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Coarse-Grained Simulations of Protein-Protein Association: An Energy
Landscape Perspective
Krishnakumar M. Ravikumar, Wei Huang, and Sichun Yang*
Center for Proteomics and Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
ABSTRACT Understanding protein-protein association is crucial in revealing the molecular basis of many biological pro-
cesses. Here, we describe a theoretical simulation pipeline to study protein-protein association from an energy landscape
perspective. First, a coarse-grained model is implemented and its applications are demonstrated via molecular dynamics simu-
lations for several protein complexes. Second, an enhanced search method is used to efficiently sample a broad range of protein
conformations. Third, multiple conformations are identified and clustered from simulation data and further projected on a three-
dimensional globe specifying protein orientations and interacting energies. Results from several complexes indicate that the
crystal-like conformation is favorable on the energy landscape even if the landscape is relatively rugged with metastable confor-
mations. A closer examination on molecular forces shows that the formation of associated protein complexes can be primarily
electrostatics-driven, hydrophobics-driven, or a combination of both in stabilizing specific binding interfaces. Taken together,
these results suggest that the coarse-grained simulations and analyses provide an alternative toolset to study protein-protein
association occurring in functional biomolecular complexes.
INTRODUCTION
How proteins interact and associate into large functional
complexes is one of the key aspects of many biological
processes. The use of computational methods to understand
molecular details of such protein-protein interactions has
provided a powerful alternative to experimental structural
characterization, especially for those who form transient
but critical metastable conformational states (1,2). Pictur-
ing the landscape of protein-protein association is of impor-
tance in uncovering the hidden areas of a high-dimensional
configurational space, as well as identifying new targets,
e.g., using these metastable conformers, for therapeutic
designs.

Two prevailing views of protein-protein association are
the mechanisms of lock-and-key and induced-fit (3,4). In
the former scenario, proteins are treated as rigid bodies,
whereas protein flexibility due to the intrinsic dynamics is
taken into account in the latter (and its generalizations).
The general docking approach, driven by the lock-and-key
mechanism, significantly simplifies the search in the con-
formational space occurring in protein-protein association
(5–7). The search is typically based on atomistic repre-
sentations, but has also been successfully simplified by
coarse-grained (CG) models (8,9) that can accelerate energy
calculations. However, the rigid body treatment cannot
meaningfully account for the intrinsic protein flexibility.
Although this problem can be alleviated to some extent by
an after search relaxation, flexibility is inherently required
for biomolecules to function, as recognized by the induced-
fit mechanism. Such flexibility can be achieved computa-
tionally using a wide range of methods including molecular
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dynamics (MD) simulations (10). Although the restriction to
a short timescale is a bottleneck for brute-force atomistic
simulations, MD simulations combined with efficient search
methods have provided fruitful insights into protein folding
and dynamics (10–16).

Here, we explore this general concept of the induced-fit
mechanism by employing a combination of MD simulations
and a simplified CG protein model with an emphasis on the
energy landscape aspects of protein-protein association. This
method adopts a widely used structure-based approach to
model individual protein components (17–22). It also incor-
porates the recent implementation introduced by Kim and
Hummer (8) accounting for nonnative protein-protein inter-
actions, which would otherwise be lacking without knowing
the structure of the entire complex. Furthermore, to avoid
trapping due to local stable complex-forming conformations,
an efficient search method is introduced with a focus on
facilitating protein dissociation and reassociation.

The outline of this work is as follows. First, details of the
CGMD method, with a straightforward push-pull-release
(PPR) sampling strategy, are described and tested on several
model systems. To organize the large amount of simulation
data, a structure clustering scheme is applied. The resulting
conformations are then projected on a three-dimensional
energy globe for visualizing the energetics of relevant stable
conformations. Finally, molecular forces stabilizing each
identified conformation are briefly described.
MODELS AND METHODS

