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ABSTRACT Based upon an extensive single-channel data set, a Markov model for types I and II inositol trisphosphate recep-
tors (IP3R) is developed. The model aims to represent accurately the kinetics of both receptor types of IP3R depending on the
concentrations of inositol trisphosphate (IP3), adenosine trisphosphate (ATP), and intracellular calcium (Ca2þ). In particular, the
model takes into account that for some combinations of ligands the IP3R switches between extended periods of inactivity alter-
nating with intervals of bursting activity (mode changes). In a first step, the inactive and active modes are modeled separately. It
is found that, within modes, both receptor types are ligand-independent. In a second step, the submodels are connected by
transition rates. Ligand-dependent regulation of the channel activity is achieved by modulating these transitions between active
and inactive modes. As a result, a compact representation of the IP3R is obtained that accurately captures stochastic single-
channel dynamics including mode changes in a model with six states and 10 rate constants, only two of which are ligand-
dependent.
INTRODUCTION
The inositol trisphosphate receptor (IP3R) is an ion channel
that releases calcium (Ca2þ) from intracellular stores upon
activation by inositol trisphosphate (IP3). This is essential
for initiating and sustaining calcium oscillations in the
cytosol, a most important signaling system that is respon-
sible for various cell functions. Recently, it has been shown
by Ionescu et al. (1) that the inositol trisphosphate receptor
exhibits mode changes: rather than continuously adjust-
ing its activity, the average open probability ðPOÞ jumps
between different activity levels even when ligand concen-
trations are kept constant. To the best of our knowledge,
mode changes have been analyzed only qualitatively, and
no quantitative model based on experimental data is yet
available.

Only kinetic models that accurately represent the
stochastic behavior of single IP3R channels depending on
various ligands such as inositol trisphosphate, adenosine tri-
sphosphate (ATP), and cytosolic calcium allow investigation
of spatiotemporal phenomena such as the spatial transmis-
sion of calcium signals within and between cells by calcium
waves. If IP3Rs are mainly regulated by mode switching, as
suggested by Ionescu et al. (1), the initiation of waves by
stochastic local calcium release from a single or a few
IP3Rs may be possible at relatively low average open prob-
abilities: In fact, as can be seen in the sample data set shown
in Fig. 1 a, even when PO is as low as half of its maximum,
the channel can exhibit high levels of activity for extended
periods of time. Calcium released during such bursting
events may be enough to trigger activation of neighboring
IP3Rs due to the local elevation of calcium concentration,
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which in turn may initiate a calcium wave. Questions like
this, which depend on a quantitatively accurate representa-
tion of the stochastic spatiotemporal dynamics of a cluster
of IP3Rs, cannot be answered by simple qualitative inter-
pretation of single-channel data—a quantitative model is
required.

A general difficulty of representing mode switching in a
quantitative model is that even in data collected over an
extended period of time, only few mode changes may occur.
Thus, direct fitting of raw single-channel data is unlikely
to capture the instantaneous transitions between different
levels of activity. For this reason, in previous studies modes
were modeled separately (2). Although this leads to accurate
models of the kinetics within modes, representing the
dynamics of mode switching requires an appropriate combi-
nation of these models.

In this work, we aim to represent IP3R kinetics including
mode changes in a continuous-time Markov chain model.
Similar to Gin et al. (2), we derive our model by statistical
analysis of an extensive single-channel data set (3). Our
study is—to the best of our knowledge—the first attempt
to model ligand-dependent regulation of both type I and
type II IP3Rs by IP3, ATP, and Ca2þ. To overcome the diffi-
culties mentioned above with including mode changes in
a quantitative model we follow a hierarchical approach. In
the first step, we study average channel activity estimated
by moving averages. It is found that the channel jumps
between low activity, characterized by an average proba-
bility close to zero, and high activity, with an open proba-
bility of ~70%. These two levels of activity can be
observed in data sets collected at various ligand concentra-
tions and in both type I and type II IP3Rs.

