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Abstract
In multivariate linear regression, it is often assumed that the response matrix is intrinsically of
lower rank. This could be because of the correlation structure among the prediction variables or
the coefficient matrix being lower rank. To accommodate both, we propose a reduced rank ridge
regression for multivariate linear regression. Specifically, we combine the ridge penalty with the
reduced rank constraint on the coefficient matrix to come up with a computationally
straightforward algorithm. Numerical studies indicate that the proposed method consistently
outperforms relevant competitors. A novel extension of the proposed method to the reproducing
kernel Hilbert space (RKHS) set-up is also developed.
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1. INTRODUCTION
Multivariate linear regression is the simple extension of the classical univariate regression
model to the case where we have Q > 1 responses and P predictors. It is commonly used in
chemometrics, econometrics, and other similar quantitative fields where one is interested in
predicting several responses generated by a single production process.

We can express the multivariate linear regression model in matrix notation. Let X denote the
N × P predictor or design matrix, with ith row xi = (xi1, xi2, …, xiP). Similarly the response
matrix is denoted by Y, N × Q where the ith row is yi = (yi1, yi2, …, yiQ). The regression
parameter is given by the coefficient matrix B which is P × Q. Note that the qth column of
B, βq = (β1q, β2q, …, βPq) is the regression coefficient vector for regressing the kth response
on the predictors. Let E denote the N × Q random error matrix, then the model is,

(1)

Note that this will reduce to the classical univariate regression model if Q = 1. For notational
simplicity we will assume that the columns of the response and the predictors are centered
and scaled so that the intercept terms can be omitted. The most standard approach to
estimating the coefficient matrix B is by Ordinary Least Squares approach. The estimator is,

(2)
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This amounts to performing Q separate univariate regression of Yq ‘s on the predictors. The
OLS approach fails to take advantage of any relationship or dependence between the
responses, thus performs suboptimally when the true response dimension is <Q. In addition
it is well known that this type of estimators perform poorly when the predictor variables are
highly correlated.

A large number of methods have been proposed to overcome these deficiencies most of
which are based on ideas of dimension reduction and tries to find some underlying latent
structure. Popular methods include Principal Component Regression [1], Partial Least
Squares [2], Canonical Correlation Analysis [3]. All of these methods can be classified
under the larger class of Linear Factor Regression, in which the response Y is regressed
against a small number of linearly transformed predictors, often called the factors. The
models differ in the way they choose the factors. The estimation proceeds in two steps,
transforming the original predictors in the chosen factor space and selecting the number of
relevant factors r, often achieved through cross validation. It is easy to see that as r decreases
we are able to achieve greater dimensionality reduction.

Another dimensionality reduction approach called Reduced Rank Regression [4–7]
minimizes the least squares criterion subject to the constraint rank(B) ≤ r for some r ≤
min{P, Q}. This problem can also be motivated from latent variable regression, where we
assume that the Q responses are functions of r underlying latent variables. The solution to
the reduced rank regression problem involves projection of the usual OLS estimator to a r-
dimensional space that explains the maximum variation in terms of the Frobenius norm. As
OLS estimator performs poorly when the predictor variables are highly correlated the
performance of the reduced rank estimator is also affected when the predictors are collinear.

Yuan et al. [8] proposed a novel dimension reduction method called Factor Estimation and
Selection (FES). They try to minimize the constrained least squares criterion,

(3)

where σj (B) denotes the j th singular value of B. This constraint encourages sparsity in the
singular values of B and hence the solution B̂ is of lower rank. Though motivated from
linear factor regression this approach avoids the explicit choice of the factor space by
choosing a clever set of basis functions. The optimization problem in Eq. (3) is shown to be
equivalent to a second order cone program and the authors use the SDPT3 solver to obtain
the solution. SDPT3 can solve conic linear optimization problems over a closed, convex
pointed set in a finite-dimensional inner-product space [9]. Unlike reduced rank regression
solution this provides a continuous regularization path. But as with the reduced rank
regression this method also fails to account for the correlation among the predictor variables.
The situations where the singular values of B̂OLS is a poor approximation to σj the FES
method may suffer heavily.