Details of the CG model

We used a CG model where each amino acid is represented by a single

bead positioned at its Ca atom. The CG energy function for two inter-

acting proteins/domains (marked as 1 and 2) is formulated as
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follows: E ¼ E1 þ E2 þ E12. E1 and E2 are the energy functions for each

protein, similar to the structure-based G�o-type potential (23–28), whereas

E12 is for the interactions between proteins. In a nutshell, this CG model

can be viewed as two G�o-like proteins interacting with each other in a non-

G�o-like fashion.
Following Yang et al. (29), E1 and E2 were modeled on the basis of their

corresponding crystal structures. These energy functions include the inter-

actions for bond ðEbondÞ, angle ðEangleÞ, dihedral ðEdihÞ, and native-like

contacts modeled by Lennard-Jones (LJ)-type ðELJÞ potentials. Specifi-

cally, E1 ¼ Ebond þ Eangle þ Edih þ ELJ, where Ebond ¼
P

bondskbðr � roÞ2,
Eangle ¼

P
angleskaðq� qoÞ2, Edih ¼

Pn¼1;3
dihedralsk

ðnÞ
f ½1þ cosðnðf� foÞÞ�. r,

q, and 4 are the instantaneous bond distances, angles, and dihedral angles,

respectively; ro, qo, and fo are the corresponding values in the reference

structure. We note that the concept of dihedral angle among four resi-

dues was used mainly for the convenience of modeling. Force constants

kb ¼ 100 kcal/(mol$Å2), kq ¼ 20 kcal/(mol$rad2), k
ð1Þ
f ¼ 1:0 kcal/

(mol$rad2), and k
ð3Þ
f ¼ 0:5 kcal/(mo$ rad2) were used. The LJ-type interac-

tions for native contacts were used between resides i and j ðRiþ 4Þ,
ELJ ¼

P
i;jεo½5ðsoij=rijÞ12 � 6ðsoij=rijÞ10�; where εo ¼ 1 kcal/mol, rij is the

residue-residue distance, and soij is the corresponding distance in the refer-

ence structure. The definition of a native contact-forming pair was based on

atomically detailed calculations using the CSU software (30).

The energy function E12 is designed for nonnative interactions between

two proteins, which were extended from the Kim-Hummer model (8). It

includes the electrostatic ðEelecÞ and hydrophobic ðEHÞ components,

E12 ¼ Eelec þ EH: (1)
P

and eo is the vacuum electric permittivity. An effective dielectric coefficient

Deff ¼ Ds expðrij=xÞ is applied to reflect the shielding effect between two
We used Eelec ¼ i;jqiqj=ð4peoDeffrijÞ where qi is the charge of residue i

residues separated by a distance of rij , where Ds ¼ 10 was used to describe

the local dielectric environment when two proteins are forming an interface,

and x ¼ 8:2 Å to mimic the screening effect at ~150 mM salt concentration.

At pH 7, residue charges qi ¼ þ e for Lys and Arg, � e for Asp and Glu,

andþ0:5 e for His (e is the elementary charge) were used (8). Hydrophobic

interactions ðEHÞ are either attractive (LJ-type) ðεij < 0Þ or purely repulsive
ðεij R 0Þ where
A B

C D
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εij ¼ a
�
eMJ
ij þ b

�
: (2)

eMJ
ij ð<0Þ is the Miyazawa-Jernigan (MJ) statistical energy between resi-

dues i, j (31). b (in unit of kBT) is used as an offset parameter to

balance attractive and repulsive interactions, and a to scale EH relative

to Eelec (8). We used EHði; jÞ ¼
��
εij

��½5ðsij=rijÞ12� 6ðsij=rijÞ10� if εij < 0,

and EHði; jÞ ¼ εij½5ðsij=rijÞ12ð1� expð�ðrij � sijÞ= dÞ2Þ� if εijR0, where

d ¼ 3:8 Å. A scaling factor of g is introduced for sij as follows,

sij ¼ g
�
ri þ rj

�
; (3)

where ri is the van der Waals radius of residue i as used in (8). Note that in

this parameter set, both eMJ
ij and sij can vary between different pairs of resi-

dues reflecting the nature of sequence dependency. Finally, E12 is accounted

only for surface residues with solvent accessible surface area >10 Å2,

which was calculated via atomically detailed model structures of individual

proteins using a probe size of 1.4 Å.
Simulation and sampling

The CGmodel was implemented using LangevinMD simulations in a modi-

fied version of CHARMM (32). Simulations were performed at 300 K with

a friction coefficient of 50 ps�1 (33). A simulation time step of 0.01 ps was

used and coordinates were saved every 100 ps.

