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Dynamics of the Primary Cilium in Shear Flow
Y.-N. Young,†* M. Downs,‡ and C. R. Jacobs‡
†Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey; and ‡Department of Biomedical
Engineering, Columbia University, New York, New York
ABSTRACT In this work, the equilibrium shape and dynamics of a primary cilium under flow are investigated by using both
theoretical modeling and experiment. The cilium is modeled as an elastic beam that may undergo large deflection due to the
hydrodynamic load. Equilibrium results show that the anchoring effects of the basal body on the cilium axoneme behave as
a nonlinear rotational spring. Details of the rotational spring are elucidated by coupling the elastic beam with an elastic shell.
We further study the dynamics of cilium under shear flow with the cilium base angle determined from the nonlinear rotational
spring, and obtain good agreement in cilium bending and relaxing dynamics when comparing between modeling and experi-
mental results. These results potentially shed light on the physics underlying the mechanosensitive ion channel transport
through the ciliary membrane.
INTRODUCTION
The primary cilium is an isolated nonmotile structure found
ubiquitously in many nonmitotic mammalian cells (1,2),
depicted schematically in Fig. 1. As a hairlike protrusion
from the apical cell membrane into the extracellular space,
the cilium axoneme (region I in the Fig. 1) consists of nine
microtubule doublets that originate from (and are supported
by) the basal body. The nine doublets distribute in a
radially symmetric fashion, and are enclosed by the ciliary
membrane (see Fig. 1).

The basal body consists of the mother centriole (with
distal and subdistal appendages) and the daughter centriole
(see Seeley and Nachury (3) for details). In fact, the basal
body is a modified form of the microtubule-organizing
center of mitotic spindles. When not involved in mitosis,
the mother centriole migrates to the cell membrane,
where it is attached to the cell membrane through distal
appendages and acts as a template of ciliogenesis and an
anchor basal body for the primary cilium. The details of
the anchorage are incompletely understood; however, it is
known to involve g-tubulin associated with the basal
feet, and unique filamentous structures known as striated
rootlets (4).

Between the axoneme and the basal body is a transition
zone (TZ), labeled as region II in Fig. 1, where the transition
zone fibers (also called ciliary necklace or Y-connectors)
bridge the TZ microtubules with the ciliary membrane.
These connectors distribute around the TZ microtubules
in a more or less symmetrical fashion. As shown in the
Fig. 1, the TZ membrane forms a wedge that extends to
the ciliary pocket. Adjacent to the ciliary pocket, the
membrane is bound to the distal appendages (5,6). The TZ
is associated with various proteins and molecular motor
transport. It is also found that the lipid composition and
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the permeability of the TZ membrane are slightly different
from that of the ciliary membrane (5,6).

Primary cilia differ from the better-understood motile
cilia in several important aspects. For example, primary cilia
lack 1), a central pair of microtubule doublet, 2), connec-
tions between the outer doublets, and 3), other molecular
machinery associated with motility. Unlike motile cilia,
there is only one primary cilium per cell. Motile cilia are
expressed on specialized cells whereas primary cilia are
found on virtually every cell type. Furthermore, primary
cilia basal bodies have multiple basal feet and striated
rootlets whereas motile cilia have only one of each (7).

Since the initial morphological descriptions of primary
cilia over a century ago, their function has only recently
begun to be unraveled as a center of chemical and mechan-
ical signal transduction during vertebrate development in
bone, kidney, and liver (1). At the beginning, the focus
has been on the role of primary cilia in embryonic develop-
ment where they are known to be involved in establishment
of the left-right axis and anterior-posterior limb bud
patterning (8–10) via sensing of the Hedgehog and Wnt
families of morphogens.

