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Abstract

Complex disorders often involve dysfunctions in multiple tissue organs. Elucidating the communication among them is
important to understanding disease pathophysiology. In this study we integrate multiple tissue gene expression and
quantitative trait measurements of an obesity-induced diabetes mouse model, with databases of molecular interaction
networks, to construct a cross tissue trait-pathway network. The animals belong to two strains of mice (BTBR or B6), of two
obesity status (obese or lean), and at two different ages (4 weeks and 10 weeks). Only 10 week obese BTBR animals are
diabetic. The expression data was first utilized to determine the state of every pathway in each tissue, which is subsequently
utilized to construct a pathway co-expression network and to define trait-relevant and trait-linking pathways. Among the six
tissues profiled, the adipose contains the largest number of trait-linking pathways. Among the eight traits measured, the
body weight and plasma insulin level possess the most number of relevant and linking pathways. Topological analysis of the
trait-pathway network revealed that the glycolysis/gluconeogenesis pathway in liver and the insulin signaling pathway in
muscle are of top importance to the information flow in the network, with the highest degrees and betweenness
centralities. Interestingly, pathways related to metabolism and oxidative stress actively interact with many other pathways
in all animals, whereas, among the 10 week animals, the inflammation pathways were preferentially interactive in the
diabetic ones only. In summary, our method offers a systems approach to delineate disease trait relevant intra- and cross
tissue pathway interactions, and provides insights to the molecular basis of the obesity-induced diabetes.
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Introduction

Phenotypic traits are properties that emerge from the interac-

tions of genes within a dynamic environmental framework. A

major goal of systems biology is to understand how the interactions

lead to the observed traits [1,2]. This is especially critical in the

study of complex diseases, where it is evident that they cannot be

deciphered through considering individual genes only. A disease

trait normally correlates with the inability of a particular

functional network module to carry out its basic function, and

the pathogenesis of a complex disease can involve the perturba-

tions of more than one module. In a complex disease like Type 2

Diabetes (T2D), a spectrum of traits, such as obesity, hypergly-

cemia, insulin resistance, etc, are associated to the risk of

developing T2D. These suggest that multiple functional pathways

are involved. Further complexities arise from the fact that multiple

tissues are involved and the crosstalk among them is important to

disease development. For instance, problems in both the insulin

secreting pancreatic islets and target tissues of insulin action are

observed in diabetics, and are believed to contribute to disease

pathogenesis [3–8]. Therefore it will be highly valuable to map out

the signaling pathways, and their interactions, both intra and cross

tissue, underlying the disease traits.

A basic bioinformatics question that arises is, in mapping the

genetic architecture of a disease, is it more efficient to develop gene

level metrics and make assessment of gene networks through their

members’ relevance to disease; or to develop network level metrics

that directly assess a whole network? In the gene expression data

analysis, both approaches were developed, either starting with

differentially expressed genes followed by identifying pathways

with enhanced presentation among them; or starting with

pathways (or predefined gene set) directly through evaluating the

expression distribution shift of the whole gene set [9].

Networking individual genes is known to suffer from high noise

and high false positive rate. On the other hand, networking

pathways has demonstrated its advantage in providing more

relevant biological insights in understanding disease pathogenesis

and in establishing the inter- disease relationships [3,10]. For

instance, Hu and Li proposed a framework to construct a network

of pathways according to co-expression between genes in different

pathways [3]. Pathways relevant to each disease are ascertained

from the disease induced differential expression of their members.

When applied to T2D and obesity, they demonstrated that the

method can identify signature pathways for each disease and

establish valid association between them. Li et al proposed an
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approach that first defines disease associated genes through

literature mining, followed by associating pathways to diseases

based on enriched disease gene presence among pathway

members, and linking different diseases based on pathway sharing

[11]. To our knowledge, there is no study till now that focuses on

delineating the association of clinical traits related to the same

disease at the molecular pathway level.

Recently, Keller et al profiled gene expression in six tissues

(pancreatic islet, liver, adipose, hypothalamus, gastrocnemius, and

soleus), and measured eight quantitative traits (including plasma,

glucose, and insulin) in a mouse model of obesity-induced diabetes

[7]. They constructed co-expression networks in each tissue and

linked network modules (densely connected subregions of the

whole network) to traits if the average expression of members

correlates to trait variations. A number of modules in islet, adipose,

and soleus were found to strongly correlate with plasma glucose;

several modules in islets, liver, and adipose exhibited a high

correlation with insulin but not with glucose; a module in adipose

correlated with inflammation. They further constructed intra- and

inter-tissue networks of the pathways by linking those whose first

principal components correlated. It was found that there was

substantial tissue difference in the degree of intra-tissue connec-

tivity. In both BTBR and B6 mouse strains, the two muscle tissues

had the most intra-tissue connections (i.e. co-expressions), whereas

liver and hypothalamus had the fewest. There was also significant

strain difference, likely obesity-dependent, in the structure of the

intra-tissue co-expression network. For instance, profiles of the cell

cycle module suggested that obesity induced islet cellular

proliferation occurred in B6 but not in BTBR mice. There was

also an increase in inter-tissue connectivity in BTBR vs B6.

In a similar study by Dobrin et al [8], gene expression levels

were profiled in adipose, liver and hypothalamus of the F2

progeny from a cross between the outbred M16 and ICR

(imprinting Control Region) control mouse strains. The bipartite

tissue to tissue co-expression network was first constructed for each

pair of tissues, and subsequently partitioned into subnetworks

utilizing the edge betweenness centrality measures defined in [12].

Centrality of a network node refers to its relative importance in the

network, in terms of its potential influence on others. Edge

betweenness is one of the centrality measures that was first

proposed by Linton Freeman [12], which focuses on evaluating a

node’s importance both to the local structure and to the global

information flow. It is defined to be the fraction of shortest paths

between all other nodes that passes through the given node.

Topological evaluation of the network revealed that it is scale free,

with some genes acting as hub nodes operating across tissues.

Through analysis of the cross tissue networks, entire new classes of

genes were identified to be associated with disease [8]. These genes

were systematically overlooked in single tissue analyses because

they formed, on average, no meaningful intra-tissue connections.

In both studies [7,8], pathway networks were constructed using

individual gene-based metrics; the disease trait measurements were

not utilized. Here we propose a pipeline to reverse engineer the

tissue-specific pathway and trait interaction networks for obesity-

induced T2D using the gene expression and trait measurements by

Keller et al [7]. We will utilize the Pathway Connectivity Index

(PCI) that we previously developed to characterize the molecular

state of a pathway during a given biological process [13], and to

link the different pathways, and to link pathways to traits. PCI

defines the molecular state of a network based both on the state of

individual genes and on the topological structure of their

interactions (see Methods). We have previously demonstrated its

efficiency at identifying phenotype associated pathways using

several gene expression datasets [13–15] and in candidate disease

gene prediction [16,17]. Pathway network edges are defined if the

PCI of two pathways correlate, and pathway-trait links are made if

the pathway PCI correlates to trait variations. By performing

comparative network analysis, we can then hypothesize about the

association among clinical traits at the molecular pathway level.