To directly exploit the correlation structure between the response variables [10] proposed a
method they call the Curds and Whey (CW) procedure. The main idea is to borrow strength
from the separate OLS regressions by performing a second round of regression of the
responses on the OLS estimates. Intuitively if some responses are heavily correlated then we
will be able to obtain a better, more stable predictor by averaging over the corresponding
OLS estimates. Notationally, CW predictor takes the form Ỹ = ŶOLSM, where M is a Q × Q
shrinkage matrix obtained by the second round of regression. The authors show that the CW
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procedure has some close connections to the canonical covariate analysis, they also develop
an easy to implement GCV type criterion to efficiently perform cross-validatory shrinkage.

Several other penalization approaches have been proposed to improve the performance of
least square estimates. Most commonly studied are Ridge regression [11] and LASSO
regression [12] in the univariate situation, that is, Q = 1. LASSO is used as a tool for
variables selection, specifically suited to the case where the number of predictors p is large
but only a few of them actually have some effect on the response variables, more commonly
known as the sparse set-up. Ridge regression introduces an ℓ2 penalty, thus it performs
shrinkage to handle the issues caused by collinearity in the predictor variables, rather than
dimension reduction. Zou and Hastie [13] proposed the Elastic Net another variable
selection method which combines the ℓ1 and ℓ2 penalties in an effort to utilize the favorable
properties of the LASSO and the Ridge at the same time. Elastic Net achieves dimension
reduction while controlling for the correlated predictors thus enjoys a grouping property
which is useful in many real life scenario. Turlach et al. [14] proposed the ℓ∞ penalty on the
rows of B to enhance simultaneous variable selection. The method is recommended for
model identification rather than prediction because of the bias induced due to the ℓ∞ penalty.
Peng et al. [15] proposed a joint constraint function of the form

 for the identification of Master Predictors. The
first penalty encourages sparsity in B whereas the second penalty shrinks some of the entire
rows of B to 0 thus enhancing the selection of the Master Predictors. The model is shown to
outperform separate LASSO regressions and leads to highly interpretable estimated models
in cancer studies. But this model is not exactly designed for the situation where our
underlying assumption is that the Q responses actually live in a lower dimensional space.

In this paper we propose a procedure that combines some of the strengths of the estimators
discussed above. The underlying assumption is that the true model is rank deficient, that is,
rank(B) ≤ min{P, Q}. Thus the response matrix would approximately be of low rank. Here it
is important to note that the response matrix can have approximately low rank when the
predictor matrix X is highly collinear even if the true coefficient matrix B is of full rank. We
propose a combination of the ridge penalty and rank constraint on the coefficient matrix B to
overcome this problem. The ridge penalty helps to ensure that estimate of B is well-behaved
even in the presence of multi-collinearity, whereas the rank constraint encourages dimension
reduction.

The rest of the paper is organized as follows: In Section 2 we formally introduce the reduced
rank ridge regression model and discuss some of the finer details. Section 3 presents
numerical examples which include simulation studies comparing the proposed model to
relevant competitors as well as some real-data example. We extend the reduced rank
approach to the kernel setting in Section 4, and show a real data application. Section 5
concludes with a summary and brief discussion.

2. REDUCED RANK RIDGE REGRESSION MODEL
We propose a regularized estimator for the coefficient matrix B. Two penalties are added to
the usual squared error loss. Ridge penalty ensures that the estimator of B is well-behaved
even in the presence of collinearity among the predictor variables. Rank constraint
encourages dimensionality reduction by restricting the rank of B̂. We seek to minimize,

(4)
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where r ≤ min {P, Q}.  denotes the Frobenius norm for matrices. For each fixed λ we
can transform this problem to a Reduced Rank Regression problem on an augmented data
set. Define,

(5)