In the kidney cells, Praetorious and Spring (11,12) found
a dramatic extracellular calcium-dependent increase in
intracellular calcium by bending primary cilia of the epithe-
lial cells with fluid flow or micropipette manipulation. They
also verified that this response was lost with removal of
primary cilia. It has been suggested that this response occurs
via polycystin-2, a cationic channel that localizes to the base
of the cilium (13,14). This mechanism has also been found
in liver cholangiocytes (15). In addition to its role in
flow-sensing, the primary cilium is involved in direct
transmission of strains in cartilage extracellular matrix.
Mechanosensory function of primary cilia has been sug-
gested in other cell types as well, such as human airway
smooth muscle and epithelial cells.
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FIGURE 1 Sketch of the primary cilium structures: Region I is the elastic

filament, including both the axoneme and the ciliary membrane. Region II

is the transition zone where transition zone fibers connect the transition

zone microtubules with the ciliary membrane. Cylindrical geometry is

assumed for the transition zone. The cross section of a primary cilium

shows the nine pairs of microtubule bundles in the axoneme.
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To date, only a handful of articles have been published on
theoretical studies of the mechanical behavior of the
primary cilium bending under flow. Schwartz et al. (16)
developed a mathematical model based on a small-deforma-
tion elastic beam formulation. This model assumed a
constant velocity and drag profile along the cilium, which
was found to break down under high flow conditions.
Resnick and Hopfer (17) applied a similar formulation to
study small deflections of the primary cilium in a cylindrical
Poiseuille flow. Liu et al. (18) used a more precise model of
the fluid flow around an array of cilia by numerically solving
Stokes equations. They assumed small rotation at the cilium
base even though they compute the drag on cilium axoneme
consistently from Stokes equations. Rydholm et al. (19)
conducted computational fluid dynamics simulations of
the bending of an elastic filament connected to an elastic
membrane. From their simulations, they found the stress
distribution along a filament bent under flow with the
maximum stress at the axoneme base. Unfortunately, they
did not provide any quantitative comparison of cilium
bending under flow between simulations and experiments.

In this article, we conduct a quantitative comparison of
cilium bending under flow between experiments and
modeling. The mechanics of an elastic beam in a viscous
fluid flow is investigated using the slender-body theory
(SBT) in the limit of small slenderness

bh
1

ð� lnðe2eÞÞ � 1;

where e h r/L is the ratio of the cross-sectional radius r to

the ciliary contour length L. In this limit the nonlocal hydro-
dynamic interactions are ~O(b), and the leading-order SBT
gives rise to the popular local drag model (20). The local
drag model has been widely utilized for studying the
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dynamics of free actin filaments (21,22) or semiflexible
polymers in viscous flow (23). Such leading order SBT is
also termed ‘‘local SBT’’ in Tornberg and Shelley (20).

The local drag model is similar to the resistive force
theory, which assumes the strength of the singularities is
proportional to the local velocity of translation. The main
difference lies in the determination of the drag coefficients:
In the local SBT, the drag coefficients are determined by
the leading-order terms in the SBT formulation (20,24),
whereas in the resistive force theory the force coefficients
are empirically determined as summarized in Johnson and
Brokaw (25).

The (local) SBT allows for large bending of the elastic
filament under hydrodynamic load (20,26). In the limit of
small filament bending, this model is reduced to those in
Schwartz et al. (16) and Resnick and Hopfer (17). Following
the formulation in Pozrikidis (27,28), we model the primary
cilium as an anchored elastic beam by combining SBT
and the model for an elastic beam attached to a wall. The
boundary condition for the anchored filament end is deter-
mined by how the basal body responds to the hydrodynamic
load from the fluid flow. For an equilibrium cilium profile
under flow, we assume either clamped or hinged boundary
conditions for the basal body by specifying the base angle
or curvature, respectively.

Using the cilium base angle from the experiment as a
boundary condition for the elastic beam model, we fit the
equilibrium cilium profiles to estimate the cilia-bending
rigidity EB (¼ EI, where E is Young’s modulus and I is
the moment of inertia of the ciliary axoneme). These equi-
librium results uncover the relationship between the total
torque and the cilium base angle as a second-order rotational
spring. To elucidate the mechanical origin of such a
nonlinear rotational spring, we couple the beam-spring
system to a cylindrical elastic shell to model the axoneme-
membrane system.

The dynamics of the primary cilium toward its equilib-
rium profile under flow is investigated by integrating our
model over time. We further study the tension force distribu-
tion along the filament and the elastic shell, and compare it
to the critical value for opening a simple mechanosensitive
channel, an idealized model for the ion channels that are
responsible for the calcium ion transport triggered by
bending of primary cilium.
THEORY

In the formulation, we ignore the inertia effects and consider
the Stokes flow regime for the interaction between the
primary cilium and the flow. In addition, the aspect ratio
of primary cilia e is often in the range 10�2 % e % 10�1.
Consequently, the relevant physics is the bending of an
anchored elastic slender filament under fluid flow.