Compared to the existing works [7,8], our approach is new and

different in the following aspect: (1) We start with the known

KEGG pathways (www.genome.jp/kegg/) as the unit of our

operation. We directly characterize the state of each pathway

using a new quantitative metric that considers contributions both

from individual genes and from their interactions. (2) The

approach by Keller et al restricted their analysis to genes that

showed one of the 15 predefined patterns [7], and the study by

Dobrin et al [8] restricted to genes showing differential expression

in at least 5% of the samples. Our approach utilizes expression

information of every gene to score pathways and therefore will not

miss gene sets that exhibit subtle but consistent changes as a group

[9]. (3) Though eight disease related traits were measured in every

animal by Keller et al [7], they were not previously utilized in

pathway network construction nor in identification of disease-

relevant pathways. We will include them to delineate the genetic

architecture underlying each trait.

Materials and Methods

Gene expression and quantitative trait data
Multi-tissue microarray data were obtained from Gene Expres-

sion Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/,

GSE10785). In this study [7], gene expression levels were profiled

in six tissues that include hypothalamus, gastrocnemius, soleus,

liver, adipose, and pancreatic islet from 2 mouse strains, the lean

and obese C57BL/6 (B6) and the lean and obese BTBR mice, at

two different ages, 4 weeks and 10 weeks. Five replicate animals

were sacrificed under each condition in each strain, totaling 40

mice (2 strains62 obesity status62 time points65 replicate

animals). The two strains differ in obesity-induced diabetes

susceptibility. B6 mice remain essentially non-diabetic at all ages,

irrespective of obesity; whilst obese BTBR mice become severely

diabetic by 10 wk of age. This study used Rosetta/Merck Mouse

44 k 1.0 oligonucleotide microarray. For a given tissue from each

animal, labeled cRNA was hybridized against a pool sample

constructed from equal aliquots of RNA from all of the 20 animals

of the corresponding strain. This gives a total of 240 microarrays (6

tissues640 animals). In our study we used the log10 ratio (of each

animal to the common reference) in our network modeling.

Eight T2D-related quantitative traits were also measured in

each mouse and kindly provided to us by the authors [7]. These

include the plasma glucose, insulin, total number of islets

harvested per pancreas, body weight, triglyceride (TG), and levels

in circulation of three adipokines: adiponectin, plasminogen

activator inhibitor-1 (PAI-1), and resistin.

Mouse pathway and gene interaction network
information

187 mouse pathways were downloaded from KEGG (http://

www.genome.jp/kegg), and a Perl script is written to curate the

information of pathway links maintained in KEGG. Functional

interactions of mouse genes were downloaded from the Princeton

mouseNET (http://avis.princeton.edu/mouseNET/). mouseNET

uses probabilistic framework to integrate diverse genetic and

genomic data to generate a functional network for the laboratory

mouse. It allows the users to predict novel functional assignments

and network components [18].

Cross Tissue Trait-Pathway Network for Diabetes
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Characterizing the activity state of a pathway
To network pathways one needs to have a quantitative metric to

characterize the state of each pathway. We believe that an efficient

metric needs to capture not only the activities of individual genes

in the pathway, but also their interaction patterns. Given a

pathway of n genes g1,g2, . . . gnf g, its gene interaction network

can be represented by a graph G V ,Eð Þ, where vertex set

V~ g1,g2, . . . gnf g, and the edge set

E~ gi,gj

� �
Dgenes gi and gj interact

� �
; or a matrix called the

adjacency matrix A~ ai,j

� �
, where ai,j~0, if genes i and j do not

interact; and ai,jw0 otherwise. In this study we construct E based

on the mouseNET, and the adjacency matrix is defined as:

aij~
1, i~j

Ppred , i=j

�
ð1Þ

where Ppred is the probability of functional linkage between the

two genes predicted by the mouseNET [18].

Assuming that x
orig
is is the (original) log expression measurement

for gene i in sample s, we first normalize it to zero mean and unit

variance through xnorm
is ~(x

orig
is {�xxorig

s )
.

ss, and then transform it

using the Sigmoid function xis~Sigmoid(xnorm
is ){0:5. For each

pathway we subsequently define the Pathway Connectivity Index,

PCI, to capture pathway level activity [13]:

PCI~
XN

i~1

XN

j~1

sign(xiszxjs) � DxisD1=2 � aij � DxjsD1=2 ð2Þ

where N is the number of genes in the pathway. This concept was

first introduced in our previous studies [13], and the adjacency

matrix of the protein-protein interaction network of genes in a

pathway was used in the definition. sign(xiszxjs) represents the

overall expression status (up- or down-regulation) of the gene pair,

and helps to reduce the information loss resulted from using

absolute expression values. The Sigmoid transformation is

introduced to reduce impact to PCI by genes with extremely

low or high expression values. In network modeling of pathways,

the PCI of each pathway is further normalized with its size N. This

makes the PCI across all pathways follow approximately a normal

distribution. PCI incorporates information of all available genes in

the pathway. Subtle yet consistent gene expression modification

will lead to a significant change in PCI. Furthermore, PCI

captures the topological properties of the pathway, hub genes

contribute more to PCI [13].

Networking pathways and traits
We propose a pipeline to construct the network of pathways and

traits by integrating the multi-tissue gene expression, trait

measurements, and pathways from KEGG (www.genome.jp/

kegg/). The scheme of the pipeline is given in Figure 1.

First the PCI of each pathway in each tissue of each animal is

determined. Next a pathway coordination network is constructed

where each node represents a pathway in a certain tissue and

hence has two attributes: {pathway, tissue}. An edge is added

between two nodes if their pathway PCIs correlate and the

pathways are curated to be linked by the KEGG. This includes the

situations of two different pathways in the same tissue, two

different pathways that each is from a different tissue, and the

same pathway in two different tissues.

Thirdly, we construct the trait-pathway network. For each T2D

trait, we define the relevant and the linking pathways. A relevant

pathway is one whose PCI correlates significantly with the trait

variation. A pathway is trait-linking if it satisfies one of the

following three conditions (Figure 1): (1) is a relevant pathway

simultaneously for 2 or more traits; (2) is relevant to one trait and

Figure 1. The pipeline of cross tissue trait-pathway network construction.
doi:10.1371/journal.pone.0044544.g001

Cross Tissue Trait-Pathway Network for Diabetes
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interacts with a relevant pathway of another trait; (3) interacts

simultaneously with relevant pathways of two different traits.