A PPR sampling strategy, illustrated in Fig. 1, was implemented using

a biasing potential EPPR (Eq. 4). The PPR sampling repeats a cycle

including the following three parts: i), pull the two proteins away from

each other when they are close, ii), push them closer when they are

separated by more than a threshold distance Rc, and iii), release them

to interact freely by removing the biasing potential. We used the

following EPPR,

EPPR ¼
�

0; when Rt%Rc and rmin<ro;
kðR� RtÞ2; otherwise

; (4)
FIGURE 1 PPR sampling scheme. (A) Three

parts of a PPR cycle where the pull and push

portions are colored in pink and the release in

green. The target trajectory (Rt) is shown in solid

line (Rmin % Rt % Rmax). (B) A three-dimensional

illustration of the PPR scheme; one protein (in

blue) is positioned at the origin. The inner sphere

(in green), with a radius of R ¼ Rc, is the region

where the biasing potential is turned off (see

Eq. 4); the outer sphere has the radius of R ¼
Rmax. R is the center-to-center domain distance

between the two proteins. (C) Plot of R versus

time and (D) RMSD versus time from a typical

PPR simulation trajectory for the barnase/barstar

complex, where Rmax ¼ 50 Å, Rc ¼ 25 Å, Rmin ¼
0 Å were used.
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where R is the instantaneous center-to-center distance, and Rt is the target

center-to-center distance (marked by solid lines in Fig. 1 A). rmin is the

closest residue-residue distance between the two proteins. The value of

ro ¼ 7:6 Å and a spring constant of k ¼ 100 kcal/(mol$Å2) were used. A

simulation length of 10 ns was used for each PPR cycle.

To further improve search efficiency, a total of 100 independent MD runs

were launched simultaneously, each with an initial configuration generated

by translation-and-rotation of the two proteins (see the Supporting Mate-

rial). The total simulation time was 10 ms, which resulted in 105 configura-

tions. Configurations from the unbiased release parts (highlighted in green

in Fig. 1, A and B), were used for data analysis.
Structure clustering analysis

Configurations from the simulated trajectories were grouped following

a two-step clustering procedure. In the first orientational clustering step,

the entire complex was aligned based only on the crystal structure of one

protein. Four out-of-plane residues were then picked from the other protein

and their Cartesian coordinates were used in a standard K-means clustering

algorithm in MATLAB (The MathWorks, Natick, MA). From the resulting

Nc clusters ð2000%Nc%3000Þ, Nc representative configurations with the

lowest E12 within each cluster were chosen and used in the next clustering

step. In the second root mean-square deviation (RMSD) clustering step,

these Nc configurations from the first step were further clustered into Nf

final clusters using a pairwise RMSD-based protocol (34) with a RMSD

cutoff of 5 Å (for the entire complex). Similar to the first clustering step,

the lowest E12 configuration within each cluster was selected to represent

the Nf clusters. To focus on the identification of energetically stable confor-

mations, this two-step hierarchical clustering was performed only on those

configurations with E12<0.
RESULTS AND DISCUSSION

Here, we first describe the CG simulations with the selection
of model parameters and test them on several well-charac-
terized complexes. To accelerate the simulations, an effi-
cient search method is introduced and compared with
brute-force simulations. This CG method is finally applied
to characterize the energy landscape of several protein
complexes: CCP/cc, E9/Im9, E7/Im7, RXR ligand-binding
domain (LBD) dimer, and barnase/barstar. Their resultant
energy landscapes are further characterized and organized
according to the forces that energetically stabilize their
identified favorable conformations.
The CG model