Then it is a matter of simple algebra to notice that the minimization problem in Eq. (4) is
equivalent to the following reduced rank regression problem:

(6)

Now we can use the orthogonal projection property of the OLS estimate to decompose the

squared error loss function in two parts, . Here

 denotes the Ridge regression estimate which is also the same as the OLS estimate
obtained from the linear model Y* = X*B + E*. Note that the first term does not involve B
hence we get the following equivalent form for the minimization problem (6) as,

(7)

Let us assume that  gives the singular value decomposition of . σi ’s

denote the singular values, and  denote the left and right singular vectors of ,

respectively. τ is the rank of  which is usually going to be Q. Then a fairly elementary
result in linear algebra known as the Eckart–Young theorem tells us that the best rank r

approximation to  in the Frobenius norm is given by,

(8)

Define, , and let . Clearly rank (B̂(λ, r)) ≤ r, as rank(Pr) = r. And
plugging them back in we get,

Hence we are able to show that the proposed solution  is the minimizer of the
optimization problem (4), which is the original reduced rank ridge regression problem that
we started with. Writing down explicitly in terms of X, Y, λ and r we get the following:
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(9)

(10)

Ŷλ in the above equation denotes the multivariate ridge regression estimator for Y with a
penalty parameter λ. This shows that the reduced rank ridge regression is actually projecting
Ŷλ to a r-dimensional space with projection matrix Pr. Here it is important to notice that this
is a projection of the rows of Ŷλ which in general lives in a Q-dimensional space to a lower
r-dimensional space. Easy to see that for r = Q we get back the ridge regression solution.

2.1. Illustrative Example
To illustrate the issues with Reduced Rank regression we construct a simple toy example.
Set P = Q = 3 and N = 50 and let,

The first two columns of B are linearly independent and thus it has rank 2. But at the same
time we make predictors X1 and X2 highly collinear, so that the effective dimension of the
response reduces to 1. We simulate X ~ N(0, ΣX) and given X, Y is generated from Y ~
N(XB, 0.25I). The eigenvalues of YTY comes out to be σ2 = [1252, 16, 11]. Hence Reduced
Rank regression would select rank to be 1 and seek a rank 1 estimator of B which is clearly
not the case here. This happens because Reduced Rank regression fails to account for the
correlation among predictors and that is precisely where Reduced Rank Ridge regression
improves by adding ridge penalty.

2.2. Selection of Tuning Parameters
For the reduced rank ridge regression we propose to choose the tuning parameters (λ, r)
using a simple K-fold cross-validation procedure. We first define a grid for (λ, r) note that r
can only take values in {1, 2, … min {P, Q}}. For each combination of λ and r we evaluate
average of validation prediction errors over the K-folds and choose the optimal combination
as the one that minimizes this quantity. Notationally,

(11)

where X(k) and Y(k) denote the predictor and response matrix for the kth fold, and B̂(−k)(λ, r)
denotes the estimated regression coefficient matrix computed leaving out the observations in
the kth fold when using the penalty parameters (λ, r). This would encourage a tradeoff
between the penalty parameters based on the data. We would look into the choice of tuning
parameters more deeply in the simulation studies section.
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3. NUMERICAL EXAMPLES
3.1. Simulation Study

We compare the estimation performance of the proposed reduced rank ridge regression
method to other multivariate linear regression methods that have been proposed in the
literature based on the idea of dimension reduction and borrowing strength from dependent
response variables. Methods compared include—Ordinary least square (OLS); Curd and
Whey (CW) procedure developed by Breiman and Friedman with the GCV approach;
Reduced Rank Regression (RRR); Multivariate Ridge Regression (MVR) with same tuning
parameter for each response; Separate Ridge Regression (SR); Partial Least Square (PLS);
Principal Component Regression (PCR) and the proposed Reduced Rank Ridge Regression
(RRR). For the methods that require a selection of tuning parameter we do so by looking at
the prediction error on an independently generated validation set of same size. We measure
the performance of various methods by model error following [10]. The model error of an
estimate B̂ is given by,

(12)

where B denotes the true coefficient matrix and ΣX denotes (XXT).