These three situations are depicted at the bottom of Figure 1. We

called them the Direct-network, Path2-network, and Path3-

network, respectively. Merging them we obtain a complex trait-

pathway network which links the T2D related traits and pathways

in the six key tissues. The network was further refined by removing

nodes of network degree 0 or 1 and those where the sum of

distance to the two nearest traits is .6. This helps to focus the

analysis on those nodes that are more interactive and more likely

to be relevant to T2D traits.

Both the global networks of all animals and the networks specific

to each of the eight groups of mice were constructed. In this study

we used Spearman correlation coefficient to construct the pathway

co-expression network. The threshold values were determined

through permutation tests. Briefly, the expression data of different

genes were randomly permuted 10,000 times, all pairwise pathway

correlation coefficients were recalculated each time. Using the

permutation results, the p-value for each correlations value is then

determined. We chose p,0.005 as the threshold for significant

correlation, this correspond to r.0.7 as the threshold for

correlation when constructing networks in each of eight groups

of mice, and r.0.4 when constructing shared network for all 40

mice. We have also tried other correlation indices, including the

percentage bend correlation index [19], and found no significant

difference in results obtained.

Fisher’s exact test was used to evaluate enhancement in pathway

interaction as compared to the KEGG annotation, and multiple

testing was corrected using the false discovery rate (FDR) [20].

Topological analysis and visualization of the trait-
pathway network

A Java script based on the Cytoscape library was developed to

analyze the topological properties of the trait-pathway network,

including the network degrees, betweenness, and the distributions

of linking pathways and ‘‘hub’’ pathways in different tissues. Edge

betweenness, i.e. the fraction of shortest paths between all other

nodes that pass through a given node in the network, were

determined adopting Ulrik Brandes’ algorithm [21]. The

MCODE Cytoscape plug-in [22] was used to identify densely

connected subregions of the network, namely, clusters of highly

interactive pathways. These clusters are usually of core importance

for the function of the whole network. Pajek [23] (http://pajek.

imfm.si/) was used to visualize trait pathway network with

partition of the nodes based on pathway category and tissues types.

Results

Associating tissue specific pathways and T2D
quantitative traits

Using all animals, we identified a number of trait-relevant

tissue-specific KEGG pathways: 186 for insulin, 32 for glucose, 19

for islet number, 34 for PAI1, 100 for resistin, 107 for TG, 209 for

weight, and 9 for adiponectin. Table 1 lists the top tissue-specific

pathways that are significantly correlated with the plasma insulin

level. Many studies have suggested the relevance of these pathways

to obesity and diabetes, such as Biosynthesis of unsaturated fatty

acids, Fatty acid biosynthesis, Butanoate metabolism, and

Oxidative phosphorylation [4]. The complete list of trait relevant

pathways is available in Table S1.

The co-expression of KEGG pathways were determined based

on their linkage annotated in KEGG and the correlative variations

in their PCI. We found that the pathways annotated to be linked

by the KEGG database share high PCI correlation both intra and

cross tissue. The correlation is significant even after adjusting for

the number of shared genes between the different pathways (data

not shown). The cross tissue pathway co-expression is likely

brought about by the communication between different tissues and

suggests the importance of characterizing such crosstalk during

disease.

Utilizing the trait-relevant and trait-linking pathways and the

pathway co-expression network, we constructed the trait-pathway

network, which is given in Figure 2. The association among the 8

T2D traits and communications between different tissues are

depicted through the trait-pathway and the pathway-pathway links.

In total there are 192 trait linking pathways in the Direct-network,

228 in Path2-network, and 352 in Path3-network. The final network

contains 405 pathway/tissue nodes and 2099 interactions. Note that

each node has two attributes: {pathway, tissue}. A SIF version of

Table 1. Top insulin-relevant tissue-specific KEGG pathways.

Tissue Pathway

Liver Biosynthesis of unsaturated fatty acids

Liver Fatty acid biosynthesis

Islet Phenylalanine metabolism

Liver Benzoate degradation via CoA ligation

Liver Glycerophospholipid metabolism

Islet Biotin metabolism

Islet Benzoate degradation via CoA ligation

Islet Lysine biosynthesis

Adipose Systemic lupus erythematosus

Islet Glycosylphosphatidylinositol(GPI)-anchor biosynthesis

Islet Bisphenol A degradation

Adipose Aminosugars metabolism

Adipose Gap junction

Liver Butanoate metabolism

Liver PPAR signaling pathway

Islet Ribosome

Adipose Non-small cell lung cancer

Liver Pentose phosphate pathway

Liver Glutathione metabolism

Adipose Melanoma

Islet Protein export

Liver Geraniol degradation

Liver Starch and sucrose metabolism

Adipose Fc epsilon RI signaling pathway

Islet Nucleotide sugars metabolism

Islet Oxidative phosphorylation

Liver Pyruvate metabolism

Liver Valine, leucine and isoleucine degradation

Islet D-Arginine and D-ornithine metabolism

Liver Thiamine metabolism

Liver Bile acid biosynthesis

Liver Metabolism of xenobiotics by cytochrome P450

Adipose Renal cell carcinoma

Adipose SNARE interactions in vesicular transport

Adipose Glioma

doi:10.1371/journal.pone.0044544.t001
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network was put into Cytoscape webcast and is available at http://

zen.dom.uab.edu:8080/pathwaynetwork/cytoscape/, where one

can view the details of the network with several built-in operations

and examine each node and its neighbors. Most of the pathways are

metabolism or inflammation related, which is consistent with the

current understanding of T2D. To appreciate the general theme of

this very complex figure, pathways that are in the same tissue and

are from the same KEGG pathway categories were clustered

together. The categories include Metabolism, Genetic information

processing, Environment information processing, Cellular possesses

(some pathways in this category were later taken out and expanded

into a new category: Organismal systems), and Human diseases.

The presence of pathway members from each category is further

evaluated using Fisher’s exact test. The results for all 30 clusters (5

KEGG categories66 tissues) are given in Table 2. We found that in

some tissues, members of certain pathway categories exhibit

significantly enhanced presentation in the trait-pathway network.

The top 3 clusters are Metabolism pathways in liver, islet and

adipose tissue, indicating that they are the most active and

interactive and, hence, the most relevant to disease traits. Four

out of five pathway categories are active in the adipose tissue, which

suggests a primary involvement of this tissue in obesity-induced

diabetes.

It was previously observed that known disease genes generally

exhibit tissue specific activity, with expression levels altered in the

tissues where specific gene defects cause pathology [8,24].