To reduce the degrees of freedom in atomistic simulations
and overcome the timescale limitation, a CG approach
was used in our studies of protein-protein interactions.
The CG model was built on the basis of available crystal
structures of individual proteins (i.e., G�o-like models; see
Models and Methods). The nonnative-like interactions
between proteins were effectively accounted for and opti-
mized. Here, the first optimization is about two CG param-
eters (a and b in Eq. 2) used to balance the competition
between hydrophobic and electrostatic interactions. To
achieve this goal, brute-force CGMD simulations (without
a biasing potential) were carried out on two protein com-
plexes whose crystal structures are available. One is the
barnase/barstar complex of bacterial ribonuclease and its
inhibitor (PDB entry 1BRS) (35), and the other is E9/Im9
(PDB entry 1EMV), an immunity protein complex (36).
To examine their energetic stability, a range of CG parame-
ters (a ¼ 0.2, 0.4, 0.6 and b ¼ 0.8, 1.3, 1.9) were used for
comparison.

Fig. 2 shows the two-dimensional histogram plots of the
center-to-center distance between two proteins (R) versus
RMSD of the entire complex (with respect to the crystal
structure). A total of nine sets of CG simulations, each
FIGURE 2 Selection of CG model parameters.

(A) Histogram plots of R (domain distance) versus

RMSD for barnase/barstar (PDB entry 1BRS (35))

and (B) for E9/Im9 (PDB entry 1EMV (36)). A

range of a and b (Eq. 2) are used in each simulation

set. For each set, 10 independent simulation runs,

each lasting 100 ns, were carried out starting

from their corresponding crystal conformations

shown above, where R ¼ 23.2 Å and 27.4 Å,

respectively. The parameter g ¼ 0.625 (Eq. 3) is

used throughout this work unless specified.

Biophysical Journal 103(4) 837–845
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with a distinct set of a and b, were performed starting from
the same crystal configuration. Comparison shows that the
complex remains stable for the set of a ¼ 0:4 and
b ¼ 1:3; any deviation tends to result in a destabilization
of the crystal conformation and the complex starts to disso-
ciate. This set of parameters were also tested on three other
complexes shown in Fig. 3, where each complex stays
within a reasonable RMSD range to its crystal conformation
within a simulation window of 100 ns. Additional energy
calculations on protein-protein interaction, averaged over
the 100-ns CGMD simulations with a ¼ 0:4 and b ¼ 1:3,
show that the values of E12 are –14.7 and –20.1 kcal/mol
for barnase/barstar and E9/Im9, respectively. These results
are consistent with their measured binding enthalpies of
�13.9 and �19.1 kcal/mol (37,38) (Fig. S1 in the Support-
ing Material). Taken together, these results suggest that this
CG energy function, even though highly simplified, can
provide a rather detailed energy evaluation on protein-
protein interactions.

Another feature of the CGMD simulations is the introduc-
tion of a scaling factor g (Eq. 3) to account for realistic pair-
wise residue distances. This consideration is in part based on
the observation that a typical hydrophobic pair of Leu-Ile
and a typical charged pair of Asp-Asp has an optimal
distance around 7.8 Å and 7 Å, respectively (39); these are
substantively lower than their values of 12.4 Å and 11.2 Å,
based on their van der Waals radii (8). To account for such
a difference, the value of g ¼ 0.625 was selected for rescal-
ing (Eq. 3). To illustrate and compare the difference, two sets
of simulations, one with g ¼ 0.625 and the other with g ¼
1.0, were performed for barnase/barstar. Fig. S2 shows
that, within the same length of simulation time, the complex
drifts away from its crystal conformation during the simula-
tions with g ¼ 1.0, but is retained during the ones with g ¼
0.625. This is systemically observed in the simulations of
other complexes used in this work (data not shown). Thus,
this CG parameter g ¼ 0.625, together with a ¼ 0.4 and
b ¼ 1.3, is used for the rest of the CGMD simulations.
Biophysical Journal 103(4) 837–845
Efficient search method

