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Abstract
Cross-sectional age effects in normal control volunteers were investigated in 8 subcortical
structures: lateral ventricles, thalamus, caudate, putamen, pallidum, hippocampus, amygdala and
nucleus accumbens. Two hundred and twenty six control subjects, ranging in age from 19 to 85
years, were scanned on a 1.5T GE system (n = 184) or a 3.0T Siemens system (n = 42). Cranium-
size adjusted subcortical structure volumes were estimated using FSL’s FIRST software, which is
fully automated. Significant age effects were found for all volumes when the entire age range was
analyzed, however the older subjects (60–85 years of age) showed a stronger correlation between
age and structural volume for the ventricles, hippocampus, amygdala and accumbens than middle-
aged (35–60 years of age) subjects. Middle-aged subjects were studied at both sites, and age
effects in these groups were comparable, despite differences in magnet strength and acquisition
systems. This agreement lends support to the validity of the image analysis tools and procedures
used in the present study.
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1. Introduction
Knowledge of the effects of healthy aging on brain structures is necessary to help identify
abnormal changes due to disease throughout the lifespan. Many cross-sectional and
longitudinal studies have demonstrated age-related volume changes in the brain using MRI
(Allen, et al. 2005, Bergfield, et al. 2010, Blatter, et al. 1995, Courchesne, et al. 2000, Fjell,
et al. 2009, Fotenos, et al. 2005, Luft, et al. 1999, Mu, et al. 1999, Pfefferbaum, et al. 2010,
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Pieperhoff, et al. 2008, Raz, et al. 2010, 2001, 2005, 2006, Sullivan, et al. 1995, 2005,
Walhovd, et al. 2005, Zimmerman, et al. 2006). A number of these studies have focused on
subcortical structures, and age-related volume changes of the various subcortical structures
have been identified.

Most studies examining the effects of normal aging on subcortical structures have utilized
either manual or computer-assisted methods to delineate the structures (Allen, et al. 2005,
Coffey, et al. 1998, Du, et al. 2006, Greenberg, et al. 2008, Gunning-Dixon, et al. 1998,
Hasan, et al. 2008, Jernigan, et al. 2001, Krishnan, K.R., et al. 1990a, Liu, et al. 2003, Luft,
et al. 1999, Mu, et al. 1999, Pruessner, et al. 2001, Raz, et al. 2005, 2003, Sullivan, et al.
1995, 2004, Van Der Werf, et al. 2001, Van Petten 2004). Automated methods have been
employed in recent studies (Walhovd, et al. 2005, 2009), which have utilized FreeSurfer
software (described in Fischl, et al. 2002, Han and Fischl 2007).

In the current study we utilize FIRST (FMRIB Image Registration and Segmentation Tool),
a fully automated method within the FSL (FMRIB Software Library) suite of tools
(Patenaude 2007, Smith, et al. 2004, Woolrich, et al. 2009). We have recently used the same
method to segment subcortical structures and measure their volumes in a study comparing
long-term abstinent alcoholics with non alcoholic controls (Sameti, et al. 2011, In Press). In
the current report, we focus on age related differences in subcortical volume in non-
alcoholic control samples. We compare data recorded in two middle-aged samples (35-60
years of age), one studied in San Francisco, CA on a 1.5T GE Signa system and the second
studied in Honolulu, HI on a 3.0T Siemens Trio system. From the California site, we also
compare the results from the middle-age sample to the results from younger adult (20–35
years of age) and healthy elderly (60–85 years of age) samples.