Therefore we also examined the distribution of the trait-linking

pathways in the six T2D relevant tissues. The results are listed in

Table 3. Evidently, the pathways are not equally distributed in the

six tissues. Adipose tissue contains the largest number of trait-

linking pathways for all traits, consistent with the fact that obesity

is the primary cause of T2D in this animal model. In addition, the

eight traits have a wide range of linking pathways. Weight

possesses the most, again maybe an indication of the central role of

obesity in T2D. Insulin level has the second largest number, which

fits well with the fact that impaired compensatory insulin secretion

under obesity is also a causal factor in T2D.

Topological properties of the trait-pathway network
We first investigated the global topological properties of the

trait-pathway networks in all six tissues. The degree distribution of

the network nodes is given in Figure 3. Interestingly it exhibits a

mixed behavior. While for nodes with degrees higher than 8 there

is clearly a power-law dependence, the frequencies for nodes with

degree below 8 are flat. This is different from the scale-free

networks typically observed with gene or protein networks. The

leveling off at the low degree end suggests that there are not as

many nodes with very low number of interactions as in a scale free

network. This is reasonable for a KEGG pathway network, as

these pathways are all of important functions and their interactions

are well annotated.

The power-law dependence at degrees .8 is indicative of a

small proportion of pathways serving as hub nodes that connect to

a large number of other pathways. In the study of gene or protein

networks, highly connected nodes are often considered important

to network function. For instance, analysis of the yeast protein-

protein interaction network revealed that the highly connected

genes are more likely to be essential for survival [25]. It is tempting

to hypothesize here that the highly-connected pathways in the

trait-pathway network are the most relevant to the obesity induced

T2D. Table 4 lists the top 20 highly connected tissue-specific

pathways. The most connected pathway is mmu00010, Glycoly-

sis/Gluconeogenesis in the liver, which interacts with 82 other

pathways. Its degrees in adipose tissue and islet are also high, 40

and 30, respectively. T2D is a complex disorder where diminished

insulin secretion and impaired insulin action together lead to

chronic hyperglycemia. The glucose metabolic pathways play an

important role in the pathogenesis of the disease. For instance,

glycolysis is a critical step in the signaling pathway of glucose

stimulated insulin secretion in islets [26]. Abnormalities in them

have been observed in diabetic subjects [27].

The citric acid cycle (TCA) is series of chemical reactions used

by all aerobic organisms to generate energy. It breaks down

pyruvates from glycolysis (and other pathways), and generates

ATP by oxidative phosphorylation. The importance of the TCA

cycle and the pyruvate metabolism pathway in obesity and T2D

has been demonstrated [28,29]. TCA cycle and/or oxidative

phosphorylation flux is known to be reduced in diabetes compared

to healthy controls [30,31]. Additionally some evidence suggests

that the reduced TCA flux may be of primary origin and may

control several major diabetic phenotypes including the increased

basal glucose uptake, increased basal glucose oxidation, and

Figure 2. The trait-pathway network of T2D. The pathways are clustered based on tissue type and KEGG pathway category. The largest clusters
are the metabolic pathways in adipose and liver.
doi:10.1371/journal.pone.0044544.g002
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Table 2. The pathway categories in the trait-pathway network.

Index1 KEGG pathway category Tissue
Fisher p-value, Over-
representation

Fisher p-value, under-
representation

25 Metabolism Liver 2.91E-09 1

20 Metabolism Islet 3.63E-06 1

5 Metabolism Adipose 0.0019 1

1 Human diseases Adipose 0.0038 0.998

2 Cellular possesses Adipose 0.0038 0.998

3 Environment information processing Adipose 0.040 0.984

4 Genetic information processing Adipose 0.090 0.961

8 Environment information processing Gastrocnemius 0.388 0.772

14 Genetic information processing Hypothalamus 0.474 0.710

18 Genetic information processing Islet 0.474 0.710

9 Genetic information processing Gastrocnemius 0.580 0.623

23 Genetic information processing Liver 0.580 0.623

29 Genetic information processing Soleus 0.580 0.623

28 Environment information processing Soleus 0.904 0.237

17 Cellular possesses Islet 0.920 0.164

22 Cellular possesses Liver 0.920 0.164

15 Metabolism Hypothalamus 0.952 0.0766

16 Human diseases Islet 0.961 0.0951

7 Cellular possesses Gastrocnemius 0.984 0.0481

11 Human diseases Hypothalamus 0.984 0.0481

10 Metabolism Gastrocnemius 0.986 0.0253

19 Environment information processing Islet 0.993 0.0443

24 Environment information processing Liver 0.993 0.0443

21 Human diseases Liver 0.994 0.0202

26 Human diseases Soleus 0.994 0.0203

30 Metabolism Soleus 0.999 0.0033

6 Human diseases Gastrocnemius 1 0.0015

27 Cellular possesses Soleus 1 0.0015

13 Environment information processing Hypothalamus 1 0.0101

12 Cellular possesses Hypothalamus 1 0.000201

1: Cluster index in Figure 1.
doi:10.1371/journal.pone.0044544.t002

Table 3. Distribution of trait-linking pathways in six tissues.

Trait Total # of pathways Adipose Gastrocnemius Hypothalamus Islet Liver Soleus

TG 106 40 6 5 25 25 5

glucose 31 5 2 3 11 9 1

Adiponectin 8 1 1 0 2 4 0

Resistin 53 22 7 1 8 9 6

PAI1 23 10 1 2 3 5 2

Insulin 177 51 11 5 43 61 6

weight 185 63 14 14 32 47 15

islets 16 4 2 0 6 4 0

Total each tissue 599 (in all tissues) 196 44 30 130 164 35

doi:10.1371/journal.pone.0044544.t003

Cross Tissue Trait-Pathway Network for Diabetes
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reduced complete lipid oxidation [32]. In addition pyruvate is

metabolized in pancreatic islets, though the extent and mechanism

of this metabolism remains unclear.

Edge betweenness, which measures the fraction of shortest paths

going through a node, is an important centrality index [33]. It

captures the influence that an individual node has in the spread of

information within the network [33]. In yeast it was observed that

proteins with high betweenness are more likely to be essential [34].

The top pathways with highest betweenness in our trait-pathway

network are listed in Table 5. Insulin signaling pathway in

gastrocnemius ranks second among all pathways. It interacts with

several other pathways important in glucose homeostasis [27].

Insulin increases glucose uptake and metabolism in skeletal muscle

by signal transduction via protein phosphorylation cascades. Some

downstream intermediates in the insulin signaling pathways

govern glucose homeostasis and can lead to skeletal muscle insulin

resistance in T2D [35]. Insulin action on signal transduction is

impaired in skeletal muscle from T2D subjects, and the

dysfunction is key to T2D development [36]. The MAPK

signaling, together with T cell receptor signaling pathway,

constitute another pathologically meaningful component relevant

to obesity induced diabetes: the inflammation in adipose tissue

[37–39].