As demonstrated previously, it is difficult for brute-force
CGMD simulations to observe protein dissociation events
once two proteins are associated. One goal here is to search
for multiple available conformations, which would require
a more complete search in the configurational space. In
fact, several advanced sampling techniques have been
developed in the past to address this quest (11–14,16,40–
45). In a similar spirit, a PPR sampling strategy is imple-
mented here to accelerate sampling different interactions.
Specifically, a biasing potential (see Eq. 4) is first applied
to pull and push the two proteins to facilitate protein disso-
ciation and reassociation, respectively; this bias is then
removed and the proteins are released to interact freely
when they are close enough. We repeated this PPR cycle
to achieve sufficient sampling (Fig. 1).

Fig. 1, C and D, illustrates a typical PPR trajectory from
the simulations of barnase/barstar. It shows that barnase and
barstar dissociate and reassociate as seen in the center-to-
center distance and RMSD (with respect to the crystal struc-
ture) during the push and pull parts of the PPR cycle (pink
regions in Fig. 1 A). Once the two proteins are close enough,
the associated complex is further relaxed by free MD simu-
lations without any bias imposed during the release portion.
We note that simulation data only from these free release
portions were used for the rest of the analysis.

It is observed that this PPR scheme significantly increases
the search efficiency for different protein-protein interacting
conformations. Taking CCP/cc for example, with the help
from PPR, a larger RMSD (with respect to the starting
structure) range (up to 20 Å) and a much broader configura-
tion space is sampled (Fig. S3); in contrast, the complex
remains in a crystal-like conformation without using PPR
(Fig. 3 A), and is confined near its staring point in these
brute-force simulations (Fig. S3). This increased sampling
efficiency is also systematically observed in other systems
used in this work. To further enhance sampling, a set of
FIGURE 3 CG model parameters are tested on

three protein complexes. Two-dimensional histo-

gram plots of R (domain distance) versus RMSD

from the simulations with a ¼ 0.4 and b ¼ 1.3

kBT are shown. Crystal conformations are intact

for (A) CCP/cc (PDB entry 2PCC (46)), (B) RXR

LBD (PDB entry 1MZN (64)), and (C) E7/Im7

(PDB entry 7CEI (52)) complexes. The simula-

tions lasted 100 ns for each protein complex.

This set of parameters a ¼ 0.4 and b ¼ 1.3 kBT

is used throughout this work unless specified.
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100 independent MD runs were launched simultaneously
each starting with a random orientation between the two
proteins in the complex. As shown below, a wide range of
conformations are sampled for the protein complexes we
examined. Thus, an efficient search method via the PPR
strategy is in place to enhance the sampling of protein-
protein association.
Protein interacting landscape pictured by an
energy globe

To organize the large amount of simulation data, structurally
similar conformations were clustered using a two-step struc-
ture clustering: the first step is based on their relative orien-
tation and the second is based on pairwise RMSD (see
Methods). Typically, clustering is performed only using
pairwise RMSD (34); this would be computationally ex-
pensive because configurations generated from CGMD
simulations are on the order of 105. This two-step procedure
overcomes this hindrance by grouping the number of config-
urations to the order of 103 clusters after the first step and
finally to Nf clusters in the order of 102.

To assist the navigation of the conformational diversity,
we projected these Nf configurations onto a unit sphere or
globe representing relative orientation between complex-
forming proteins. As illustrated in Fig. 1 B, one can imagine
that one protein is inside the globe, whereas the other pro-
tein takes different orientations on the surface; the globe
was colored according to the interacting energy E12 (Eq.
1). We found that this energy-mapped globe is a useful
tool to identify energetically favorable conformations with
different protein positioning on the landscape. It also serves
to access the sampling quality achieved by PPR-assisted
CGMD simulations by examining the coverage on the globe
surface. Discussed below are five protein complexes
(CCP/cc, E9/Im9, E7/Im7, RXR LBD dimer, and barnase/
barstar) studied in this work; we organized them according
to the decomposition of the interacting energy into electro-
static and hydrophobic components.
CCP/cc: electrostatics-driven association

