
© 2012 Landes Bioscience.

Do not distribute.

TOPLESS co-repressor interactions
and their evolutionary conservation in plants

Barry Causier,1 James Lloyd,1 Laura Stevens1,† and Brendan Davies1,*

1Centre for Plant Sciences; Faculty of Biological Sciences; University of Leeds; Leeds, UK

†Current address: Division of Plant Sciences; The James Hutton Institute; University of Dundee; Dundee, UK

Keywords: arabidopsis, Physcomitrella patens, co-repression, TOPLESS, protein-protein interaction

Large-scale protein-protein interaction studies recently demonstrated that the Arabidopsis TPL/TPR family of
transcriptional co-repressors is involved in a broad range of developmental processes. TPL/TPRs predominantly
interact with transcription factors that contain repression domain (RD) sequences. Interestingly, RDs reported in the
literature are quite diverse in sequence, yet TPL/TPRs interact with proteins containing all of the known motifs. These
data lead us to conclude that the TPL/TPRs act as general repressors of gene transcription in plants. To investigate this
further, we examined interactions between TPL/TPR proteins encoded by the moss Physcomitrella patens genome and
components of the auxin signaling pathway. As in Arabidopsis, moss TPL proteins interact with AUX/IAA and ARF
proteins, suggesting that they act in both forms of ARF-mediated transcriptional repression. These data suggest that the
involvement of TPL in auxin signaling has been conserved across evolution, since mosses and angiosperms diverged
approximately 450 million years ago.

Transcriptional co-repression is emerging as an important
mechanism by which genes can be regulated. A major class of
transcriptional co-repressors are the Gro/Tup1 proteins, which are
conserved in eukaryotes.1 In plants, two families of Gro/Tup1 co-
repressors have been identified: LEUNIG/LEUNIG_HOMOLOG
(LUG/LUH) and the TOPLESS/TOPLESS-RELATED (TPL/
TPR) groups.1 LUG, and its counterparts from other plant
species, plays roles in vegetative and floral organ development,
cell proliferation, meristem activity, embryo development and
seed mucilage release.2-14 Similarly, TPL/TPRs have a range of
reported functions, including roles in embryo development,15

auxin and jasmonic acid signaling,16,17 plant immunity18 and
meristem fate.19,20 Recently, TPL/TPR proteins were implicated
in additional biological processes, such as biotic and abiotic
stress responses and the floral transition, by the establishment of
a protein-protein interaction framework for this family of co-
repressors from Arabidopsis.21,22 It was revealed that TPL/TPR
proteins interact almost exclusively with transcription factors
(TFs), many of which have previously been implicated in
transcriptional repression.

Diverse Repression Domain Sequences Establish
Interactions with TPL/TPRs

Prior to the TPL/TPR interactome framework,22 interaction data
identified only TFs with the ERF-associated amphiphilic
repression (EAR) domain (with amino acid sequence LxLxL)23

as TPL/TPR partners,16-18,20 suggesting that this specific motif
was necessary for recruiting TPL/TPRs. Surprisingly though, the
TPL/TPR interaction framework revealed that all of the previ-
ously characterized repression domains (RDs) (LxLxL; DLNxxP;
R/KLFGV; TLxLF)21,22,24-27 were enriched among TFs that
interact with TPL/TPR proteins, and were subsequently shown
to be necessary for recruiting TPL/TPR.22 These findings demon-
strate that the TPL co-repressors are able to interact with diverse
short RD sequences. In addition, some interactors lacked any
known RD, suggesting that undiscovered motifs may exist. For
example, analysis of the interaction framework revealed putative
novel RDs with similarity to the RLFGV sequence, one of which
was also shown to be necessary for TPL interaction.22

While TFs were enriched within the TPL/TPR interaction
framework, several uncharacterised proteins were also isolated that
may represent novel transcription factors or adaptor proteins.
Novel adaptors have the potential to broaden the range of TFs
that can recruit the TPL/TPR proteins, including those without a
RD. For example, TPL was shown to interact directly with
EAR-containing JAZ proteins involved in jasmonic acid (JA)
signaling.22,28 However, despite having a role in repression of JA-
responsive genes, many JAZ proteins do not have a RD sequence.
Recently, JAZ proteins were shown to associate with TPL/TPRs
via the adaptor protein NINJA, which potentially allows TPL to
be recruited by JAZ proteins lacking an RD.17

The Arabidopsis TPL/TPR interaction framework reveals that
this family of co-repressors acts broadly throughout development.
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We predict that these factors work as general repressors of gene
transcription and that they are part of the mechanism of context-
specific switching between gene activation and repression.

The Role of TPL in Auxin Signaling has been
Conserved in Land Plants

In angiosperms, the auxin response is controlled by AUX/IAA
proteins and the auxin response factor (ARF) group of TFs. In
Arabidopsis, it was shown that, in the absence of auxin, TPL
interacts with AUX/IAA proteins to prevent activation of auxin
responsive genes by activating ARFs.16 We were interested to learn
whether the role of TPL in auxin signaling is an ancient
mechanism conserved in plants. The moss Physcomitrella patens
diverged from the angiosperms approximately 450 million years
ago, and examination of its genome reveals that it encodes many
components of the auxin signaling pathway, including three
AUX/IAA proteins (PpIAA1A, PpIAA1B, PpIAA2) and 15 ARF
proteins.29 The moss genome also encodes Gro/Tup1 co-repressor
proteins including 2TPL proteins (PpTPL1 and 2),29 and 4
putative LUG-like factors (Fig. 1). First we investigated whether
the TPL-AUX/IAA protein-protein interactions are conserved in
moss using well-established protocols.22 Our data reveals that
both PpTPL1 and PpTPL2 interact with all three moss AUX/
IAA proteins (Fig. 2). Moss AUX/IAA proteins have a modified