While Ionescu et al. (1) saw ligand-independent levels
of activity, we also fit segments, exhibiting high and low
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FIGURE 1 Identifying segments of similar ac-

tivity by moving averages. (a) Data set collected

from type II IP3R at 10 mM IP3, 5 mM ATP, and

50 nM Ca2þ. (b) Approximation of average open

probabilities by moving averages reveals two

levels of activity. (c and d) Kinetics of character-

istic segments of low activity (c) and high activity

(d) were studied in more detail by Markov models.
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channel activity, to Markov models using an improved
version of the algorithm published recently by Siekmann
et al. (4) (see Section 1.4 in the Supporting Material).
This method is based upon Markov chain Monte Carlo
(MCMC), an approach that calculates probability distribu-
tions for all model parameters rather than, for example,
the maximum-likelihood estimators (MLEs) that are
common in more traditional algorithms (5–7). Thus, it can
be assessed more confidently how well a model captures
the experimental data; in particular, over-parameterized
models are detected more easily (I. Siekmann, E. J. Cram-
pin, and J. Sneyd, unpublished). The results obtained at
this stage are very similar across all ligand concentrations,
which indicates that the two levels of activity have ligand-
independent kinetics.

Average open probability is a relatively coarse descrip-
tion of a data set that gives a rough idea of the average
channel activity. A medium average open probability can
emerge due to long open and closed intervals of similar
length or to frequent short openings and closings, i.e., data
sets with the same average level of activity may have very
different kinetics. Therefore, we propose a more constrained
definition of modes of an ion channel: A mode must exhibit
not only the same average open probability but also the
same kinetic behavior, at least approximately. According
to this definition we have found two different modes. In
analogy to the automatic gear change found in cars, we
will refer to these modes more suggestively as park (inac-
tive) and drive (highly active) modes.

Finally, the transitions between the modes are investi-
gated: The kinetic models for park and drive modes are con-
nected with transition rates that account for mode switching.
Although the mode-specific submodels were inferred from
segments, complete traces collected at certain ligand
Biophysical Journal 103(4) 658–668
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concentrations are used to fit the two additional rates. Thus,
we obtain a model for modal gating where a ligand-depen-
dent mode change (transition rates) switches between the
ligand-independent park and drive modes. It is expected
that the simple approach described here can be successfully
applied to other ion channels exhibiting mode changes.
d

FIGURE 2 Models used for representing park- and drive-mode kinetics.
METHODS

Experiments

Single IP3R potassium currents were measured in the on-nucleus patch-

clamp configuration using PClamp 9 and an Axopatch 200B amplifier

(Molecular Devices, Sunnydale, California). Pipette solution contained

140 mM KCl and 10 mM HEPES, with varying concentrations of IP3,

ATP, BAPTA, and free Ca2þ. Free-calcium concentrations were calcu-

lated using Max Chelator freeware and verified fluorometrically. Traces

were consecutive 3-s sweeps recorded at �100 mV, sampled at 20

kHz, and filtered at 5 kHz. A minimum of 15 s of recordings was consid-

ered for data analyses. Pipette resistances were typically 20 MOhm and

seal resistances were >5 GU. Details can be found in Wagner and

Yule (3).
Segmentation

In this first step of our analysis, different levels of activity (quantified by

different levels of average open probability, PO, calculated for a segment

of an experimental trace) were identified in data sets collected at different

ligand concentrations. At each data point i, an estimate of the average open

probability, bPOðiÞ, was obtained by a moving average with a given window

size of w data points (see Eq. A1 in the Supporting Material). Varying the

window w over a wide range from 200 to 1000 data points did not change

the activity levels that were found. Results for selected type II IP3R data sets

are shown in Fig. S1. For the two different levels of PO (low activity, close

to zero; high activity, ~70%) that were found, representative segments were

selected for further analysis. The process of selecting segments based upon

the level of channel activity is shown in Fig. 1.

At this stage, no attempt is made for optimizing the localization of the

change points; the main aim is to identify the activity levels present in

the traces.
Submodels for modes

In this second step, representative data segments for high and low levels of

activity were analyzed in more detail. Kinetics characteristic of a certain

level of activity were investigated by Markov models. Segments represen-

tative for each of the distinct average open probabilities, PO, were fitted to

Markov models with different numbers of open and closed states.

Starting from a model with one open and one closed state (Fig. 2 a), the

number of states was extended until the likelihood of a more complex

model was not improved in comparison to models with fewer states

(Fig. 2, b–d). Also, if stationary probabilities of additional states were

very low, this was taken as evidence that a model with fewer states was

sufficient.

Examples for results are shown in Section 2 of the Supporting Material.