To demonstrate the application of CGMD simulations, the
CCP/cc complex was first examined; a similar procedure
was followed for other protein complexes. CCP/cc is a
complex formed between cytochrome c peroxidase and
cytochrome c, whose crystal structure is shown in Fig. 3 A
(46). Calculated from the PPR-assisted CGMD simulation
data, Fig. 4 A shows a plot of E12 versus RMSD (with
respect to the crystal structure). It clearly shows that a
wide RMSD range is sampled for CCP/cc. A close examina-
tion also shows that the crystal-like configurations have
a lower E12, indicating that the CG energy function captures
the molecular forces stabilizing the crystal-like conforma-
tion. It is worth noting that such a correlation between E12

and RMSD, where the low E12 conformations are funneled
into low RMSD regions in the context of protein-protein
interactions, somewhat resembles the funnel-like shape
recognized in protein folding (47–49).

The resultant Nf ¼ 191 conformations after a two-step
clustering were projected into an energy globe shown in
Fig. 4 B. It is fairly easy to locate conformational states
that are energetically stable or metastable. Marked by arrows
on Fig. 4B are four identified lowestE12 conformations, each
of which consists of an ensemble of five configurations.
Among them, conformation (a) has a very similar CCP/cc
binding interfaces to the crystal configuration (within 3 Å
of RMSD), suggesting that the crystal structure is favored
in the CG energy evaluation. Other alternative conformations
(b–d) are metastable in E12, which differ in either binding
FIGURE 4 Energy landscape of the CCP/cc

complex. (A) A plot of E12 versus RMSD. A total

of 44,451 configurations from CGMD simulations

are shown in black dots, where Rmax ¼ 90 Å, Rc ¼
40 Å, and Rmin¼ 0 Åwere used in the PPR scheme.

(B) Front view of the energy globe colored by E12.

A total of Nf ¼ 191 clusters were obtained (also

shown in blue dots in A) after the two-step clus-

tering. Four representative conformations (a–d)

are shown on the globe, where each conformation

is represented by an ensemble of five lowest energy

configurations. Conformation (a) with the lowest

E12 resembles the crystal structure (46). Note that

conformations with lower E12 are not observed in

the back of this globe. (C) The decomposition of

hydrophobic (white bars) and electrostatic (gray

bars) energies from E12 for each conformation

(a–d). Their averages (and standard deviations)

were calculated from the ensemble of five configu-

rations shown in B.

Biophysical Journal 103(4) 837–845
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interfaces or relative orientations. For example, cytochrome
c (in red) is rotated in conformation (c) away from the
crystal-like conformation (a). Similar to what is observed
in protein folding, thesemetastable conformationsmay serve
as important intermediate states right before CCP/cc forms
the crystal-like conformation, either thermodynamically or
kinetically.

To evaluate the molecular forces driving toward the stable
conformation, electrostatic and hydrophobic energies were
examined separately according to Eq. 1. Fig. 4 C shows
both components in these conformations (a–d) where elec-
trostatics dominate over hydrophobic contributions in the
total energy E12. This is consistent with that observed in
the structural analysis of the CCP/cc complex (46). After
all, electrostatic interactions are known to play an important
role in protein-protein interactions (50,51). In addition, the
crystal-like conformation (a) has stronger hydrophobic in-
teractions compared to others (b–d), thus suggesting a
possible role of hydrophobic interactions in the specificity
of its crystal-like binding interface.