EAR-like motif (LxLxPP),29 the mutation of which disrupts the
interaction with TPL (Fig. 2). Critically, this provides the first
biological evidence that LxLxPP is necessary for recruiting
PpTPLs, suggesting LxLxPP could act as a repression domain in
moss. Second, we examined interactions between PpTPL1/2 and
moss ARF proteins. ARFs fall into two broad classes – those that
activate gene transcription and those that directly repress it.30

The Arabidopsis TPL/TPR interaction framework revealed that
TPL interacts directly with repressive ARFs, suggesting that the
TPL co-repressors function in both forms of ARF-mediated
repression. Here we examined whether moss TPL proteins also
interact with repressive ARFs. Although all putative repressive
ARFs were tested in yeast two-hybrid experiments, only interac-
tions with two were identified. PpTPL2 interacts with both
PpARFe (Pp1s339_47V6.1) and PpARFf (Pp1s279_9V6.1),
while PpTPL1 only interacts with PpARFe. PpARFe and
PpARFf have recognizable RD sequences at similar positions
within the proteins. One other moss ARF has a known RD
(Pp1s280_7V6.1), but at a different site in the protein, and no
interaction with PpTPL1/2 was detected. Phylogenetic analyses
show that PpARFe and PpARFf cluster with the Arabidopsis
ARF10, 16 and 17 proteins.29 These proteins group separately
from the activating ARFs and have a short middle region similar
to the ARF repressors, but distinct from that of the activating
ARFs, which is longer and often Q-rich.29,30 It is interesting to

Figure 1. Phylogenetic relationship of Arabidopsis and moss TPL and LUG proteins. An UPGMA tree, showing the relationships among putative TPL and
LUG family proteins from Arabidopsis and P. patens, was generated from ClustalW alignments of full-length proteins using the MacVector software suite.
Arabidopsis proteins are highlighted in orange, and P. patens proteins in green. The TPL/TPR and LUG/LUH clades are highlighted. Note that the moss
TPL sequences (PpTPL1 and PpTPL2) group with the Arabidopsis TPL, TPR1 and TPR4 proteins, suggesting that this might be the ancestral clade and
that the TPR2/TPR3 clade diverged later in the angiosperms, or that the TPR2/TPR3 genes were lost from the moss genome. AtTPL, At1g15750; AtTPR1,
At1g80490; AtTPR2, At3g16830; AtTPR3, At5g27030; AtTPR4, At3g15880; AtTPL-like, At2g25420; AtLUG, At4g32551; AtLUH, At2g32700; PpTPL1,
Pp1s99_260V6.1; PpTPL2, Pp1s316_34V6.1; PpLUG1, Pp1s371_17V6.1; PpLUG2, predicted from Pp1s371_10V6.1 and Pp1s371_13V6.1; PpLUG3,
Pp1s45_33F3.1; PpLUG4, Phypa_162589.
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note that ARF17 was identified among the Arabidopsis TPL/TPR
interactors,21,22 suggesting that this group of ARFs have the
potential to act as repressors, and that these TPL-ARF interactions
may be evolutionarily conserved.

In angiosperms, the functional study of activating transcrip-
tion factors is often hampered by genetic redundancy. One
approach to overcome this is to generate chimeric TFs fused to
the EAR motif that act as dominant repressors.31 The use of
chimeric TF repressors has not yet been reported in moss.
However, our discovery that the LxLxPP motif can recruit
PpTPL1/2 proteins suggests that chimeric TFs fused to the
LxLxPP sequence may represent a specific and robust tool for
such studies in moss.

Our data shows for the first time that the involvement of TPL
in auxin signaling has been conserved since moss and angiosperms
diverged. Conservation of the repression mechanism used by the
auxin signaling pathway, demonstrates an early adoption of the
TPL/TPR co-repressor system in plant evolution. Data from
Arabidopsis suggests that TPL/TPRs were co-opted into many

biological processes, placing these co-repressors at the center of
plant development. It will now be important to compare the
TPL/TPR interactome in moss to the Arabidopsis framework
and to determine which developmental processes require its
activity in moss. To help with the dissection of biological
processes dependent on the extensive co-repressor-TF interaction
framework, we have initiated a PLAnt Corepressor Interaction
Database (placid.leeds.ac.uk). The aim of this database will be to
collate interactions between transcription factors and co-repressors
across different plant species.
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Figure 2. Protein-protein interactions between moss TPL proteins and components of the auxin signaling pathway. Interactions were tested between
PpTPL1/2 bait proteins and moss AUX/IAA or ARF prey proteins in yeast two-hybrid assays. Yeast containing the bait and prey constructs were plated
on media that selects for protein-protein interactions (minimal media minus histidine + 2.5mM 3-AT; -His) or control media without selection (+His). Yeast
growth in the –His row indicates interaction between the bait and prey proteins listed at the top of the figure. Negative controls for interactions, a moss
ARF protein lacking a repression domain (RD) are indicated (-ve). Putative RD sequences present in the appropriate AUX/IAA or ARF protein are listed
along the bottom of the panel. Mutated RD residues are underlined. PpTPL1, Pp1s99_260V6.1; PpTPL2, Pp1s316_34V6.1; PpIAA1a, AB061222; PpIAA1b,
Pp1s184_21V6.1; PpIAA2, Pp1s73_11V6.1; PpARFa, Pp1s14_392V6.1; PpARFe, Pp1s339_47V6.1; PpARFf, Pp1s279_9V6.1
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