In scale-free networks, high degree nodes tend to have high

betweenness. In our trait-pathway network, most of the pathways

with high betweenness also have high degree (compare Table 5

with Table 4, 8 of the 20 elements are shared). Figure 4 depicts the

subnetwork of the top high-degree and high-betweenness path-

ways listed in Tables 4 and 5. We hypothesize that together they

constitute a signature pathway network core of T2D, which

provides a picture of the primary molecular basis of T2D

pathogenesis.

Densely connected subregions of the trait-pathway
network

Using MCODE [22] we found that the trait-pathway network

contains a number of densely connected subregions. The top 2 are

displayed in Figure 5. They contain 8 nodes and 20 edges, and 9

nodes and 14 edges, respectively.

Figure 3. The degree distribution of the trait-pathway network.
Axes are in natural base log scale. The network degree (number of
interactions with other pathways) of pathways was log transformed and
allocated into 10 evenly spaced bins. Plotted are the frequency counts
in each bin against the bin center value.
doi:10.1371/journal.pone.0044544.g003

Table 4. Top 20 tissue-specific pathways with highest degrees.

Tissue Pathway Description Degree

Liver mmu00010 Glycolysis/Gluconeogenesis 82

Liver mmu00020 Citrate cycle (TCA cycle) 55

Liver mmu00252 Alanine and aspartate metabolism 46

Liver mmu00620 Pyruvate metabolism 45

Adipose mmu00010 Glycolysis/Gluconeogenesis 40

Liver mmu00260 Glycine, serine and threonine metabolism 37

Islet mmu00620 Pyruvate metabolism 37

Liver mmu00030 Pentose phosphate pathway 34

Islet mmu00230 Purine metabolism 33

Islet mmu00630 Glyoxylate and dicarboxylate metabolism 32

Islet mmu00010 Glycolysis/Gluconeogenesis 30

Liver mmu00630 Glyoxylate and dicarboxylate metabolism 29

Liver mmu00280 Valine, leucine and isoleucine degradation 26

Hypothalamus mmu00040 Pentose and glucuronate interconversions 26

Adipose mmu00400 Phenylalanine, tyrosine and tryptophan biosynthesis 26

Adipose mmu00230 Purine metabolism 25

Adipose mmu04010 MAPK signaling pathway 25

Liver mmu00040 Pentose and glucuronate interconversions 24

Liver mmu00251 Glutamate metabolism 24

Liver mmu00220 Urea cycle and metabolism of amino groups 24

doi:10.1371/journal.pone.0044544.t004
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Table 5. Top 20 tissue-specific pathways with highest betweenness.

Tissue Pathway Description Score

Liver mmu00010 Glycolysis/Gluconeogenesis 34451

Gastrocnemius mmu04910 Insulin signaling pathway 20871

Adipose mmu04120 Ubiquitin mediated proteolysis 16827

Adipose mmu04010 MAPK signaling pathway 12459

Islet mmu00350 Tyrosine metabolism 12147

Adipose mmu00010 Glycolysis/Gluconeogenesis 9971

Liver mmu00020 Citrate cycle (TCA cycle) 9704

Gastrocnemius mmu04150 mTOR signaling pathway 8510

Liver mmu00260 Glycine, serine and threonine metabolism 8480

Adipose mmu04660 T cell receptor signaling pathway 8294

Liver mmu00564 Glycerophospholipid metabolism 7873

Gastrocnemius mmu04010 MAPK signaling pathway 7642.

Liver mmu00620 Pyruvate metabolism 7444

Liver mmu00350 Tyrosine metabolism 7050

Islet mmu00010 Glycolysis/Gluconeogenesis 6789

Adipose mmu00051 Fructose and mannose metabolism 6564

Liver mmu00051 Fructose and mannose metabolism 6330

Islet mmu00563 Glycosylphosphatidylinositol (GPI)-anchor biosynthesis 6203

Islet mmu00230 Purine metabolism 5813

Islet mmu05020 Parkinson’s disease 5681

doi:10.1371/journal.pone.0044544.t005

Figure 4. Core of the T2D trait-pathway network. Nodes are the top high-degree and high-betweenness pathways from Tables 4 and 5.
doi:10.1371/journal.pone.0044544.g004
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7 out of the 8 pathways in the first cluster are in liver tissue. As

discussed in the previous sections, glycolysis, TCA cycle, and

pyruvate metabolism pathways are well known to be T2D related.

Protein tyrosine phosphatase 1B (PTP1B) has been found to be a

major regulator of body fat stores, energy balance, and insulin

sensitivity in vivo. Increased expression of PTP1B is associated

with insulin resistance in rodents and humans whereas deletion of

PTP1B leads to leanness and insulin sensitivity in rodents [40].

Propionate can lower blood glucose and alters lipid metabolism in

healthy subjects [41].

8 out of the 9 pathways in the second cluster are in adipose

tissue. MAPKs are intracellular signaling pathways that play a

pivotal role in many essential cellular processes such as prolifer-

ation and differentiation, specifically in adipocyte differentiation

and obesity [42]. Transforming growth factor-beta/Smad3

signaling regulates insulin gene transcription and pancreatic islet

b-cell function [43]. Impaired insulin signaling and b-cell function

is critical to obesity induced diabetes. Wnt signaling plays an

important role in intestinal tumorigenesis and has been linked to

susceptibility to T2D [44]. Carriers of variants of the transcription

factor 7-like 2 gene, an important component of the Wnt pathway,

are at increased risk for developing T2D. The modulation of

proglucagon expression by Wnt activity may partially explain the

link between Wnt signaling and diabetes. Insulin resistance-

inducing cytokines differentially regulates SOCS mRNA expres-

sion via growth factor- and Jak/Stat-signaling pathways in 3T3-L1

adipocytes [45].

Figure 5. Pathway composition of the top 2 densely connected subregions of the whole trait-pathway network.
doi:10.1371/journal.pone.0044544.g005

Table 6. Top pathways with highest degree after adjusted by the number of curated interactions.