3.1.1. Models—In each replication of the simulation study we generate a design matrix
XN×P with each rows drawn independently from N(0, ΣX). Where ΣX has the structure, ΣX(i,
j) = ρ|i−j|. We used three different levels for the correlation parameter ρ = [0, 0.5, 0.9]. To
generate the true coefficient matrix BP×Q we first generate a random P × Q matrix from N(0,
1) distribution. The singular values are then replaced with following structures:

• Model 1 The first half of the singular values are 2 and rest as 0.

• Model 2 All the singular values are equal to 1.

• Model 3 The largest singular value as 5 and rest 0.

We choose the above mentioned models to ensure that we cover a broad spectrum of rank-
deficient situations. Model 2 covers the case of no rank redundancy in the coefficient matrix
B which is the usual multivariate linear regression assumption. Model 3 represents the case
for a severe rank deficiency, whereas Model 1 is a compromise between these two extreme
situations. We analyze each model at different correlation levels between the predictors thus
covering most of the possible real scenarios. For each combination of model and correlation
we simulate a training and validation set each of size P = 50, Q = 20, N = 100. And compute
each of the estimators described above. The process is repeated 100 times leading to an
error-vector of length 100 for each competing method (Fig. 1).

All the methods outperforms OLS by a big margin under this settings. PLS and PCR appear
quite competitive to RR but fails to perform in the same level as RRR, MVR, or SRR. Note
that the proposed method RRR dominates all the other methods at every combination of
settings. It is interesting to note that for Model 2 where the true B had full rank RR does
significantly worse than RRR, MVR, and SRR for all choices of ρ. Whereas in Model 3
which had the strongest rank deficiency we see that RRR and RR dominates the other
methods which also seems intuitive. The biggest advantage of the RRR over only ridge and
only rank penalty comes in Model 1 which has nearly half the singular values nonzero. For
all three models we see that as the value of ρ increases MVR and SRR tends to catch up
with the best method.
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To gain further insight, we look at the singular values of the B̂ for OLS, MVR, RR, and
RRR method. For this part we use a smaller set-up with P = 20, Q = 8, and N = 30 the
singular values of B are σ = [3, 2, 1.5, 0, 0, 0, 0, 0]. We plot the singular values over 100
replicates at two extreme correlation levels ρ = 0.0, and 0.9 (Figs 2 and 3).

For ρ = 0 we see that both RR and RRR does a fairly good job of recovering the singular
value structure. But as the collinearity among the predictors increases we find that RR most
of the times selects 2 or 1 as the rank whereas RRR is able to do a much better job. MVR
and OLS fail to achieve any dimension reduction. Similar patterns are observed at other
settings as well which we skip for brevity. This clearly illustrates that the trade-off between
ridge penalty and the rank constraint is the key that enables us to correctly estimate singular
value structure even in presence of serious collinearity.

3.2. Application in Chemometrics Example
It is originally from ref. [16]. There are N = 56 observations with P = 22 and Q = 6. The data
is generated from a simulation of a low density tubular polyethylene reactor. The predictor
variables consist of 20 temperature measurements at equal distance along the reactor along
with the wall temperature and the feed rate. The responses are output characteristics of the
polymers produced, namely, number avg. molecular weight (Y1), weight avg. molecular
weight (Y2), long chain branching (Y3), short chain branching (Y4), content of vinyl group
(Y5), and content of vinyledene group (Y6). As the responses were all right skewed we
applied log transformation, and finally standardized them. The response correlation matrix is
as follows:

This shows {Y4, Y5, Y6} form a strongly correlated group as does {Y1, Y2}. Y3 is mildly
correlated to the others, which suggests an effective response dimensionality of 3. Average
absolute correlation between the predictors is about 0.44 with many of them being very
highly correlated. The predictive performance is measured using leave-one-out cross
validation. We fit the models based on 55 of the 56 points and predict the left-out point and
the procedure is repeated 56 times. Note that we do an 11-fold cross validation within the 55
points to select tuning parameters for the models that have one. We report the prediction
error for each response as well as overall average prediction error (Table 1).