For both type I and type II IP3Rs, the best model for the nearly inactive

park mode had one open and one closed state (Fig. 2 a), whereas the best

representation for the active drive mode was a model with one open and

three closed states (Fig. 2 c). To determine whether the kinetics depends

on ligands, models obtained for segments showing the same average

open probability, PO, but taken from data sets collected at different ligand

concentrations were compared (see Section 2.3 of the Supporting Material

and Fig. S4).
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All fits were performed using an improved version of the Markov chain

Monte Carlo algorithm by Siekmann et al. (4). Thus, the results of these fits

are not point estimates but a set of samples for each of the rate constants.

These samples represent the probability distribution of the parameters,

the so-called posterior distribution, which can be visualized by histograms

(Fig. S2 and Fig. S3). By the posterior distribution (a concept from

Bayesian statistics; see Siekmann et al. (4)), probabilities are assigned to

a range of possible values for the rate constants instead of singling out

a best estimate. This approach extracts more information from data and

gives a better idea of parameter uncertainty than do traditional approaches

like maximum likelihood estimators (MLEs). Nevertheless, statistical quan-

tities like MLEs, mean values, and standard deviations can be calculated

from these probability distributions. In Table S2, we have summarized

mean values and standard deviations for the rate constants of both modes

of both receptor types.
Model for modal gating

In the third step, kinetics of complete experimental traces were modeled.

For this purpose, the kinetic models for park and drive modes obtained

previously were connected by transition rates. The underlying assumption

is that at each point of the experimental trace the IP3R is either in the

park or the drive mode, and that an accurate model of the complete trace

can be achieved by representing the transitions between these modes.

Fig. 3 illustrates in a diagram how submodels for park and drive modes

are obtained from segments of data. To determine the transition rates, a

complete experimental trace from one representative cell for a given combi-

nation of ligands was used for fitting.

Samples for the transition rates were generated by the following

algorithm:

1. First, the submodels are initialized with a random sample from the poste-

rior probability distributions for park and drive modes, which have been

calculated previously (see Fig. S2 and Fig. S3 for examples of type II

IP3R results).

2. The transition rates are sampled using an improved version of the algo-

rithm by Siekmann et al. (4) (see Section 1.4 in the Supporting Material

(and I. Siekmann, E. J. Crampin, and J. Sneyd, unpublished)) while the

other rates are kept constant. The algorithm is run long enough that

convergence is ensured (for the data sets used for this study, usually

between 3000 and 5000 iterations).

3. The last values for the transition rates, together with the rates of the two

submodels, are chosen as a sample of the probability distribution for the

combined model for modal gating (Fig. 3 c).

4. This process is repeated with different rate constants drawn from

the probability distributions for park and drive modes until a sufficient

number of samples is obtained (we usually generated 200 samples).



FIGURE 3 Kinetics of segments characteristic of the drive mode (a) and the park mode (b) were studied by Markov models. By comparing fits of models

with different numbers of open and closed states and different topologies to segments from data sets at different ligand concentrations, it was found that the

drive modewas best represented by a model with one open and three closed states (c, upper), whereas the best model for the park modewas a simple two-state

model with one open and one closed state (c, lower). Interestingly, the rate constants obtained from these fits were very similar across a wide range of ligand

concentrations, indicating that the kinetics of the channel within modes is independent of ligand concentration (see Fig. S4). The models for park and drive

modes were connected by transition rates that were determined by fits to complete traces (d). The rate constants for the models representing park and drive

modes were drawn from the probability distributions calculated from the previous fits. The transition rates q24 and q42 were sampled as described in more

detail in the main text. Thus, probability distributions for all rate constants in c were calculated.
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RESULTS AND DISCUSSION

Mode changes in the IP3R

A data set collected from type II IP3R at 10 mM IP3, and
50 M Ca2þ clearly shows two different levels of activity
(Fig. 1 a). Although the channel is mostly closed in the first
part of the trace and opens only for short times at about tz
47 s, the receptor seems to switch to a different mode, in
which its behavior is characterized by frequent openings, in-
terrupted by only short closed intervals.