Tissue Pathway Name Network degree FDR

Liver mmu00010 Glycolysis/Gluconeogenesis 82 8.94E-05

Liver mmu00280 Valine, leucine and isoleucine degradation 26 0.0063

Adipose mmu00900 Terpenoid biosynthesis 13 0.0228

Liver mmu00030 Pentose phosphate pathway 34 0.0358

Gastrocnemius mmu00052 Galactose metabolism 18 0.0753

Gastrocnemius mmu00562 Inositol phosphate metabolism 12 0.0835

Adipose mmu00532 Chondroitin sulfate biosynthesis 15 0.0898

Liver mmu00310 Lysine degradation 15 0.0898

Liver mmu00053 Ascorbate and aldarate metabolism 23 0.0960

Liver mmu00252 Alanine and aspartate metabolism 46 0.0982

Liver mmu00020 Citrate cycle (TCA cycle) 55 0.226

Liver mmu00740 Riboflavin metabolism 14 0.264

Adipose mmu00603 Glycosphingolipid biosynthesis - globoseries 11 0.287

Adipose mmu00562 Inositol phosphate metabolism 11 0.287

Islet mmu00604 Glycosphingolipid biosynthesis - ganglioseries 11 0.287

doi:10.1371/journal.pone.0044544.t006
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Context specific network reveals the importance of the
OXPHOS and the T cell receptor signaling pathway in
obesity-induced diabetes

The trait-pathway network presented in Figure 2 is constructed

using both existing information of pathway links annotated in

KEGG and the expression data specific to the animals of an

obesity-induced diabetes model. The pathway interactions anno-

tated by KEGG are not specific to obesity or diabetes. They are

generic summaries of the most common denominator from many

instances and likely represent the most conserved parts of the

interaction network. On the other hand, the expression data offers

insight into the activities occurring in the animal model and hence

information more specific to the disease under investigation. Using

Fisher’s exact test we identified pathways where the expression

data brought in significantly more interaction linkages. The top 15

pathways are given in table 6. Most of them are in liver and

adipose, suggesting that pathway interactions are most active in

these tissues during the obesity development.

Furthermore, we constructed a group-specific network for each

of the 8 animal groups in addition to the global network for all

animals. The networks in Cytoscape, viewable SIF format files, are

given in Figure S1, which is also available at http://zen.dom.uab.

edu:8080/pathwaynetwork/cytoscape. The basic network charac-

teristics include the total number of nodes and edges are

summarized in Table S2. Table 7 lists the number of trait

relevant pathways in each of the eight networks. Interestingly,

while in general the number increases moderately from 4 wk to

10 wk for most animals, the B6 ob 10 wk animals showed a

significant drop, from 258.4 in average to 102.8. These are obese

animals that do not develop diabetes. The pathways with

enhanced interactions compared to KEGG annotations are given

in the Table S3. The most interesting patterns are again observed

in the B6-obese-10 wk group, which does not develop diabetes;

and in the BTBR-obese-10 wk group (Table 8), which is diabetic.

Together they suggest that in both groups the pathways relevant to

glucose metabolism and oxidative stress are interacting actively

with other pathways in these animals. In the BTBR-obese-10 wk

group additional pathways relevant to inflammations are also

active, suggesting that they may be the key differentiating factor

that determines why some obese animals develop diabetes and

some do not. It is known that obesity is associated with a state of

chronic, low-grade inflammation [37]. Inflammatory and stress

responses mediate insulin resistance. Obesity-induced inflamma-

Table 7. Number of trait-relevant pathways in each of the eight animal groups.

Trait B6-ob 4 wk B6-ob 10 wk B6-lean 4 wk B6-lean 10 wk BtBr-ob 4 wk BtBr-ob 10 wk BtBr-lean 4 wk BtBr-lean 10 wk

Adiponectin 233 0 0 0 145 277 0 152

glucose 295 147 189 211 270 229 142 0

Insulin 346 155 101 193 239 151 187 207

islets 170 0 0 0 67 159 0 0

Leptin 257 179 167 196 259 197 121 243

Resistin 250 0 0 0 95 178 0 0

TG 323 165 139 211 231 228 175 186

weight 193 176 183 288 198 265 211 197

Mean 258.4 102.8 97.4 137.4 188.0 210.5 104.5 123.1

doi:10.1371/journal.pone.0044544.t007

Table 8. Pathways with the most significant interactions in the BTBR obese 10 week mice.

Tissue Pathway Name
Network
degree p-value FDR

Hypothalamus mmu00190 Oxidative phosphorylation 27 8.5E-07 0.00063

Islet mmu04660 T cell receptor signaling pathway 58 1.1E-05 0.0080

Soleus mmu05332 Graft-versus-host disease 35 0.00045 0.331

Adipose mmu05332 Graft-versus-host disease 35 0.00045 0.331

Adipose mmu05320 Autoimmune thyroid disease 31 0.00065 0.477

Gastrocnemius mmu00190 Oxidative phosphorylation 20 0.00072 0.532

Adipose mmu04510 Focal adhesion 20 0.00072 0.532

Adipose mmu04940 Type I diabetes mellitus 16 0.00076 0.556

Hypothalamus mmu05012 Parkinsons disease 30 0.0012 0.911

Adipose mmu05330 Allograft rejection 30 0.0012 0.912

Adipose mmu05012 Parkinsons disease 30 0.0012 0.912

Gastrocnemius mmu00760 Nicotinate and nicotinamide metabolism 23 0.0013 0.934

Gastrocnemius mmu04514 Cell adhesion molecules (CAMs) 43 0.0013 0.978

doi:10.1371/journal.pone.0044544.t008
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tion and the signaling pathways at the intersection of metabolism

and inflammation contribute to diabetes.

In more detail, the top overrepresented pathways and their first

neighbors in the diabetic BTBR-obese-10 wk group are displayed

in Figure 6. The top pathways include oxidative phosphorylation

in hypothalamus and T cell receptor signaling in islet. Recently,

increasing experimental and clinical evidence suggests that

hypothalamic dysregulation may be one of the underlying

mechanisms of abnormal glucose metabolism and may underlie

at least some portion of T2D or insulin resistance in humans [46].

Hypothalamus shares with pancreas several commonly expressed

molecules that are critical in glucose sensing and inhibition of

insulin action on hepatic gluconeogenesis. Mouse model studies

revealed that obesity induced hypothalamic resistance to insulin

may be involved in pathogenesis of peripheral insulin resistance

[47]; however, the exact role and mechanism of hypothalamus

involvement in T2D is still not clear.

Microarray studies have shown that genes involved in oxidative

phosphorylation (OXPHOS) exhibit reduced expression levels in

the skeletal muscle of T2D and prediabetic subjects. These

changes may be mediated by the peroxisome proliferator–

activated receptor c coactivator-1 (PGC1) pathway. Decreased

expression of PGC1a- and PGC1b-responsive OXPHOS genes in

muscle, and of genes involved in oxidative phosphorylation in

pancreatic islets, were observed in T2D patients [10,31]. The

importance of OXPHOS genes are also supported by genetics

study [48]. Our analysis results for the first time revealed that the

OXPHOS pathway is actively interacting with other pathways in

hypothalamus in diabetic animals, suggesting that oxidative stress

in hypothalamus may be the underlying mechanism in obesity

induced diabetes.

One critical contributing factor to obesity induced diabetes is

the inadequate insulin secretion resulting from b-cell death [49].

