue
i of a-synuclein in both lipid-free and lipid-associated states
(59). Also, the length of these effects (up to 12 neighbors
affecting the conformation of a central residue) is coinciden-
tally similar to the length of our modules (13–20 residues).
Another prediction for three different modules spanning the
NAC region conforms to independent secondary structure
motifs identified by NMR (60). According to Bisaglia
et al. (60), a long peptide fragment from a-synuclein (resi-
dues 57–102) forms three helices with no tertiary interac-
tions between the helices in the presence of SDS. The
helices are formed at residues 58–63 (community 3), 70–
80 (community 4), and 88–92 (community 5), and there
are no tertiary contacts between the helices. Each helix in
this fragment falls within a different community, consistent
with our analysis.
CONCLUSION

Our computational study provides insight into the random
coil state of a-synuclein. This random coil state has often
been misinterpreted as an exclusive ensemble of extended
conformations with no distinct secondary structural
features. However, our simulations show that the random
coil state of a-synuclein could also represent an ensemble
of compact collapsed conformations. These compact
collapsed states contain residual secondary structures that
are inherent to its sequence. Specifically, we observe that
the C-terminal tail transiently forms b-strands in the pres-
ence of a-helices in the NAC region. The b-strands formed
in monomeric a-synuclein could seed the formation of
fibrils in oligomers. On the basis of our simulations, it is
reasonable to consider the random coil state of a-synuclein
to be an ensemble of conformations that includes both
collapsed and extended states. Importantly, we show that
it is possible to fragment such a heterogeneous collapsed
state of a-synuclein into sequentially contiguous peptide
fragments for further detailed characterizations. We carried
out three independent tests to verify the proposed modu-
larity of a-synuclein; however, we believe that heteronu-
clear single quantum coherence NMR experiments on
fused and unfused modules can unequivocally confirm our
predictions.
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