In the model, we need appropriate boundary conditions
for the cilium anchorage that correspond to the mechanical
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responses of the subaxonemal compartment (transition
zone, basal body, distal and subdistal appendages, basal
feet, and rootlets). Due to the complexity of the subaxone-
mal compartment, we first model the equilibrium filament
attached to a solid wall. For a given hydrodynamic load,
we find that the same equilibrium axonemal profiles can
be found with either clamped or hinged boundary conditions
at the anchored endpoint.

We adopt the elastic beam formulation (27–30) and use
the hydrodynamic load from the local drag model. The force
distribution is denoted as

F ¼ FtðsÞbt þ FnðsÞbn;
with s ˛[s0, se] the arclength, and bt and bn the unit tangent
and normal vectors, respectively. The curvature k is
assumed to be linearly proportional to the moment M:
M ¼ EBk. The external load PðsÞ ¼ Ptbt þ Pnbn is related
to the force by

dF

ds
þ P ¼ Fs þ P ¼ 0:

The moment and the force density is related as

dM

ds
¼ Ms ¼ Fn:

Denoting the filament centerline x ¼ (x(s), y(s)) andbt ¼ ðt1ðsÞ; t2ðsÞÞ, the governing equations are

xs ¼ t1;
ys ¼ t2;

(1)

t1s ¼ �kt2;
θ0
t2s ¼ kt1;
(2)

Ft ¼ �kFn � Pt; (3)
s

Fn
s ¼ kFt � Pn; (4)
Fn
Basal body
FIGURE 2 Cilium axoneme coupled to a rotational spring at the cilium

base. Under flow the cilium bends, and the basal body support for the basal

body is modeled as a rotational spring described by Eq. 18.
ks ¼
EB

: (5)

The local filament inextensibility (t1t1s þ t2t2s ¼ 0) is
utilized in deriving Eqs. 2–4. The dimensionless tangential
force and the tension force s are related as s ¼ Ft þ k2.

We compute the external load P from the local SBT as

P ¼ � hðvx=vt � UÞ
ð1þ 2bÞIþ ð1� 2bÞxs5xs

; (6)

where U is the fluid velocity at the location x in the absence
of the elastic filament.
h ¼ 8pm _gL4b

EB

is the effective viscosity with m the fluid viscosity and _g the
characteristic flow rate. For the equilibrium filament profile,
vx/vt ¼ 0 and Eqs. 1–5 can be solved as a set of boundary-
value equations with boundary conditions explained as
follows.

At the free filament end (s ¼ se), the force-free and tor-
que-free conditions give

FtðseÞ ¼ 0;
FnðseÞ ¼ 0;
kðseÞ ¼ 0:

(7)

At the fixed-end, (s ¼ s0), x(s0) ¼ 0, and y(s0) ¼ 0. If the

fixed-end is clamped, the unit tangent vector is specified as

t1ðs0Þ ¼ sin q0;
t2ðs0Þ ¼ cos q0;

(8)

where q0 is the filament base angle (see Fig. 2). If the fixed-

end is hinged with a zero torque, the filament rotates freely
and the corresponding boundary conditions are

t1ðs0Þ2þ t2ðs0Þ2 ¼ 1;
kðs0Þ ¼ 0:

(9)
Biophysical Journal 103(4) 629–639
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If there is a localized torque at the filament base (s¼ s0), the
boundary conditions for a hinged filament with a torque at
the base are

t1ðs0Þ2þt2ðs0Þ2 ¼ 1;

kðs0Þ ¼ h

EB

:
(10)

This can be understood from the equation for the momentM
with a localized torque at s0,

dM

ds
¼ FnðsÞ þ hdðs� s0Þ; (11)

where h is the torque magnitude and d(s ¼ s0) is the
Krönecker-delta function at s0. Integrating over a small
interval around s0, we find that the localized torque induces
a jump in the moment