The death occurs as a consequence of increased circulating

glucose, saturated fatty acids, adipocyte secreted factors, and

chronic activation of the innate immune system. In both type 1

and type 2 diabetes intra-islet inflammatory mediators seem to

trigger a final common pathway leading to b-cell apoptosis. Anti-

inflammatory therapeutic approaches designed to block b-cell

apoptosis could be a significant new development [50]. The active

role identified here of the T cell receptor signaling pathway can

help to narrow down the potential therapeutic targets.

Discussion

In this study, we proposed an approach to build tissue-specific,

disease trait-pathway networks through associating co-activated

pathways, and trait-relevant and trait-linking pathways. Our

strategy goes beyond single gene based analysis. It utilizes the

PCI to capture the overall activity of each pathway under given

experimental conditions, which incorporates contributions from

both the individual genes and how they are geometrically situated

Figure 6. Trait-pathway network for the BTBR obese 10 week mice. Nodes are the quantitative traits and pathways with FDR,0.3 and their
first-degree neighbors. Node sizes are defined by the enhancement significance of node degree (5th column, p-value, of Table 8).
doi:10.1371/journal.pone.0044544.g006
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in the network. The PCI measure is then used to infer interactions

between pathways and between T2D traits and pathways. To our

knowledge, this is the first of its kind that delineates the disease

traits at the genetic pathway level.

The new approach revealed a number of findings compared to

original analysis by the authors that generated the dataset [7]. It

identified a set of pathways that are responsible for the association

among the main T2D traits. The cross tissue pathway networks

highlighted communication among the insulin releasing and

insulin target tissues. Topological analysis of the network revealed

that many pathways that are of topological importance to the

network, i.e., those with high degree and high betweenness, are

closely involved in glucose metabolism and insulin. A core of

pathway clusters was identified that may provide a relatively

complete view of the key pathways and their interactions that

potentially mediate disease pathophysiology for T2D. In a group-

specific analysis, we found a difference in active pathways between

the obese animals that developed diabetes and those that did not.

While those involved in glucose metabolism and oxidative stress

are interactive in both groups, those involved in inflammation

exhibit enhanced interaction with other pathways only in the

obese animals that develop diabetes. We believe that such multi-

scale (genes, pathways, and tissues) systems analysis will provide

valuable insight into disease etiology and is essential to better

understand the pathophysiology and the pathogenesis of a

complex disease like T2D.

Obesity induced diabetes is a complex issue; multiple pathways

in many tissues are involved. The bioinformatics study presented

in this work offers a glimpse of the underlying genetic architecture.

There are still many questions to be answered. For instance, in

table 7, we see that, in general, the number of trait-relevant

pathways increases with age (which is itself a risk factor for obesity

and diabetes). The obese animals that do not develop diabetes

show a marked reduction in the number of trait-relevant

pathways. It is very intriguing then whether the pathways that

showed differential trait-relevance contain key information as to

why some obese individuals develop diabetes while some don’t.

These deserve further investigation in future.

In this study we only analyzed data from two mouse strains. It

will be interesting to compare the trait-pathway networks across

different models of T2D, which would be valuable to understand-

ing the disease etiology and how well each model represents the

human disease. This approach can be generalized from the

analysis of multiple traits of one disease to the interrelations among

a set of different diseases. Then diseases can be linked through

their relevant and linking pathways. The problem of associating

multiple diseases is subsequently converted to the problem of

network comparison. Finally, it would also be of interest to study

trait-pathway networks in general across different species. The

results will shed light to the functional evolution of related

pathways and pathway interactions.
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Table S3 Pathways with enhanced interactions in each
of the eight animal groups.

(XLSX)

Figure S1 Trait-pathway networks in 8 groups in
Cytoscape viewable SIF format. (A) B6 lean 4 week. (B)
B6 lean10 week. (C) B6 obese 4 week. (D) B6 obese 10
week. (E) BTBR lean 4 week. (F) BTBR lean10 week. (G)
BBR obese 4 week. (G) BTBR obese 10 week.

(ZIP)

Acknowledgments

We thank Alan Attie and Mark Keller in University of Wisconsin for

proving the clinical traits and expression data for this study.

Author Contributions

Conceived and designed the experiments: SG XW. Performed the

experiments: SG HKR XW. Analyzed the data: SG HKR XW.

Contributed reagents/materials/analysis tools: SG XW. Wrote the paper:

SG XW.

References

1. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s

functional organization. Nat Rev Genet 5: 101–113.

2. Wu X, Jiang R, Zhang MQ, Li S (2008) Network-based global inference of

human disease genes. Mol Syst Biol 4: 189.

3. Hu H, Li X (2008) Networking pathways unveils association between obesity

and non-insulin dependent diabetes mellitus. Pac Symp Biocomput: 255–266.

4. Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to

insulin resistance and type 2 diabetes. Nature 444: 840–846.

5. Palumbo PJ (2004) The case for insulin treatment early in type 2 diabetes. Cleve

Clin J Med 71: 385–386, 391–382, 394 passim.

6. Lusis AJ, Attie AD, Reue K (2008) Metabolic syndrome: from epidemiology to

systems biology. Nat Rev Genet 9: 819–830.

7. Keller MP, Choi Y, Wang P, Davis DB, Rabaglia ME, et al. (2008) A gene

expression network model of type 2 diabetes links cell cycle regulation in islets

with diabetes susceptibility. Genome Res 18: 706–716.

8. Dobrin R, Zhu J, Molony C, Argman C, Parrish ML, et al. (2009) Multi-tissue

coexpression networks reveal unexpected subnetworks associated with disease.

Genome Biol 10: R55.

9. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, et al. (2005)

Gene set enrichment analysis: a knowledge-based approach for interpreting

genome-wide expression profiles. Proc Natl Acad Sci U S A 102: 15545–15550.

10. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, et al. (2003)

PGC-1alpha-responsive genes involved in oxidative phosphorylation are

coordinately downregulated in human diabetes. Nat Genet 34: 267–273.

11. Li Y, Agarwal P (2009) A pathway-based view of human diseases and disease

relationships. PLoS One 4: e4346.

12. Girvan M, Newman ME (2002) Community structure in social and biological
networks. Proc Natl Acad Sci U S A 99: 7821–7826.

13. Gao S, Wang X (2007) TAPPA: topological analysis of pathway phenotype

association. Bioinformatics 23: 3100–3102.

14. Gao S, Wang X (2009) Identification of active gene modules during pancreatic

development. Online Journal of Bioinformatics 10: 191–200.

15. Gao S, Wang X (2011) Topology-based scoring method for identification of

responsive protein–protein interaction subnetwork. Bioinformatics and Biomed-

icine Workshops (BIBMW), IEEE International Conference on Bioinformatics.
Atlanta, GA, USA.: ISBN: 978-1-4577-1612-6.

