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Nuclei in dry Arabidopsis thaliana seeds are very small and have highly condensed chromatin. Nuclear shrinkage and
chromatin compaction occur during seed maturation and have been shown to be independent, developmentally
controlled processes. To confirm this genetically, we studied chromatin compaction in a mutant of the seed
developmental regulator ABA INSENSITIVE 3, and in a double mutant of the nuclear matrix proteins LITTLE NUCLEI 1
and 2. Our results indicated that the nuclear shrinking and chromatin condensation during seed maturation can be
genetically uncoupled, confirming that these are independent processes. In addition, we demonstrated that transcript
levels of siliques toward the end of seed maturation are comparable to those in vegetative tissues, despite the highly
compacted chromatin, small nuclear volume, and low hydration status of seeds.

Introduction

Plant embryos are protected within the seed, which allows their
dispersal. In addition, the extremely low metabolic activities and a
moisture level below 10% contribute to seed survival under
hostile environmental conditions for extended periods.

The seed maturation phase in the model plant Arabidopsis
thaliana is initiated after the embryo has been fully developed,
starting at ~10Days After Pollination (DAP) and ends when the
seed is mature and desiccated (~20DAP). The transcription
factors ABSCISIC ACID INSENSITIVE 3 (ABI3), LEAFY
COTYLEDON1 (LEC1), LEC2 and FUSCA3 (FUS3) control
seed maturation in Arabidopsis.1 Mutants in these central
regulators accumulate less storage compounds, show reduced
desiccation tolerance and reduced seed dormancy.1-3

Studies on chromatin organization in seeds focused on seedling
establishment and on the early stages of embryo development.
It has for instance been shown that germinating seeds lack
conspicuous heterochromatic DNA-domains, which re-appear
during seedling establishment.4 In addition, diverse chromatin
remodeling factors are required to repress embryonic properties in
adult plants.5,6 We have recently analyzed nuclear morphology
and chromatin organization in maturing and dry seeds at the
microscopic level, using 4',6-diamidino-2-phenylindole (DAPI)

staining. Interestingly, this revealed a major decrease in nuclear
size between 8 and 12 DAP, before major dehydration of the
maturing seed.7 Nuclei increased again in size during imbibition/
germination. Although seeds are saturated with water at 1–2h
after imbibition, a strong increase in nuclear size was observed
only after 24h of imbibition, indicating that germination (and not
rehydration per se) is required for the increase in nuclear size. In
conclusion, it was shown that the dynamics in nuclear size is
developmentally controlled, independently from changes in
moisture content. Accordingly, a similar reduction in nuclear size
was observed in desiccated leaves of the resurrection plant
Craterostigma plantagineum.7 This suggests that reduced nuclear
size is likely to be part of a general mechanism to establish
desiccation tolerance in plants.

Analysis of heterochromatic sequences in nuclei by Fluorescent
In Situ Hybridization (FISH) and calculation of the Relative
Heterochromatic Fraction (RHF) showed that the chromatin of
embryonic cotyledon nuclei from mature seeds is highly con-
densed. Kinetic analysis revealed that the changes in chromatin
condensation can be uncoupled from the changes in nuclear size
and hydration status of the seed, indicating that the increase in
chromatin compaction is an independent process.7

In this short communication, we follow up on these observa-
tions and study the role of the genes ABI3, LITTLE NUCLEI 1
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(LINC1) and LINC2 in the genetic uncoupling of nuclear size and
chromatin condensation. In addition, we show that transcript
levels in mature siliques at the end of seed maturation are similar
to those in other tissues, despite the highly compact chromatin,
the small nuclear volume and the low moisture content of seeds.

Results and Discussion

Genetic uncoupling of nuclear size reduction and chromatin
compaction in seeds. The transcription factor ABI3 is involved
in the reduction of nuclear size during seed maturation, whereas
the nuclear matrix proteins LINC1 and LINC2 are required for
the increase in size during imbibition/germination.7 The linc1–1
linc2–1 double mutant has constitutive small nuclei,8 which only
slightly reduce in size during seed maturation. We were interested
whether the abi3–5 and linc1–1 linc2–1 mutants also affect
chromatin condensation during seed maturation. Therefore, we
calculated the Relative Heterochromatin Fraction (RHF), an
indicator of chromatin compaction,9 at the beginning and the end
of seed maturation.

The abi3–5 mutant shows similar RHF values at 10DAP and
20DAP (Fig. 1). These values are comparable to those of wild-
type Landsberg erecta nuclei at the beginning of seed maturation.
ABI3 is a central regulator of seed maturation and many aspects of
seed maturation are affected in the abi3–5 mutant, including the
decrease in nuclear size.7 Therefore, ABI3 is required for the
regulation of both the decrease in nuclear size and the increase in
chromatin compaction during seed maturation. In contrast, the
linc1–1 linc2–1 double mutant shows an increase in RHF similar
to wild-type, despite the absence of a strong reduction in nuclear

size.7 This underlines that the decrease in nuclear size and the
increase in chromatin compaction can be uncoupled and confirms
the independent regulation of these two processes.