M
�
sþ0
� ¼ M

�
s�0
�þ h/k

�
sþ0
� ¼ k

�
s�0
�þ h

EB

¼ h

EB

; (12)

which, in turn, induces a curvature at the cilium base.
For time-dependent filament dynamics, we approximate

the time derivative in Eq. 6 by the second-order time
discretization

vx

vt
¼ 1

2Dt

�
3xkþ1 � 4xk þ xk�1

�þO�
Dt3

�
(13)

and the equations for the force distribution at the kþ1st

step are

Fkþ1
s þ Pkþ1 ¼

h

2Dt

�
3xkþ1 � 4xk þ xk�1

�
ð1þ 2bÞIþ ð1� 2bÞxkþ1

s 5xkþ1
s

: (14)

At every time level, we solve the equations

xkþ1
s ¼ tkþ1

1 ;

ykþ1
s ¼ tkþ1

2 ;
(15)

tkþ1 ¼ �kkþ1tkþ1;
1s 2

tkþ1
2s ¼ kkþ1tkþ1

1 ;
(16)

Fn;kþ1
TABLE 1 List of parameters

EB Bending rigidity of the elastic axoneme

h Effective viscosity (ratio of viscous to elastic forces)

ET Bending rigidity of the cylindrical shell

h Local torque at the transition region
kkþ1
s ¼

EB

; (17)

together with the boundary conditions (see Eq. 7 for the free
end and Eqs. 8–10 for the anchored end).

Two more key ingredients need to be incorporated
into the formulation based on the following experimental
observations:

1. Before application of flow the unloaded cilia profiles are
often curved, which indicates that there is an internal
Biophysical Journal 103(4) 629–639
stress in the axoneme. Such internal stress (denoted as
s0(s)) may be due to the structural change of the
axoneme or the basal body (31), and can be included in
the constitutive relation as

ks ¼ Fn

EB

þ s0ðsÞ
EB

;

with s0(s) determined from the profile of the nonstressed
cilium. This can be implemented also in Eq. 17 for the
time-dependent model.

2. The cilium base angle q0 varies with time as the cilium
bends under flow, as shown in Results. This suggests
that the fixed angle or curvature assumptions are inappro-
priate for dynamical modeling. Thus we use a forced
overdamped oscillator for the cilium base angle to
describe the cilium base rotation

€q0 þ g _q0 þ f ðq0Þ ¼ t; (18)

where _q0hdq0=dt is the time derivative of q0. The value
f(q0) is the restoring torque from the basal anchorage, and
t is the torque on the basal body due to the external load

on the cilium. At equilibrium €q0 ¼ _q0 ¼ 0 and the base
angle q0 can be determined by finding the roots of equa-
tion f(q0) – t ¼ 0. We determine the functional form of
f(q0) from the experiment. As shown in Results, the
restoring torque f(q0) can be fit by a nonlinear quadratic
function.

Table 1 lists the essential parameters in our modeling
formulation. Some of the parameters are used later
when we couple the elastic filament to a cylindrical elastic
shell.
MATERIALS AND EXPERIMENTAL METHODS

Materials

Inner medullary collecting-duct kidney (IMCD) epithelial cells with a stable

transfection of GFP somatostatin type 3 fusion protein (SSTR-3) were a gift

from Professor Brad Yoder (University of Alabama at Birmingham,

Birmingham, AL) (32). The cells were cultured in Dulbecco’s modified

Eagle’s medium/F12 medium supplemented with 10% fetal bovine serum,

1% penicillin/streptomycin, and 200 mg/mL geneticin G4-18 antibiotic

(Invitrogen, Carlsbad, CA). Cells were maintained at 37� and 5% CO2.

For flow experiments, cells were seeded at 75,000 cells/mL on a type 1

collagen-coated (33) (BD, Franklin Lakes, NJ) 22 � 44 mm No. 1 cover-

glass (Warner Instruments, Hamden, CT) and grown to 80–90% confluency.