This behavior is even more obvious if we take a look at
the time series of estimated average open probabilities,bPOðiÞ (see Fig. S1 b). Initially, the estimated average open
probability is nearly constantly zero, until it jumps to
~70% at t z 47 s. This clear separation of the trace into
segments of two different average open probabilities is
also exhibited at all other concentrations of cytosolic
calcium (Fig. S1). Since the channel switches instanta-
neously between about zero and ~70%, its overall activity
is determined by the proportion of time that the IP3R opens
with high average open probability. At low Ca2þ concentra-
tions, bPOðiÞ is close to zero most of the time, but even at this
low level of activity, quick transitions to PO z 70% can be
observed (Fig. S1 a). In contrast, at the two intermediate
calcium concentrations, 0.2 mM and 1 mM, the IP3R seems
to remain at POz 70% for most of the trace. In particular, at
0.2 mM there seem to be no transitions to the low level of PO

(see Fig. S1, c and d). At higher Ca2þ concentrations, the
channel switches frequently between both levels of PO

(Fig. S1, e and f).
These results are similar for both IP3R types and across

all combinations of ligand concentrations. This shows that
the overall activity of the IP3R is regulated by the proportion
of time the average open probability is at 70%.
Kinetics within segments

After segments characterized by high or low average open
probability were identified, the channel kinetics within these
segments was studied in more detail. Representative seg-
ments chosen from data sets obtained at different ligand
concentrations were fitted to Markov models. For segments
showing high channel activity, the best fit was obtained by
a model with one open and three closed states (Fig. 2 c),
whereas data showing low activity were represented best
by a two-state model consisting of one open and one closed
state (Fig. 2 a). These models were selected by starting with
the simplest model, Q11 (Fig. 2 a), to which open and closed
states were added. For segments with low activity, adding
either open or closed states did not improve the likelihood.
Biophysical Journal 103(4) 658–668
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Adding a second open state when fitting the data showing
high activity always led to a very low stationary probability
for this state; therefore, only models with one open state
were considered. Adding up to three more closed states
improved the likelihood, but adding a fourth closed state
again decreased the likelihood (see Table S1).

Comparing the results of these fits for calcium concentra-
tions in the physiological range (0.05 mM, 0.2 mMCa2þ, and
1 mM) suggests that the kinetics for both levels of activity is
independent of ligands. Fig. S4 shows that means and stan-
dard deviations for all rate constants are very similar, which
is also true for the histograms of the rate constants.

For other Ca2þconcentrations, results are inconclusive,
because the channel changes quickly between the two
modes (see Fig. S1, in particular Fig. S1 e). Therefore, the
segments that can be used for fitting are too short to lead
to reliable results. Thus, as the simplest hypothesis, we
assume that the kinetics is ligand-independent for both
levels of average open probability. This is consistent with
Ionescu et al. (1), who also found that kinetic parameters
like average open and closed times were similar across
different ligand concentrations. We conclude that the IP3R
has two ligand-independent modes, one of which shows
low activity (park mode), whereas the other shows a high
level of activity (drive mode).

In the Supporting Material, the means of the rate con-
stants for both models for both receptor types are listed in
Table S2. As an example, the type II IP3R results are shown
in Fig. S2 and Fig. S3.
Modal gating

Now, we aim to combine the submodels for park and drive
modes, which appropriately describe data segments with
low and high average open probabilities, with a model for
complete data sets. This is achieved by linking the submo-
dels for both modes with transition rates (i.e., the rate
constants q24 and q42 in Fig. 3 c). It was decided to introduce
only one pair of transition rates, because the data often
only show a relatively low number of discernible transitions
between park and drive modes. It is therefore unlikely that
more than two parameters can be fitted. We further assumed
that the transition rates should be between either two open
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or two closed states, because it seems not convincing that
the channel has to open or close when it makes a transition
to another mode. Since the open state O5 of the park model
(Fig. 3 c) has a very low stationary probability, it was decided
to place the link between two closed states. Otherwise, all
transitions between the modes had to go through O5, which
would increase the importance of this state. We considered
only the possibility of connecting state C2 with the closed
state C4 of the park mode—it is unlikely that the results
would be different when connecting C4 to C1 or C3.