This phenomenon of electrostatics-driven protein associ-
ation is also observed in two other complexes: E9/Im9 and
E7/Im7, two immunity proteins in the form of specific bac-
terial toxin/inhibitor complexes (36,52). These two com-
plexes have similar crystal structures (shown in Figs. 2 B
and 3 C) with a sequence identity of 50%. Their PPR-
CGMD simulation results exhibit a funnel-shaped plot of
E12 versus RMSD (Fig. S4 A and Fig. S5 A), similar to
what is seen in CCP/cc (Fig. 4 A). Each crystal-like confor-
mation has the lowest E12 on the energy globe for both
protein complexes (Fig. S4 B and Fig. S5 B), respectively.
Four conformations (a–d) with low E12 identified from
the energy globe have similar protein binding interfaces
on the immunity protein (in blue), although their internal
orientations are different. For their energy decomposition
Biophysical Journal 103(4) 837–845
(Fig. S4 C and Fig. S5 C), it appears that E7/Im7 has
much higher electrostatic energy than E9/Im9. This differ-
ence is mainly due to more charged residues involved at
the E7/Im7 interface. It was also observed from mutation
studies that a tyrosine (Tyr-54 of Im9) residue at the hydro-
phobic core of the binding interface is important for the
stability of the E9/Im9 complex (36), which might con-
tribute to the less dominant hydrophobic interactions.
RXR LBD dimer: hydrophobics-driven
association

A different molecular driving force is observed in the forma-
tion of the LBD dimer of a nuclear receptor RXR. Fig. 5 A
shows the plot of E12 versus RMSD (with respect to the
crystal conformation) for this dimer, which is more rugged
compared to the CCP/cc complex in Fig. 4 A. The plot
is similar to the CCP/cc complex where the crystal-like
conformation is favored, although conformation (d) has
comparable E12 with the crystal-like conformation (a)
(Fig. 5, A and B). In addition, these two conformations (a)
and (d) are close on the energy globe, and differ only
by 7 Å in RMSD (Fig. 5 B), suggesting that conformation
(d) may serve as an intermediate to the formation of the
crystal-like conformation. It is also clear that hydrophobic
interactions generally dominate the RXR dimer interface,
especially in the crystal-like conformation (a) (Fig. 5 C).
Among all the four conformations, one exception is confor-
mation (c) where the second LBD (in red) rotates away and
binds at distant sites. A close examination on LBD binding
interfaces in the crystal structure also shows that parts of
the dimeric interface is weakly attractive or even repulsive
locally in electrostatics (data not shown), thus suggesting
that hydrophobic interactions are the major molecular driv-
ing forces in the dimerization.
FIGURE 5 Energy landscape of the RXR LBD

dimer. (A) A plot of E12 versus RMSD. A total of

58,480 configurations from CGMD simulations

are shown in black dots, where Rmax ¼ 100 Å,

Rc ¼ 45 Å, and Rmin ¼ 0 Å were used in the PPR

scheme. (B) Front view of the energy globe colored

by E12. We used a total of Nf ¼ 589 clusters (also

shown in blue dots in A) after the two-step clus-

tering. Four representative conformations (a–d)

are shown on the globe, where conformation (a)

resembles the crystal structure (64). (C) The

decomposition of hydrophobic (white bars) and

electrostatic (gray bars) energies from E12 for

each conformation (a–d).
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Barnase/barstar: interplay between hydrophobic
and electrostatic interactions

The notion of a stable crystal-like conformation is chal-
lenged by simulation results of the barnase/barstar complex.
Although the crystal conformation displayed stability in
brute-force simulations (Fig. 2 A), PPR-based CGMD simu-
lations show that multiple alternative conformations are
energetically stable (Fig. 6A). Fig. 6B shows four conforma-
tions with low E12 (a–d) on a multibasin energy globe. In
particular, conformation (b) has a similar E12 with the
crystal-like conformation (a), but barstar (in red) binds
at a distant site from the C-shaped binding groove of bar-
nase (in blue). Furthermore, energy decomposition shows
stronger hydrophobic interactions in conformations (a) and
(d), whereas electrostatics is stronger in conformations (b)
and (c) (Fig. 6 C). This suggests that an interplay between
both electrostatic and hydrophobic interactions is in place
among these conformations, in accord with experimental
observations on a high degree of both shape and charge
complementarity (35).