Forty-eight hours before flow and imaging, the cells were serum-starved,

then cultured in Dulbecco’s modified Eagle’s medium/F12 medium supple-

mented with 1% penicillin/streptomycin.
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Fluid flow

Fluid shear stress was applied to the IMCD cells in the RC-30 laminar

flow chamber (Warner Instruments) by a syringe pump (Kent Scientific,

Torrington, CT) with a 30 mL syringe (BD). A quantity of 20 mL of PBS

(Invitrogen) was used as the perfusion liquid. The flow chamber had a height

H of 250 mm, a width B of 3.2 mm, and a length of 38 mm. The flow rates

used ranged between 1 and 3 mL/min and were selected to replicate phys-

iological shear stress conditions (34). Flow was instantaneous and unidirec-

tional for 5 s and was applied once to each slide. Assuming laminar Stokes

flow for a parallel-plate flow chamber, the shear stress in the vicinity of the

walls for flow between infinitely wide parallel plates depends linearly on

the flow rate

t ¼ 6mQ

BH2
;

where t is the shear stress, m is the dynamic viscosity, and Q is the flow rate

(35). The flow velocities near the cilia correspond to a 0.4–1.27 Pa wall

shear stress. There is some error when calculating the shear forces because

the glass slides flex with flow (<15 mm in height). Thus our shear stress esti-

mate is only accurate to within 50.02 Pa.
Imaging

Two-dimensional xz and three-dimensional xyz image stacks of primary

cilia deflecting under fluid flow were captured with a TCS SP5 laser-

scanning confocal microscope (Leica Microsystems, Wetzlar, Germany).

Images were acquired with a 100�, 1.46 NA oil immersion No. 1 cover-

glass-aberration-corrected objective, using a 6-kHz resonant bidirectional

scanner. The SSTR-3 was expressed along the full length of axoneme,

allowing nearly maximum image acquisition of the primary cilium. An

Argon laser (488 nm) was used to excite the GFP fusion protein, and the

emitted light was collected at 500–600 nm.

Primary cilia were recorded under the fluid flow conditions

described above at 10 fps for xz and 4 fps for xyz under 100� optical

magnification þ10� digital zoom. Cilia were imaged for a total of

2 min: 10 s before the onset of flow (100 frames for xz, 40 frames for

xyz), 5 s during the application of flow (50 frames for xz, 20 frames for

xyz), and 105 s during the recovery period (1050 frames for xz, 420 frames

for xyz). For the equilibrium, cilium profiles xyz image stacks are taken with

a z-step size ranging from 0.3 mm to 0.8 mm; this is done because some cilia

are shorter than others. For the dynamic data set, the xz plane of the cilium

was imaged in profile, and the cilium length measurement is limited by 1),

out-of-plane deflection, and 2), the determination of the free end-point.

Both limitations lead to variation of cilium length (<0.4 mm) over time.

Before imaging, we ensure that no cilia have experienced fluid flow,

and only one primary cilium per slide was recorded during flow. Thirty-

five slides were utilized in each experimental group and experiments

were repeated three times over multiple days, totaling 105 total cilia

imaged. Cells were imaged in the center of the flow chamber to reduce

wall effects (35).
Image processing

The image stacks were contrast-enhanced using ImageJ software (National

Institutes of Health, Bethesda, MD) and processed with MATLAB (The

MathWorks, Natick, MA) to find the xz (two-dimensional) and the xyz

(three-dimensional) coordinates of the primary cilium. Images were con-

verted into eight-bit grayscale image and a Gaussian filter was applied to

decrease noise before applying a threshold. The x and y components of

the sampled pixels were averaged and recorded as the center of the primary

cilium. Primary cilium length was calculatedmanually by first fitting a poly-

nomial curve through the xz or xyz points and then measuring the length

between the endpoints. Noise due to magnification and the cilia fluctuating
out of the focal plane caused length variations for individual cilia between

images. Not all cilia imaged were used, and cilia that significantly moved

out of the focal plane were also excluded in the analysis (34). Rotation at

the base of the cilium was calculated by fitting a polynomial curve through

the first four points of the primary cilium image stack and finding the angle

between the curve and the normal (glass coverslip). A total number of 80

primary cilia were analyzed.
Methods of fitting

We used the following procedures to systematically find the least-square fits

to the experimentally obtained equilibrium cilium profiles:

1. To begin, we normalize the nonstressed cilium profile before the fluid

flow is turned on. The contour length is scaled to unity and the internal

stress s0 is computed from the nonstressed profile.

2. We then normalize the equilibrium cilium profile under a constant flow,

and extract the filament angle at the base, q0, from the normalized data

points.