When fitting the data to this model, we sometimes
observe divergence. According to the algorithm described
above (Model for modal gating), new initial values for the
rate constants q24 and q42 are chosen every 3000 iterations.
Although in most cases the samples for both rates are
distributed from 10�3 to 0.5 after just a few iterations, for
some initial conditions, the samples quickly increase and
it seems that they will not tend toward fixed values. In cases
like these, the sample obtained at the end of the respective
interval was omitted, because it is not representative for
the posterior distribution. A possible reason for this phe-
nomenon is that for some traces there is only a very low
number of mode transitions. For type I IP3Rs, at high IP3
and calcium concentrations that led to the highest level of
activity (i.e., at 5 mM ATP, 1 mM and 5 mM Ca2þ; at 100
mM ATP, 1 mM and 10 mM Ca2þ), the results were compro-
mised so much by divergence that no fit for the transition
rates could be obtained. For these data sets, the channel
seems to remain in drive mode during the whole trace.

After dropping samples that are damaged by divergence,
probability distributions are also obtained for the transition
rates q24 and q42; one example is given in Fig. 4.

Means and standard deviations of the fits for both types
of the IP3R are shown in Figs. 5 and 6. With these mean
values for transition rates and the ligand-independent rate
constants (Table S2), a model for modal gating is obtained
that can be used, for example, in dynamic models of calcium
oscillations.
Statistical analysis of the model

At this point we have finished the construction of our model.
It seems clear that the transition rates q24 and q42 are the key
008  0.0009  0.001  0.0011
1]

, σ=0.000154

FIGURE 4 Results for type II IP3R at 10 M IP3,

5 M ATP, and 50 M Ca2þ for the rates q24 and q42
linking the two modes (Fig. 3). These histograms

were obtained by a fit to one representative record

from one cell for a given combination of ligands.

Mean values, m, and standard deviations, s, of the

probability distributions are shown above the histo-

grams and indicated in the plot by asterisks and

arrows.
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FIGURE 5 Calcium regulation of the transition

rates q24 and q42 (Fig. 3) of type I IP3R for different

concentrations of IP3, ATP, and Ca
2þ. Mean values

and standard deviations of the transition rates were

calculated from histograms (see Fig. 4 for an

example) obtained from fits using the MCMC algo-

rithm described in Section 1.4 of the Supporting

Material.
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parameters for gaining a better understanding of the switch-

ing between park and drive modes. It is interesting to note

that the average open probability, open and closed times,

and expected sojourn times in park and drive modes are

given by surprisingly simple functions. Moreover, many

quantities depend only on the ratio or just one of the transi-

tion rates.
a b

c d
Average open, park, and drive probabilities

The stationary open probability, PO, as well as the probabil-
ities of being in park mode or drive mode, Ppark and Pdrive,
depend only on the ratio f ¼ q42=q24 of the transition rates.
By taking advantage of detailed balance (Eq. A3 in the Sup-
porting Material) and using the fact that the vector p of
stationary probabilities must sum to one, it is easy to
FIGURE 6 Calcium regulation of the transition

rates q24 and q42 (Fig. 3 c) of type II IP3R for

different concentrations of IP3, ATP, and Ca2þ.
Mean values and standard deviations of the transi-

tion rates were calculated from histograms (see

Fig. 4 for an example) obtained from fits using

the MCMC algorithm described in Section 1.4 of

the Supporting Material.
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calculate p from the general model shown in Fig. 3. For the
probabilities of park and drive modes we obtain

Pdrive ¼ p1 þ p2 þ p3 þ p6 ¼ f

H þ f
; (1)

1=f

Ppark ¼ 1� Pdrive ¼

1=H þ 1=f
; (2)

with

H ¼
1þ q45

q54

1þ q21
q12

þ q23
q32

þ q26
q62

: (3)

H is related to the expected number of transitions between
states within park and drive modes; its value is similar for
both types of the IP3R (for type I IP3Rs, H z 0.27; for
type II IP3Rs, H z 0.22).