These simulation results may provide a possible explana-
tion for previous mutation studies. Structural analyses based
on the crystal structure show that a set of charged residues
(Lys-27, Arg-87, and His-102) in barnase interact with
barstar (35), as in the conformation (a). In contrast, a dif-
ferent set of charged residues (Arg-59, Glu-60, Lys-62,
Lys-66, and Arg-69) are involved in conformation (b),
contributing to an increased electrostatic energy. One dif-
ference is that Arg-59 is at the core of a network of interac-
tions at the binding interface in conformation (b), whereas
it is on the edge or far away from the core binding inter-
faces in the crystal-like conformation (a). Because of such
a critical role of Arg-59 in the conformation (b), one would
imagine that any disruption might affect its complex asso-
ciation, either thermodynamically or kinetically. Indeed, a
significant change, >400 times in dissociation rate, has
been observed in a point mutation of Arg-59 to Ala (53).
Additional mutations Asn-58 and Glu-60 at the interface
also show substantial change in the rate. This suggests
that conformation (b), predicted from CGMD simulations,
provides a structural basis for the observed large rate
change upon mutation. We also note that the barnase sur-
face at the conformation (b) is slightly deformed, suggesting
that induced-fit helps achieve a better charge comple-
mentarity. Taken together, these results suggest that an
energy landscape view of protein-protein interactions makes
the identification of alternative conformations in barnase/
barstar possible, further providing a sound structural basis
for mutagenesis.
CONCLUDING REMARKS

We have established a theoretical pipeline to navigate the
energy landscape of protein-protein association via PPR-
CGMD simulations. The simulations naturally permit and
account for the flexibility of protein domains in the realiza-
tion of induced-fit mechanisms. The use of a PPR sampling
scheme enables an exhaustive search to uncover hidden
areas of the conformational space. An energy globe is
further introduced to navigate the energy landscape of
a wide range of resultant conformations. This globe also
allows accessing the sampling quality determined by the
extent to which the globe is covered by the simulation
trajectories. Among four (out of five) protein complexes
we examined, their crystal-like conformations are favorable
on the energy landscape, suggesting that the CG model
captures the basic features of molecular forces driving
protein-protein association. One exception is barnase/bar-
star, where apart from the crystal-like conformation, alterna-
tive conformations are also energetically favored.
FIGURE 6 Energy landscape of the barnase/bar-

star complex. (A) A plot of E12 versus RMSD. A

total of 43,554 configurations from CGMD simula-

tions are shown in black dots, where Rmax¼ 50 Å,

Rc ¼ 25 Å, and Rmin ¼ 0 Å were used in the PPR

scheme. (B) Front view of the energy globe colored

by E12. We used a total of Nf ¼ 120 clusters (also

shown in blue dots in A) after the two-step clus-

tering. Four representative conformations (a–d)

are shown on the globe, where conformation (a)

with the lowest E12 resembles the crystal struc-

ture (35). (C) The decomposition of hydrophobic

(white bars) and electrostatic (gray bars) energies

from E12 for each conformation (a–d).
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The ability of a simple CG model to identify relevant
conformations could be due to the relatively smooth bind-
ing free energy landscape for functional proteins (54–57).
Of course, the inherent simplifications in such a simple
model cannot characterize atomically detailed interactions
(23,58–61); in that case, the CG-identified conformations
can be relaxed and used as a starting point for atomistic
simulations. In addition, the current CG model has captured
the physical basis of protein-protein association, but it may
fail to produce meaningful results on protein-ligand interac-
tions where details can matter. We also note that folding and
unfolding, which can be coupled with the protein associa-
tion process (54–56,62), are not studied here. Furthermore,
our focus is mainly on protein association into compact
conformations that are energetically favorable; the forma-
tion of extended and entropically favorable conformations,
or the kinetic process of association itself, is not fully exam-
ined here, but will be illustrated in future communications.

Finally, we wish to emphasize that this PPR-CGMD
simulation pipeline can be readily applied to those protein
complexes whose crystal structures are unknown, especially
since considerable knowledge about individual protein
subunits has been made available after decades of efforts
(63). It is thus anticipated that this pipeline is positioned
to serve as an alternative approach to study protein-protein
interactions on a wide range of protein complexes.
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