3. Both the internal stress s0 and the angle q0 are used to fit a clamped

cilium to the normalized cilium profile, and a value of h is obtained

from the least-square fit. Fig. 3 shows four sets of experimental data

superimposed with their corresponding least-square fits.
RESULTS

Fig. 4 depicts two xz images of a primary cilium recon-
structed from the image stacks. Fig. 4, top, is the cilium
before the flow is turned on and Fig. 4, bottom, is the equi-
librium profile of the cilium under flow. The statistics of the
bending rigidity EB for the whole data set of 80 cilia is
summarized in Fig. 5. Almost 70% of the data set falls in
the range of 1 % EB % 5 � 10�23 N – m2. The dashed
line in the plot indicates the average value, which is higher
than reported in Schwartz et al. (16) and lower than recent
results in Downs et al. (31). The average cilium length is
3.9 mm with a standard deviation of 0.8 mm over the 80
primary cilia analyzed.

Combining the cilium base angle (from the experimental
data) and total torque (from the least-square fits in our
model), we find that the total torque at the base is a nonlinear
function of the equilibrium cilium base angle displacement.
As shown in Fig. 6, the concave-down dashed line is the
least-square quadratic polynomial fit to the full data set
(open symbols). The concave-up solid line is the least-
square quadratic polynomial fit to the partial data set (solid
symbols). Based on the results in Fig. 6, we assume that the
equilibrium-restoring torque from the basal body anchorage
takes the form

f ðq0Þ ¼ aq20 þ bq0 þ c; (19)

where jbj is proportional to the linear spring constant, and
a/b is the relative strength of nonlinearity. At equilibrium,
the restoring torque balances with the total torque at the
cilium base f(qeq ¼ t). For the quadratic restoring force in
Eq. 19, two equilibrium angles qeq exist for a given t,
Biophysical Journal 103(4) 629–639
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qeq ¼ �b5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4aðc� tÞp
2a

: (20)

Linear stability analysis on the equilibrium angle qeq shows
that qeq is stable for

df

dq

�
qeq

� ¼ f 0
�
qeq

�
>0;

and unstable for f 0(qeq) < 0. This implies that the equilib-
rium angle along the concave-up solid curve in Fig. 6 is
always stable. For the concave-down dashed curve, the equi-
librium cilium profile with an angle qeq < 0.3 is stable
whereas qeq > 0.3 is unstable. A stable equilibrium angle
always exists for qeq < 0.3 for both curves in Fig. 6. Thus,
we incorporate the smaller angle in Eq. 20 into the model.
With the coefficients (a,b) from either of the fits in Fig. 6,
we can determine the cilium base angle for a given torque
t, either during the bending process or for the equilibrium.
An example is illustrated in Fig. 7.

A nonzero c in Eq. 19 means a nonzero restoring torque is
needed when the cilium angle is zero. Nonvanishing c also
implies a nonzero base angle when the torque t ¼ 0. The
value of c may be related to the detailed structures of the
subaxonemal compartment, and it may be different for
different cells. To elucidate the physiological meaning of
this constant, we couple the elastic beam to an elastic cylin-
drical shell as follows.

The elastic shell surface is parameterized as (r(l), z(l)),
with l ˛ [l0,le] the arc-length along the elastic sheet. The
symbol j is the angle between the elastic shell normal
vector n and the r axis (see Fig. 8). The governing equations
for the cylindrically symmetric elastic incompressible sheet
are (36,37)
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dr

dl
¼ sin j;

dz

dl
¼ �cos j;

(21)

dj cos j
dl
¼ �nþ

r
;

dn

dl
¼ Q;

(22)

dTm sin j
dl
¼ ðTf � TmÞ

r
� kmQ; (23)

dQ sin j
dl
¼ Tmkm þ Tfkf �

r
Q; (24)

dj

km ¼ �

dl
;

kf ¼ cos j

r
;

(25)

T ¼ T þ E
�
k2 � k2

�
; (26)
f m T m f

where ET is the bending rigidity of the transition membrane.
In the following we assume that ETh lEB with l ~O(1). At
l ¼ l0 the elastic sheet is connected to the filament, and at
l ¼ le it is connected to the surrounding membrane.