The expected open probability, PO, of the IP3R is simply
the sum of the open probabilities for park and drive modes,
Popen
park and Popen

drive, weighted by Ppark and Pdrive :

PO ¼ p5 þ p6 ¼ PparkP
open
park þ PdriveP

open
drive: (4)

Since Popen
park and Popen

drive can be calculated from the rates of
the park and drive model summarized in Table S2, Eq. 4
depends only on f. Fig. 7 shows PO, Ppark, and Pdrive ; the
parameters Popen

park , Popen
drive, and H were calculated for the

type I IP3R results. The parameter H marks a threshold for
the relative contributions of both modes: if f is well below
H, the channel behavior is characterized by the park mode,
whereas for f > H, the drive mode becomes more impor-
tant. Since H is ~1/4, the transition rate q42 to the drive
mode only has to be four times smaller than q24 for the drive
mode to be more dominant.
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FIGURE 7 Open probability of the IP3R as a weighted sum of the open

probabilities within park and drive modes, Popen
park and Popen

drive (see Eq. 4). At

the turning point, H, both modes contribute equally to the open probability,

PO. This plot shows the results for type I IP3R; results for type II IP3R are

similar.
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Sojourn time distribution in park and drive modes

The expected time that the IP3R spends in park and drive
modes can be computed using Laplace transforms, a method
that avoids calculation of eigenvalues (9). The expected
park and drive times depend only on the rate exiting the
mode:

tpark ¼
�
1þ q45

q54

�
1

q42
(5)

Since the ratio q45=q54 is low for both type I and type II
IP3Rs, the expected time for sojourns in park mode is
approximately 1=q42.

Similarly, the expected time for staying in drive mode is

tdrive ¼ K
1

q24
; (6)

where

K ¼
�
1þ q21

q12
þ q23
q32

þ q26
q62

�
: (7)

For type I IP3Rs, K z 3.73 while for type II IP3R, K z
4.59. The expected sojourn times in park and drive modes
are shown in Fig. 8.

The fact that both tpark and tdrive can be regulated inde-
pendently by varying the rate exiting park or drive modes
shows that the model represents modal gating in a surpris-
ingly simple way.
Expected open and closed times

The open-time distribution again depends on the ratio f.
In particular, the expected open times t

open
drive ¼ 1=q62 and

t
open
park ¼ 1=q54 are completely independent of the transi-
tion rates. For both type I and type II IP3Rs, q62 and q54
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FIGURE 8 Expected sojourn times for park and drive modes (see Eqs. 5

and 6) depend only on the rate exiting the mode and are proportional to

1=q42 and 1=q24, respectively. The plot shown here is based upon type I

IP3R results; the corresponding graph for type II IP3R is similar.
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have very similar values. Thus, the total expected open
time is approximately constant across all ligand concen-
trations (because it is given by an expression similar to
Eq. 4).

Finally, the expected closed time, tclosed, is the only quan-
tity that explicitly depends on both transition rates:

tclosed ¼
1

q45
ð1� rÞ þ r

1

q26
Cþ 1

q26q45
fq24 þ q42Cg

1þ 1

q26
q24 þ 1

q45
q42

; (8)

with

C ¼
�
1þ q21

q12
þ q23
q32

�
(9)

and

r ¼ q26p2

q26p2 þ q45p4

¼ f

ðq45=q26Þ þ f
: (10)

Again, all parameters in Eqs. 8�10 can be calculated
from the ligand-independent rates summarized in Table
S2, so that tclosed depends only on q24 and q42. A plot for
tclosed is shown in Fig. 9.

In summary, these results show that the IP3R regulates its
activity by adjusting the duration of closed times; instead of
opening for longer times, open probability is increased by
opening more frequently.
Type I IP3R: ATP shifts Ca2D-dependent open
probability

Fig. 5 indicates that IP3 and ATP regulate type I IP3R in
a complementary way. The ATP concentration seems to
determine the range of calcium concentrations in which
the channel is optimally activated. In this optimal range,
IP3 increases the transition rate, q42, from park to drive
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FIGURE 9 Expected closed time of the IP3R (see Eq. 8) depends on both

transition rates, q24 and q42. It clearly shows that tclosed reaches a minimum

if the tendency to switch to drive is high (low q24, high q42), whereas closed

times increase for high q24 and low q42. This plot shows the results for type I

IP3R; the type II IP3R results are similar.
mode and decreases the transition rate, q24, from drive to
park. Therefore, IP3 mainly influences the shape of q24
and q42 as functions of calcium, whereas ATP shifts these
curves along the Ca2þ axis, as previously shown by Mak
et al. (10). Comparing the columns of Fig. 4, we see that
at 5 mM ATP the optimal Ca2þ range is between 0.5 mM
and 5 mM Ca2þ, whereas lowering ATP shifts the optimal
range to ~1–10 mM Ca2þ.