Overall RRR performs the best with MVR being a very close second. The good performance
of MVR can also be explained by the fact that many predictors are highly collinear.
Comparing columns of RR and RRR, we see that for Y4, Y5, and Y6 RR has much smaller
prediction error than RRR but it incurs larger error for Y1, Y2 and especially Y3. Because of
the strong correlation structure of the responses, RR concentrates on the heavily correlated
group {Y4, Y5, Y6}, selecting 2 or 1 components most times (out of 56 leave-one-out runs)
whereas RRR is able to pick 3 as the optimal dimension with high proportion. So even
though it loses a little bit for the highly correlated group overall prediction accuracy is much
better.
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4. EXTENSION TO RKHS
Before we go into the details for reduced rank approach in the Reproducing Kernel Hilbet
Space (RKHS) setting let us first give a very brief introduction to it.

4.1. Brief Introduction to RKHS
A Hilbert space is a real/complex inner-product space which is complete under the norm
induced by the inner product. Examples include ℝn with 〈x, y〉 = xTy, -space of all square
functions that can integrate on ℝ with 〈f, g〉 = ∫ℝf (x)g(x)dx. The reason we are interested
in functional spaces is because we would like to fit models like y = f (x) + ε where f : ℝp →
ℝ to model the data in a much more flexible nonparametric way.  is too big for our
purpose as it contains too many nonsmooth functions. One way to obtain such spaces of
smooth functions which allows us to fit a nonparametric functional regression model
without explicitly specifying the function f is the RKHS approach.

A positive definite kernel is a function K(·,·) :  ×  ↦ ℝ such that for any N ≥ 1 and {x1,

x2, … xN} ∈  and {a1, a2, …, aN}∈ ℝN, we have, . In other

words the gram matrix  is positive definite for all, {x1, x2, … xN} ∈ .
For most of our purposes  = ℝP, the space of the predictor variables. It is well known [17]
that given such a kernel we can construct a unique functional Hilbert space  on  such that
K(·,·) is the inner product in that space and f (x) = 〈f, K(·, x)〉 for all f ∈  and x ∈  and
vice versa.

4.2. Kernel Reduced Rank Regression Approach
In the univariate case, given data {(x1, y1), (x2, y2), … (xN, yN)}, note that yi ∈ ℝ and xi ∈
ℝP, our objective is to find a function f ∈  that minimizes,

(13)

where  denotes the norm in . This is introduced to encourage smoothness and to avoid
overfitting. Then the Representer Theorem says that any f minimizing (13) can be written as,

(14)

For the multivariate response yi ∈ ℝQ, in the RKHS set-up we want to find (f1, f2, …, fQ) ∈
 which minimizes a joint loss function defined as,

(15)

Like in the linear case it is fairly easy to see that in absence of any constraint on the
functions (f1, f2, …, fQ) the above optimization is same as doing Q separate single-response
kernel ridge regression problem. If we want to exploit the dependence among the responses
we need some equivalent way of expressing the reduced rank constraint under the RKHS
set-up. The following proposition gives one such way,
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PROPOSITION 1—Let  be the RKHS corresponding to a positive-definite kernel K(·,·) :
ℝP × ℝP ↦ ℝ. Given data {(x1, y1), (x2, y2), … (xN, yN)}, yi ∈ ℝQ and xi ∈ ℝP, we
consider the optimization problem,

(16)

where 1 ≤ r ≤ Q and Jλ (f1, f2, …, fQ) is defined as in Eq. (15). The solution has the
following representation,

(17)

The constraint dim (span{f1, …, fQ} ≤ r can be viewed as an extension to the rank constraint
for linear functions. The only difference being instead of working with linear functions here
we are in a general functional space. We defer the proof to the appendix.