16. Gao S, Wang X (2009) Predicting Type 1 Diabetes Candidate Genes using
Human Protein-Protein Interaction Networks. Journal of Computer Science &

Systems Biology 2: 133–146.

17. Gao S, Jia S, Hessner MJ, Wang X (2012) Predicting disease related subnetworks
for type 1 diabetes using a new network activity score Omics Accepted.

18. Guan Y, Myers CL, Lu R, Lemischka IR, Bult CJ, et al. (2008) A genomewide
functional network for the laboratory mouse. PLoS Comput Biol 4: e1000165.

19. Wilcox RR (2003) Applying Contemporay Statistical Techniques.

20. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I (2001) Controlling the false
discovery rate in behavior genetics research. Behav Brain Res 125: 279–284.

21. Brandes U (2001) A Faster Algorithm for Betweenness Centrality. Journal of
Mathematical Sociology 25: 163.

22. Bader GD, Hogue CW (2003) An automated method for finding molecular

complexes in large protein interaction networks. BMC Bioinformatics 4: 2.

23. Batagelj V, Mrvar A (2004) Graph drawing software: Pajek-analysis and

visualization of large networks. In: Junger M, Mutzel P, editors. Mathematics
and Visualization. Berlin: Springer. pp. 77–103.

Cross Tissue Trait-Pathway Network for Diabetes

PLOS ONE | www.plosone.org 12 September 2012 | Volume 7 | Issue 9 | e44544



24. Lage K, Hansen NT, Karlberg EO, Eklund AC, Roque FS, et al. (2008) A large-

scale analysis of tissue-specific pathology and gene expression of human disease
genes and complexes. Proc Natl Acad Sci U S A 105: 20870–20875.

25. Jeong H, Mason SP, Barabasi AL, Oltvai ZN (2001) Lethality and centrality in

protein networks. Nature 411: 41–42.
26. Rocheleau JV, Head WS, Nicholson WE, Powers AC, Piston DW (2002)

Pancreatic islet beta-cells transiently metabolize pyruvate. J Biol Chem 277:
30914–30920.

27. Webber J (1998) Abnormalities in glucose metabolism and their relevance to

nutrition support in the critically ill. pp. 191–194.
28. Frayn KN (2003) The glucose-fatty acid cycle: a physiological perspective.

Biochem Soc Trans 31: 1115–1119.
29. Suhail M, Rizvi S (1989) Effect of type I (insulin-dependent) diabetes mellitus on

key glycolytic enzymes of red blood cells. Acta Diabetol Lat 26: 315–320.
30. Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, et al. (2009) A

branched-chain amino acid-related metabolic signature that differentiates obese

and lean humans and contributes to insulin resistance. Cell Metab 9: 311–326.
31. Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, et al. (2003) Coordinated

reduction of genes of oxidative metabolism in humans with insulin resistance and
diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A 100:

8466–8471.

32. Gaster M (2009) Reduced TCA flux in diabetic myotubes: A governing influence
on the diabetic phenotype? Biochem Biophys Res Commun 387: 651–655.

33. Newman MEJ (2005) A measure of betweenness centrality based on random
walks. Social Networks 27: 39–54.

34. Maliackal Poulo Joy AB, Donald E. . Ingber, Sui Huang (2005) High-
Betweenness Proteins in the Yeast Protein Interaction Network. Journal of

Biomedicine and Biotechnology.

35. Karlsson H, Zierath J (2007) Insulin signaling and glucose transport in insulin
resistant human skeletal muscle. Cell Biochemistry and Biophysics 48: 103–113.

36. Ogawa W, Kasuga M (2006) Insulin signaling and pathophysiology of type 2
diabetes mellitus. Japanese journal of clinical medicine 64: 1381.

37. Wellen KE, Hotamisligil GS (2005) Inflammation, stress, and diabetes. The

Journal of clinical investigation 115: 1111–1119.

38. Vodenik B, Rovira J, Campistol JM (2009) Mammalian target of rapamycin and

diabetes: what does the current evidence tell us? Transplant Proc 41: S31–38.

39. Olefsky JM, Glass CK (2010) Macrophages, inflammation, and insulin

resistance. Annu Rev Physiol 72: 219–246.

40. Mirela D, Nimesh M (2009) PROTEIN TYROSINE PHOSPHATASE 1B

(PTP1B) IN OBESITY AND TYPE 2 DIABETES.

41. Todesco T, Rao AV, Bosello O, Jenkins DJ (1991) Propionate lowers blood

glucose and alters lipid metabolism in healthy subjects. Am J Clin Nutr 54: 860–

865.

42. Bost F, Aouadi M, Caron L, Binetruy B (2005) The role of MAPKs in adipocyte

differentiation and obesity. Biochimie 87: 51–56.

43. Lin HM, Lee JH, Yadav H, Kamaraju AK, Liu E, et al. (2009) Transforming

growth factor-beta/Smad3 signaling regulates insulin gene transcription and

pancreatic islet beta-cell function. J Biol Chem 284: 12246–12257.

44. Bordonaro M (2009) Role of Wnt signaling in the development of type 2

diabetes. Vitam Horm 80: 563–581.

45. Fasshauer M, Kralisch S, Klier M, Lossner U, Bluher M, et al. (2004) Insulin

resistance-inducing cytokines differentially regulate SOCS mRNA expression via

growth factor- and Jak/Stat-signaling pathways in 3T3-L1 adipocytes.

J Endocrinol 181: 129–138.

46. Koshiyama H, Hamamoto Y, Honjo S, Wada Y, Lkeda H (2006) Hypothalamic

pathogenesis of type 2 diabetes. Med Hypotheses 67: 307–310.

47. Bruning JC, Gautam D, Burks DJ, Gillette J, Schubert M, et al. (2000) Role of

brain insulin receptor in control of body weight and reproduction. Science 289:

2122–2125.

48. Olsson AH, Ronn T, Ladenvall C, Parikh H, Isomaa B, et al. (2011) Two

common genetic variants near nuclear-encoded OXPHOS genes are associated

with insulin secretion in vivo. Eur J Endocrinol 164: 765–771.

49. Rhodes CJ (2005) Type 2 diabetes-a matter of beta-cell life and death? Science

307: 380–384.

50. Donath MY, Storling J, Maedler K, Mandrup-Poulsen T (2003) Inflammatory

mediators and islet beta-cell failure: a link between type 1 and type 2 diabetes.

Journal of molecular medicine 81: 455–470.

Cross Tissue Trait-Pathway Network for Diabetes

PLOS ONE | www.plosone.org 13 September 2012 | Volume 7 | Issue 9 | e44544