To see how the transition rates regulate channel behavior,
we now turn to our results for the stationary open proba-
bility, PO (Fig. 7); according to our above analysis, it
is easy to see how the well-known bell-shaped curve
for calcium dependence (first observed by Bezprozvanny
et al. (11)) is generated. The frequency of being in drive
mode and therefore increasing PO gets higher for increas-
ing values of the ratio f ¼ q42=q24. The bell-shaped Ca2þ

dependency is formed because for all IP3 and ATP con-
centrations, q24 decreases as the Ca2þ concentration goes
from low to intermediate and increases again in the inter-
mediate to high concentration range, whereas q42 behaves
in exactly the opposite way. This means that in Fig. 6
we move first from the left to the right along the f axis
and then back again. Plots for the Ca2þ dependencies for
all ligand concentrations are shown in Fig. 9. At high IP3
(and optimal Ca2þ), the park mode is switched off com-
pletely. Low IP3 has weaker influence on both rates (Fig. 5,
c and d), so that in the optimal Ca2þ range, Pdrivez40%
and Pparkz60%.
Type II IP3R: only IP3 can suppress park mode and
enhance drive mode

Looking at high IP3 and ATP first (Fig. 6 a), the curves of the
transition rates q24 and q42 look similar to the corresponding
results for type I IP3R (Fig. 5 a). A comparison of the open
probability curves (Figs. 10 b and 11 b) confirms that both
types seem to behave identically; at optimal Ca2þ concen-
trations, an increase of the rate q42 from park to drive and
a simultaneous decrease of the rate q24 from drive to park
activates the drive mode.

The different behavior of the two receptor types for other
ligand combinations is mainly caused by highly different
ATP regulation. Decreasing ATP to a concentration of 10
mM (i.e., one magnitude lower than for the parallel type I
IP3R experiment) has no visible effect (Fig. 6 b), which indi-
cates that the influence of ATP on the channel is dominated
by IP3.

Fig. 6 c shows that ATP at low IP3 concentrations plays
a similar role, but with a subtle difference. Although q42
is similar in shape to the corresponding curves at high
IP3, the opposite rate q24 remains nearly constant for all
Ca2þ concentrations. This suggests that down-regulating
the park mode and up-regulating the drive mode are two
independent mechanisms. Whereas ATP alone can only
facilitate transitions to the drive mode, IP3 is able to both
Biophysical Journal 103(4) 658–668
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FIGURE 10 Type I IP3R: average stationary

probabilities in park and drive modes and overall

average open probability, PO, depending on IP3,

ATP, and Ca2þ.
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up-regulate the drive mode and down-regulate the park

mode without requiring ATP. The open probability is only

insignificantly lower than for high IP3 (Fig. 11 b and d);

Fig. 11 c further shows that at optimal Ca2þ concentrations,

the channel is seldom in park mode. Finally, at low ATP and

IP3 (Fig. 6 d), the type II IP3R is essentially deactivated

(Fig. 11 d).
a b

dc
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Comparison of the IP3 type I and type II receptors

In summary, type I IP3R and type II IP3R are not very
different as far as kinetics within park or drive mode are
concerned; rather, they differ in how the transitions between
park and drive modes are regulated.

In type I IP3Rs, IP3 and ATP play independent roles—
whereas ATP determines the Ca2þ range in which the type
FIGURE 11 Type II IP3R: average stationary

probabilities in park and drive mode, and overall

average open probability, PO, depending on IP3,

ATP, and Ca2þ.
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I IP3R is optimally activated, the IP3 concentration defines
how strong this activation is. In the type II IP3R, instead
of shifting the optimal Ca2þ range, ATP facilitates activa-
tion of the channel by IP3.
CONCLUSION

A model for type I and type II IP3Rs that takes into account
mode changes was constructed based upon an extensive
set of experimental data. A recently developed statistical
method (4) allows direct fitting of single-channel data to
Markov models.

In contrast to most of the earlier models for IP3R channels
(reviewed by Sneyd and Falcke (12), but see Gin et al. (2),
which follows a similar approach), the states and the con-
nections between them are not related to an underlying reac-
tion scheme. Taking into account the binding and unbinding
of different ligands (as, for example, in the classical de
Young-Keizer model (13)) requires a large number of states
and rate constants. Ion-channel data sets are time series of
only two types of events (open and closed) that are unlikely
to contain enough information to reliably fix these parame-
ters, as observed previously by Sneyd et al. (14).