The next natural step is to find some sufficient conditions under which the rank constraint of
Eq. (16) becomes equivalent to a rank constraint on the coefficient matrix A = [αiq]N×Q,
because that would allow us to extend the reduced rank ridge regression solution developed
in Section 2 in a natural way to the kernel setting.

PROPOSITION 2—If K(·,·) is strictly positive definite and {x1, x2, … xN} are distinct then

This proposition translates the reduced rank constraint for RKHS into a simple rank
constraint for the coefficient matrix A, under some condition on K(·,·). It is easy to show that

Gaussian kernel, , Laplacian kernel, , Inverse

multiquadratic kernel  would satisfy strict positive definiteness. Polynomial
kernels in general would not satisfy it because it is essentially an extension to a bigger but
finite-dimensional space. But in practice the infinite-dimensional RKHS’s are the ones that
we would be interested in, so the condition for strict positive definiteness is not very
prohibitive.

4.3. Extending the Solution
Let us recall the solution to the reduced rank ridge regression problem with penalty
parameters (λ, r), derived in Section 2. For a given point x ∈ ℝQ (row vector) prediction had
the form,
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where Pr was the projection matrix to the space spanned by r principal eigenvectors of P =
YTX (XTX + λI)−1 XTY. Using the matrix inversion lemma we can easily expand the
prediction formula in terms of the inner-product matrix XXT. Then replacing the inner-

product matrix by the Gram matrix  we get,

(18)

(19)

Note that K(x) = [K(x, x1), K(x, x2), … K(x, xN)]1×N. If we denote the projection matrix to

the space spanned by r principal eigenvectors of YTK (K + λI)−1 Y by  then the final
prediction for the point x ∈ ℝP is given by,

(20)

which is similar to projection of the kernel ridge regression estimator to a constrained space
of dimension ≤r as in the linear case.

4.4. Simulation Study
In this section we compare the performance of the proposed kernel Reduced Rank Ridge
Regression (kernel RRR) with kernel Ridge Regression. We perform the comparison with
the choice of two popular choices of kernel function namely, the Gaussian kernel which is
strictly positive-definite and thus satisfies the condition of Proposition 2 and the polynomial
kernel which is clearly finite-dimensional and hence does not satisfy the sufficient condition
provided in Proposition 2.

We present the results for P = 10, Q = 10, and N = 100, similar results were obtained for
other choices of P and Q. Rows of the design matrix X were generated independently from
N(0, IP). Responses are generated as linear combinations of m = 10 basis functions of the
form K(·, bj) where {bj : j = 1, 2, …, 10} were generated independently from a multivariate
Gaussian distribution. We consider two cases,

• Full Rank Situation: The coefficient matrix is full-rank, that is, of rank 10.

• Reduced Rank Situation The coefficient matrix has rank 5.

The tuning parameters, that is, (λ, r, s) were chosen using independently generated
validation data sets of same size. In Figs 4–7 we present the box-plots of the percentage ratio
of MSE of kernel RRR and kernel Ridge Regression over 100 replications of the
experiment.

As expected we find that kernel Reduced Rank Ridge improves over kernel Ridge
significantly when the underlying process is truly low-rank, and even in the full-rank case it
performs comparably with kernel Ridge regression. The conclusions hold not only for the
Gaussian kernel but for the polynomial kernel as well which as we discussed before does not
satisfy the sufficient conditions in Proposition 2. Also the estimated optimal rank seems to
be quite accurate when the underlying functional space is low-rank. Here it is useful to note
that if the sample size is too high then the gram matrix for polynomial kernel might become
nearly singular causing unstable solutions.
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4.5. Chemometrics Data Revisited
We apply the kernel RRR on the previously discussed Chemometrics data set and compare
its performance against linear RRR and kernel Ridge Regression. We used the popular

Gaussian kernel  and the Inverse multiquadratic kernel

. Both predictors and responses were standardized for this analysis. An
eight fold-cross-validation is performed to select the tuning parameters, that is (λ, r, σ2) in
case of the Gaussian kernel and (λ, r, c) for the inverse multiquadratic kernel (Table 2).