2. Methods and Materials
2.1. Participants

A total of 226 participants were recruited at the two sites by postings, mailings, newspaper
advertisements, local internet sites and subject referrals. All participants were recruited as
non-alcoholic controls (controls) for alcohol related studies at the sites, 184 controls were
studied in the California site and 42 in Hawaii. The Hawaii subjects are completely separate
from the California subjects. The California controls included 110 women and 74 men,
ranging from 19 to 86 years of age (mean = 50.8). In California, the younger controls (age
19–35, n = 43), middle-aged (age 35–60, n = 71) and older (ages 60–86, n = 70) groups were
recruited for different studies over a five-year period. These three groups of controls did not
differ in years of education (averaging 16.3 years of education) or on the AMNART (Grober
and Sliwinski 1991) estimated IQ, which averaged 127 across groups. The Hawaii controls
consisted of 27 women and 15 men, ranging from 35 to 60 years of age (mean = 48.0 years).
They were comparable to the middle-aged California controls on both age and years of
education. The alcohol-related inclusion criterion for the all controls was a lifetime drinking
average of less than 30 standard drinks per month, with no periods of drinking more than 60
drinks per month. A standard drink was defined as 12 oz. beer, 5 oz. wine, or 1.5 oz. liquor.
Exclusion criteria for subjects of both sites were: 1) lifetime or current diagnosis of
schizophrenia or schizophreniform disorder using the computerized Diagnostic Interview
Schedule (c-DIS) (Bucholz, et al. 1991, Erdman, et al. 1992, Levitan, et al. 1991, Robins, et
al. 1998), 2) history of lifetime or current drug abuse or dependence (other than nicotine or
caffeine), 3) significant history of head trauma or cranial surgery, 4) history of significant
neurological disease, 5) history of diabetes, stroke, or hypertension that required an
emergent medical intervention, 6) laboratory evidence of hepatic disease, or 7) clinical
evidence of Wernicke-Korsakoff syndrome.
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All individuals participated in the following assessments: 1) psychiatric diagnoses and
symptom counts were gathered using the c-DIS, 2) participants were interviewed on their
lifetime drug and alcohol use using the timeline follow-back methodology (Skinner and
Allen 1982, Skinner and Sheu 1982, Sobell and Sobell 1990, Sobell, et al. 1988), 3) medical
histories were reviewed in an interview by a trained research associate, 4) blood was drawn
to test liver functions, and 5) the Family Drinking Questionnaire was administered based on
the methodology of Mann and colleagues (1985) and Stoltenberg and colleagues (1998).
Approval for the study was obtained from a freestanding independent human subjects
research review committee [Independent Review Consulting / E&I Review Services, LLC,
Corte Madera, CA] and written informed consent was obtained from all research
participants.

2.2. Image acquisition
All MRIs for California controls were collected on a 1.5T GE Signa Infinity with the LX
platform (GE Medical Systems, Waukesha, WI) located at the Pacific Campus of the
California Pacific Medical Center in San Francisco. For each subject, we acquired a
transaxial T1-weighted Spoiled Gradient image (TR = 35 ms, TE = 5 ms, acquisition matrix
= 256 × 256) with 124 axial slices at 1.3 mm thickness and a Fluid Attenuated Inversion
Recovery (FLAIR) image (TR = 8800 ms, TE = 144.7 ms, inversion time = 2200 ms,
acquisition matrix = 256 × 256) with 29 axial slices at 5 mm thickness.

MRIs of the Hawaii controls were collected on a 3.0T Siemens Trio Tim platform, located at
the Queens Medical Center in Honolulu, HI. For each subject, we acquired a sagittal T1-
weighted (MPRAGE) image (TR = 2200 ms, TE = 4.1 ms, TI = 1000 ms, acquisition matrix
= 256 × 256) with 160 slices at 1.0 mm thickness and a Fluid Attenuated Inversion
Recovery (FLAIR) image (TR = 9100 ms, TE = 83 ms, TI = 2500 ms, acquisition matrix =
204 × 230) with 44 slices at 3 mm thickness. A neuroradiologist read all MRI scans. All
scans were free from abnormalities other than white matter signal hyperintensities (WMSH).