Maintenance of transcription levels in mature siliques.
Increased chromatin compaction levels are generally associated
with decreased transcriptional activity.10,11 Interestingly, the
decrease in nuclear volume and increase in chromatin condensa-
tion of cotyledons during seed maturation is probably not
associated with a general reduction in transcription levels, as the
fraction of genes for which gene expression is detected in mature
siliques is comparable to that of leaves and seedlings (Fig. 2A). In
addition, a comparison of the transcription dynamics in these
tissues using Z-scores12 showed similar distributions of genes with
expression below or above the average expression level. Mature
siliques even showed a higher fraction of genes expressed above
average than rosette leaves (Fig. 2B-D). Mature siliques consist of
several tissues that could all contribute to the observed high
expression levels. However, siliques and testa are dead tissues and
it is plausible that the cotyledons indeed contain a combination of
high expression levels and high chromatin compaction.

Possibly, this apparent discrepancy could be explained by the
observation that several components of the RNA Polymerase II
Associated Factor 1 Complex (PAF1C) are upregulated toward the
end of seed maturation to maintain transcription in small nuclei
with highly condensed chromatin.13 PAF1C facilitates transcrip-
tion by providing a platform for the association of complexes that
modulate the structure of local chromatin during transcription
elongation.14 Another likely explanation is that these experiments
do not only reveal actively transcribed mRNA, but show the total
amount of RNA that is present in seeds including stored mRNA

transcribed during earlier phases of seed maturation. This
would imply that mRNA in seeds is very stable.

It is not possible to measure active transcription in
dry seeds, but run–on experiments can determine the
genes that are in a transcriptionally competent state.
Comai and Harada15 analyzed several genes in Brassica
napus seeds and concluded that their transcriptional
competence was reduced but not absent in dry seeds
compared with maturing seeds. Although these genes
still have the ability to be transcribed in vitro, they are
probably not actively transcribed in vivo in the dry seed
due to the extremely low moisture content and the
highly compacted chromatin.

Materials and Methods

Tissues were fixed in Carnoys fixative. Spread prepara-
tions of nuclei were made as described previously.16

RHF (fluorescence intensity of intensely DAPI-stained
chromocenters, relative to the fluorescence of the entire
nucleus) measurements were performed using a macro17

in ImagePro-Plus (Media Cybernetics) as described
previously.7,9

The Z score transformation is a common approach
usually applied for analyzing expression behavior within
multiple experiments.12 It has been applied to depict

Figure 1. Chromatin compaction in embryonic cotyledon nuclei during seed
maturation of abi3–5 and linc1–2 linc2–1mutants. Relative Heterochromatin Fraction
(RHF) at 10 DAP (black bars) and 20 DAP (gray bars) in abi3–5 and linc1–2 linc2–1 and
the corresponding wild types Landsberg erecta (Ler) and Columbia-0 (Col-0).
Error bars represent SE, n $ 99.
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Figure 2. Comparison of transcriptomics data between diverse plant tissues. (A) Fraction of genes for which transcripts were detected (% of probe sets
with detection P-value , 0.05) in different tissues of Ler wild-type. Siliques were harvested at 18–19 DAP13 and rosette leaves and seedling data were
obtained from publicly available microarray data NASCArray ID: affymetrix.arabidopsis.info/narrays/experimentpage.pl?experimentid = 327 and GEO
(www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE911), respectively. Error bars represent SE (B-D) Histograms of relative expression levels (Z-scores)
of (B) siliques at 18–19 DAP, (C) rosette leaves and (D) seedlings. Note that the average expression level is X = 0 and is shown as a dashed line.
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expression dynamics of microarray data.18,19 The Z score trans-
formation adjusts the logarithmic gene expression values such that
each experiment has zero mean and unit variance. Z scores are
calculated by subtracting the global average to the gene expres-
sion value and dividing that result by the global standard devia-
tion (SD): Z score = (intensityG - mean intensityG1. . .Gn)/
SDG1. . .Gn.

In order to compare the average expression level in mature
siliques to that in other tissues, we downloaded publicly available
microarray data of rosette leaves and seedlings from NASCArrays
(affymetrix.arabidopsis.info/narrays/experimentpage.pl?experimentid
=327) and GEO (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE911), with three and two replicates, respectively. These

data are all from the Ler accession and generated using the
Affymetrix Arabidopsis ATH1 Genome Array. The processing of
the microarray data was done as previously18 and the Z scores were
then calculated as above.
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