We used cross-validation error estimate on the hold-out fold to select the tuning parameters.
Optimal rank for the kernel RRR which turns out to be 3 for both choices of the kernels as it
was for linear Reduced Rank regression implying that the intrinsic dimensionality of the
response space is 3. Both choices of the kernel lead to very similar results. Kernel RRR
improves by a big margin over the linear RRR, whereas the improvement over kernel ridge
regression is less pronounced but still notable for this data set. The Gaussian kernel is able to
attain a greater reduction in MSE which is due to the fact that it corresponds to a bigger
functional class. The results seem scientifically reasonable since the first two responses
namely, number avg. molecular weight and weight avg. molecular weight are approximately
dependent. Similarly the last three responses form a functional group, in the sense that, short
chain branching is an approximate measure of the contents of Vinyl and Vinyledene groups
and thus are highly correlated. Long chain branching is negatively correlated to the short
chain branching group.

5. SUMMARY AND DISCUSSION
We propose Reduced Rank Ridge Regression to produce a low-rank estimator of the
regression coefficient matrix B. This is very useful when the responses are highly dependent
or there are reasons to believe a latent variable structure among the predictors. Our method
accounts for multi-collinearity in predictor variables by incorporating a ridge penalty, here it
is important to note that both high collinearity in X and low-rank of the true coefficient
matrix B might lead to the response matrix being rank-deficient and hence it makes sense to
apply the penalties jointly and decide the trade-off based on the data. We also extend the
reduced rank idea to the RKHS set-up and give some intuition for the meaning of a rank
constraint in a functional space.

The solution to the Reduced Rank Ridge Regression problem is obtained as a projection of
the Ridge Regression estimator to a constrained space. And hence it is computationally
simple. We propose a cross-validation approach to select the tuning parameters. The
proposed method was tested in broad variety of simulation settings as well as couple of real
data sets. Results are promising and the proposed method is able to outperform relevant
competitors under most of the settings. We also apply the kernel RRR on a real data
example and it shows some significant improvement over the linear RRR and kernel ridge
regression. These applications also help us understand some statistical insights into the
working of the proposed Reduced Rank Ridge Regression method.
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APPENDIX

Proof of Proposition 1
Let (f1, f2, …, fQ) be the minimizer to Eq. (16). Define,

(21)

We can decompose each  where  is the projection of fq onto  and  is the
orthogonal to . Then for j = 1, 2, … Q and i = 1, 2, …, N,

Clearly,  and  also holds since
they are just projection of (f1, f2, …, fQ}) to , where dim (span{f1, f2, …, fQ}) ≤ r as they
are a solution to Eq. (16). Thus the solution to Eq. (16) can be expressed as,
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(22)

Proof of Proposition 2
If r = Q then the result holds vacuously. If r < Q then ∃ nontrivial linear combinations

. Equivalently, we have, :

Under the strict positive definiteness assumption on K(·, ·) this can only happen if Ac = 0Q×1
⇔ c ∈ Ker(A), where Ker(T) for any matrix/linear operator T denotes its null space. Let us

define a map, T: RQ ↦ V = span{f1, f2, … fQ}, where,  Then using the
Rank-Nullity Theorem and the previous part,
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Fig. 1.
Boxplot of ME of each method over 100 replicates under each combination of settings.
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Fig. 2.
Singular values of B ̂, ρ = 0.0.
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Fig. 3.
Singular values of B ̂, ρ = 0.9.
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Fig. 4.
Polynomial kernel, % of MSE compared to kernel ridge regression.
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Fig. 5.
Polynomial kernel, Box plot of the estimated rank over 100 replications.
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Fig. 6.
Gaussian kernel, % of MSE compared to kernel ridge regression.
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Fig. 7.
Gaussian kernel, Box plot of the estimated rank over 100 replications.
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