Equations 21–25 are coupled to Eqs. 1–5 by the boundary
conditions at the junction where the filament base (s¼ s0) is
connected to the shell (l ¼ l0).

First, the unit tangent vector is continuous: The filament
tangent vector at the base is related to the angle j as

t1ðs0Þ ¼ �sin jðl0Þ; t2ðs0Þ ¼ cos jðl0Þ:



FIGURE 4 Examples of cilium profiles reconstructed from the xz stacks.

(Top) Primary cilium profile before the flow is applied. (Bottom) Equilib-

rium cilium profile under flow.
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Secondly, the force distribution and the curvature are also
continuous at the junction

Tmðl0Þ ¼ Ftðs0Þ
�
LS

LB

�2

; Qðl0Þ ¼ Fnðs0Þ
�
LS

LB

�2

;

where LS and LB are the characteristic lengths for the shell
and beam, respectively.
−0.5 0 0.5 1
−1

Δθ0

FIGURE 6 Total torque at cilium base versus the equilibrium cilium

angle. Dq h qeq � q0 (t ¼ 0) is the equilibrium angle relative to the initial

value. (Dashed line) Least-square fit to the full data set (open symbols);

(solid line) fit to the partial data set (solid symbols). (Dash-dotted line)

From the elastic beam-shell model in Results.
As explained in Introduction, the TZ fibers connect the
TZ microtubules to the membrane. Here we assume that
the mechanical support from the basal body can be modeled
as a localized finite torque (from the transition fibers) on the
elastic cylindrical shell at l ¼ l0. In Theory we show that
such a localized torque introduces a jump in the moment
at the junction m(l0) ¼ M(s0) þ h, and h/EB is the curvature
at the cilium base due to the torque from the TZ fibers.
At the junction the radius of the elastic sheet r(l0) is taken
to be the radius of the cilium, and the height of the transition
membrane z(l0) is assumed to be of the same order as the
filament radius. At the opposite end point, the elastic sheet
is assumed to be connected to the cell membrane in a flat
angle such that j(le) ¼ p/2. Equations 21–25 are rendered
dimensionless by scaling the length to the filament radius
rf and force to EB/rf

2.
In our beam-shell model the torque h signifies the

mechanical support from the TZ fibers. Fig. 9 illustrates
the cilium-transition zone profiles for different values of h.
A nonzero h is needed to support the axoneme in the upright
Biophysical Journal 103(4) 629–639
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position in the absence of flow because the unforced equilib-
rium is a flat horizontal shell connected to a horizontal
straight beam. As the cilium basal body is mechanically
connected to the ciliary membrane through the connectors
and microtubular distal appendages, it seems physiologi-
cally feasible that nonzero h is related to the support from
the transitional fibers that are connected to the ciliary
membrane. Numerically we find that the value of h required
to support the upright cilium axoneme is proportional to l,
and in dimensionless units h ¼ �0.145 when l ¼ 1/10
and h ¼ �0.402 when l ¼ 1/3.6.
FIGURE 8 Coordinate system for the cylindrical shell in the transition

zone. Region I is the elastic slender beam, and region II is the transition

zone that is bound to the distal appendages (small vertical bars on the right

end, where j ¼ p/2 is fixed.
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The dash-dotted curve in Fig. 6 plots the total torque at
the base versus the equilibrium angle with l¼ 1/3.6. As dis-
cussed in Results, f 0(q) > 0 guarantees a stable equilibrium
angle. The concave up-curve from the elastic beam-shell
model suggests that the data for large positive equilibrium
angles may not be reliable. On the other hand, if these large
positive angles are reliable, more biological and mechanical
features of the subaxonemal compartment are needed to
explain the concave down fit to the nonlinear restoring tor-
que curve (dashed line).
Dynamics toward equilibrium

In physiological situations different timescales may be
important, such as the time for the cilium to reach the equi-
librium profile under flow and the time for the cilium to
relax without external load. These timescales are important
for the mechanotransduction processes that primary cilia
have been implicated in.