Theoretical studies of aggregated Markov models (i.e.,
models where several states represent open and closed
events) further indicate that information on the model
topology is lost because single-channel data only provide
time series of openings and closings (15–17)—usually the
data can constrain models only up to a class of equivalent
models. This raises the question of how effectively bio-
chemical processes can be encoded in the structure of aggre-
gated Markov models. In conclusion, the authors believe
that assuming mass-action kinetics is not sufficient for in-
vestigating underlying biochemical processes. Such inves-
tigations can be achieved more suitably by taking into
account much more physical detail, as in models based on
molecular dynamics.

The main assumption of our model is that modes and
mode switching can be modeled in two steps. This crucial
idea allows us to incorporate transitions between the two
modes present in our data, although sometimes only a few
mode switches occurred in an experimental trace. In this
way, an accurate representation of single-channel kinetics
including modal gating could be achieved by a compact
Markov model consisting of only six states, eight ligand-
independent rate constants, and two rates depending on
IP3, ATP, and cytosolic Ca2þ.

The small number of parameters makes this model partic-
ularly suitable to be used in dynamical models for Ca2þ

oscillations. Since this model was obtained from steady-
state data, it is a priori only valid if ligand concentrations
change at a slower timescale than the transitions in the
model, giving the model sufficient time to reach equilibrium
after a ligand change. In a deterministic calcium model,
the Markov model can be interpreted as a linear system of
deterministic ordinary differential equations. The calcium-
dependent transition rates for different combinations of
IP3 and ATP can be obtained by interpolating the values
shown in Figs. 5 and 6, and values for the ligand-indepen-
dent rates are given in Table S2. Further studies will be
required to investigate whether the IP3R model presented
here will generate calcium oscillations by fast activation at
low calcium and slow inhibition at high calcium concentra-
tions, as in some earlier models. As mentioned in the Intro-
duction, an interesting application of the full stochastic
model could be the initiation of calcium waves by calcium
puffs.

A particular strength of the modeling method used here is
that MCMC calculates not just single values for each rate
constant in the model but a set of samples that represent
probability distributions. Probability distributions contain
important information such as correlations between rate
constants that cannot be obtained by most other approaches.
We have no indications that correlations between parame-
ters play an important role in the model presented here.
For example, the standard deviations for PO, Ppark, and
Pdrive shown in Figs. 10 and 11 would be expected to in-
crease if the covariance between rate constants was large.
We have also examined cross-correlations between selected
pairs of rate constants (results not shown) that further sup-
port the idea that rate constants are not strongly correlated.
This suggests that the mean values provided for all rate
constants are good representations of the underlying proba-
bility distributions. Nevertheless, it is possible to use the
full probability distributions calculated with MCMC instead
of reducing them to mean values if a particular applica-
tion of the model depends crucially on possible interactions
between the model parameters.

A tempting biological interpretation of the model pre-
sented here is to identify park and drive modes with two
different conformations of the channel. Indeed, our model
is structurally similar to the classical Monod-Wyman-
Changeux model (18) for conformational changes. Monod
et al. (18) considered two submodels (chains of four states)
representing the kinetics of two different conformations
that were connected by transition rates. Although the behav-
ior within a conformational state in the Monod-Wyman-
Changeux model is modified by ligand binding, transitions
to the other conformational state are ligand-independent.
In contrast, our model proposes ligand-independent kinetics
for both park and drive modes, with the ligand-dependent
transition rates determining in which of the two conforma-
tions the channel is found more often. Consistent with the
idea of a conformational change, average sojourns in park
and drive modes are on a longer timescale than open and
closed times (due to the small values of the transition rates).
It is also interesting to note that type I IP3R and type II IP3R
differ mainly in modal gating, whereas park and drive
modes of both receptor types are very similar, as can be
seen by comparing the respective values in Table S2. It
Biophysical Journal 103(4) 658–668
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remains to be confirmed experimentally whether park and
drive modes indeed correspond to structurally different
states of the IP3R or if they result from another regulatory
mechanism.
SUPPORTING MATERIAL

Four figures, two tables, details on the mathematical background, and

model parameters, as well as references (19,20), are available at http://

www.biophysj.org/biophysj/supplemental/S0006-3495(12)00791-6.
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