2.3. Image analysis
We studied 16 of the 17 subcortical brain structures which are extracted by FSL’s FIRST
(FMRIB Image Registration and Segmentation Tool) (Patenaude 2007), a method that has
been used successfully in a number of recent investigations (Angstrom, et al. 2004,
Corthorn, et al. 1997, Figueroa Cave 1997, Markov, et al. 1997, Rinehart, et al. 1997,
Sameti, et al. 2011). The brainstem was excluded because the shape model used in FIRST
extended beyond the inferior boundary of the image for the California subjects. The inferior
boundary was prescribed at the time of acquisition. The following structures (shown in
Figure 1) were extracted and their volumes were measured for all 226 T1-weighted MR
images: left and right lateral ventricles, left and right thalamus, left and right caudate, left
and right putamen, left and right pallidum, left and right hippocampus, left and right
amygdala, and left and right nucleus accumbens.

Image analysis was performed using FSL, version 4.1 (Oxford, UK). FIRST is the FSL tool
for segmentation of subcortical structures. When boundaries of the delineated structures
were visually inspected, we observed boundary underestimation of lateral ventricles in MRIs
of subjects with ventricles significantly larger than those in the MNI152 standard template
(which occurs as a natural result of age-related atrophy). To ensure a more accurate
segmentation of the lateral ventricles, MRIs were first registered MNI152 standard space
template using FSL’s FNIRT (FMRIB’s Nonlinear Image Registration Tool). The warped
(registered) MRIs were then processed through FIRST to extract the surface mesh of each of
the 16 subcortical structures. The surfaces in the warped space were then transformed back
(un-warped) to the original MRI space. The un-warped surfaces of the segmented structures
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were then filled and boundary corrected using the FSL tool “first_utils” (preventing voxel
overlap between structures). Figure 2 shows the processing steps we used for this
segmentation. Boundaries of each delineated structure were visually inspected for gross
errors. For each of the 16 extracted structures, the volume is measured in cubic millimeters.
Cranium size estimation (an estimate of premorbid brain size) was also performed using
FSL’s SIENAX (Structural Image Evaluation, using Normalisation, of Atrophy) tool.

2.4. Statistical analyses
The General Linear Model (GLM) (SPSS Inc. 2009) was first used to determine whether
subcortical volumes were correlated with the cranium size index. Since all 16 subcortical
volumes were significantly positively correlated with the cranium size, we used linear
regression to adjust each structure volume for the cranium size index, calculated by FSL’s
SIENAX for each subject. We have previously shown that the FSL cranium size index is an
excellent surrogate for the intracranial vault volume (Fein, et al. 2004). For each subcortical
structure, we then added the left and right volumes, resulting in 8 measures per subject.
These cranium size adjusted volumes were used in all subsequent analyses.

First, we ran GLM analysis on the entire California controls, for both raw volumes and
cranium adjusted volumes, with the expectation that the cranium size adjusted values would
remove gender differences in the structure volumes and would increase the effect size of age
effects as a result of removing extraneous variance. Curve fitting analysis was also
performed to determine the best model of age related differences in subcortical volumes.
Then we divided the California subjects into younger (under 35 years of age), middle-aged
(35–60 years of age) and older (above 60 years of age) subgroups. We used the middle-aged
group as the standard, and performed GLM analysis to determine whether age effects in
younger or older groups differed from those in the middle-aged group. Finally, GLM was
conducted to assess the repeatability of age effects across sites (California vs. Hawaii), with
the analysis limited to the 35 to 60 year age range which was sampled at both sites.

3. Results
3.1. Subcortical volumes and age in California controls

All eight subcortical structures showed significant volume differences related to subject age.
This is consistent with findings from previous brain imaging studies (Behets, et al. 1997,
Figueroa, et al. 1997, Hantouche, et al. 2003, Helal, et al. 1997, Raz, et al. 2010, Tarres, et
al. 1997, Walhovd, et al. 2009). Table 1 indicates the mean volume for each structure,
separated by gender, and effect sizes resulted from GLM analysis. Gender differences in
subcortical volumes are present for all structures in the raw data, but the cranium size
adjustments effectively remove these differences, showing that they are a consequence of
larger cranium sizes in men compared to women. Note also that the age effect sizes are
larger after cranium size adjustment, since it removes extraneous variance due to inter-
subject differences in head size.