As a first step toward understanding how these dynamical
processes are related to mechanosensing, we use our model
to simulate the dynamics of cilium bending under flow and
cilium relaxation when the flow is turned off. Such dynam-
ical processes can be captured by a high-speed imaging, as
shown in Fig. 10 a, where the flow is turned on at t ¼ 0 and
the cilium bends as time progresses. In Fig. 10 b, the flow is
turned off at t ~ 5 s and the cilium relaxes to the profile
labeled at t ¼ tf ~ 9.6 s.

The cilium profile data are obtained by high-speed z-stack
scanning of the fluorescence proteins on the ciliary
membrane. Consequently, noise cannot be estimated and
the observed cilium length may not be the same for a single
cilium over the duration of 10 s (Fig. 10). In addition, we
observe that the initial nonstressed cilium profile in
Fig. 10 is not upright. We also note that after the flow is
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turned off, the cilium does not relax to the original non-
stressed profile, as reported in Downs et al. (31).

In our model simulation, we assume that the rotational
spring is overdamped. This implies that at any point
in time, the cilium base angle is determined by solving
f(q0) – tjt ¼ 0. Physically this means that we assume the
cilium base angle reaches the semiequilibrium value instan-
taneously as the cilium responds to the hydrodynamic envi-
ronment. This may be an oversimplification worthy of
further investigation.

The comparison between experimental and computational
findings is summarized in Fig. 11. The horizontal coordinates
of the cilium tip are plotted versus time in Fig. 11 a. The
comparison in cilium profile at different times is shown in
Fig. 11 b. Symbols are the x-coordinate of the cilium tip in
experiment at different times. To compensate the fluctuating
cilium length in the experiments, we interpolate or extrapo-
late the cilium profiles to equal cilium length. The curves
are from the simulations. The cilium bends and quickly rea-
ches the maximum bending under flow. The flow is stopped
at t ~ 5 s and the cilium relaxes to a profile close to the initial
one. Despite the noises, results indicate that cilium bending
and relaxation is well approximated by our simple model
incorporating viscous stress, rotational stiffness, and residual
stress.

The relaxation time of the cilium is considerably longer
than the elastic relaxation time of a free semiflexible elastic
filament (23). This may be understood by taking into
account the rotational relaxation time due to the basal
body anchorage (such as the shear elastic modulus of the
transition membrane due to its coupling with the subaxone-
mal compartment). However, more of the structural details
of the ciliary basal body are needed to fully understand
the origin of the rotational relaxation at the base.
DISCUSSION AND CONCLUSION

The bending of the primary cilium due to fluid flow is known
to openmembrane ion channels. Themolecular details of the
transmembrane proteins reveal some aspects of their
Biophysical Journal 103(4) 629–639
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function and behavior. However, little is known about the
mechanical coupling between the bending of a primary
cilium under flow and the activation of ion channels.

Quantitative description of simple mechanosensitive
channels (MscL) in idealized configurations reveals that
a critical tension in the lipid bilayer membrane is required
to activate an ion channel. By incorporating an ion-channel
protein into the free-energy formulation of a planar lipid
bilayer membrane, the critical line tension required to
keep the protein open can be expressed in terms of the
bending rigidity for an individual leaflet, the width of the
hydrophobic patch of channel protein, the average size of
the ion channel in the open and closed states, and the spring
constant for the mismatch between the membrane and
protein hydrophobic patch. Once the force in the membrane
is large enough to overcome the critical force, MscL will be
activated to facilitate the transmembrane transport of ions
such as calcium (38–40).

In our calculations, we find that the tension force along
the elastic filament and the membrane has a maximum at
the junction. The tension force along the cilium is plotted
in Fig. 12 a. The corresponding tension force along the tran-
sition membrane is shown in Fig. 12 b. The maximum
tension on the transition membrane is much smaller than
that along the cilium axoneme. This implies that channels
on the axoneme near the base are more likely to be open
due to the bending under flow.

To compare this tension with the critical tension required
to open MscL, we need to know how the axoneme tension is
related to the tension along the ciliary membrane. We also
note that the critical force for opening MscL is computed
based on several assumptions (38–40). The first key assump-
tion is that the reference lipid bilayer membrane profile is
assumed to be flat. The second assumption is that mechan-
ical force alone is sufficient to open the transmembrane
channel. Finally, the cylindrical symmetry assumed for the
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transition membrane needs to be relaxed for us to make
a refined comparison.
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