Figure 3 shows the scatter plots for all subcortical volumes vs. age. Linear and quadratic
curves are also fitted into each plot with their corresponding R2 values. In all structures, the
quadratic model was a better fit when compared to linear, with the exception of putamen and
pallidum, for which the linear model was virtually identical to the quadratic one.

GLM analysis on the middle-aged California subjects (35 to 60 years of age) showed
significant age effect for the caudate (F1,68 = 16.850, p < 0.001, effect size 19.9% of
variance), putamen (F1,68 = 8.168, p < 0.01, effect size 10.7% of variance) and accumbens
(F1,68 = 15.419, p < 0.001, effect size 18.5% of variance) volumes, with a trend toward an
effect for the thalamus (F1,68 = 3.629, p < 0.061, effect size 5.1% of variance). There was
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also a significant gender effect on caudate volume (F1,68 = 10.125, p < 0.01, effect size
13.0% of variance). Parameter estimates of the age-related linear regression coefficient,
computed from the middle-aged sample for each subcortical structure, were applied to all
subjects, regardless of age. We then examined age effects on these adjusted values in the
younger (below 35) and older (above 60) subject groups separately. The results would
highlight age effects in the younger or older groups that differed from the age effects in the
middle-aged group. For the younger group, only the thalamus showed a negative correlation
with age (F1,40 = 6.483, p < 0.05, effect size 13.9% of variance). For the older group, there
were effects for the ventricles (F1,67 = 17.915, p < 0.001, effect size 21.1% of variance),
caudate (F1,67 = 21.638, p < 0.001, effect size 24.4% of variance) and amygdala (F1,67 =
9.969, p < 0.01, effect size 13.0% of variance) and a trend toward an effect for the
hippocampus (F1,67 = 3.257, p < 0.076, effect size 4.6% of variance). In the older group, the
correlation between lateral ventricle volume and age is 19.1% more per decade than the
middle-age group correlation. The changes to the age correlate for the amygdala and
hippocampus were 5.9% and 3.2% per decade, respectively. However, the older group
caudate age-volume correlation is 9.6% per decade more than the younger group.

Based on the lack of differences between the younger and middle-aged subjects, we
combined those groups in California calculate age related change rates for each subcortical
volume. Table 2 shows the age-related difference in California controls for all 8 subcortical
structures. These percentages are calculated based on regression lines modeling subcortical
volume changes vs. age, for subjects younger than 60 years of age (n = 114) and subjects
who were 60 or older (n = 70).

3.2. Subcortical volumes in middle-age - repeatability of results across sites and scanners
Middle-aged data were re-analyzed with data from both California and Hawaii included.
Note that the MRI’s for the two sites were acquired on two magnets from different
manufacturers and with different field strengths. Table 3 shows the result of the analysis of
this data. There was no significant site effect or site by age interaction for any of the
subcortical structure volumes. Thalamus, caudate, putamen, hippocampus and accumbens
continued to show a significant are-related decrease. However, age did not have a significant
effect on ventricles, pallidum and amygdala volumes for these middle age subjects. Figure 4
shows the scatter plots for subcortical volumes vs. age with significant age-related decreases
for the middle-age subjects only. The California and Hawaii subjects are marked separately.
There is reasonable agreement between cohorts for the thalamus, caudate, putamen,
hippocampus and accumbens. This is consistent with the findings of Gunning-Dixon et al.
(1998), Jernigan et al. (2001), Luft et al. (1999) and Raz et al. (2003), on pallidum and also
with Doty et al. (2008), Jernigan et al. (2001) and Pruessner et al. (2001) on amygdala.

4. Discussion
For all subcortical volumes, age effects were observed. In the California sample, all
structures showed a negative correlation with age, except for the lateral ventricles, which
correlate positively with age. However, when subject age range was limited to the middle
age group (35–60 years of age), and the data from the California and Hawaii cohorts were
analyzed together, 5 subcortical structures showed reduced volume as an age-related
difference: thalamus, caudate, putamen, hippocampus and nucleus accumbens, and none
showed a volume increase. These effects were comparably present in both cohorts (i.e., there
was no significant site by age interaction), indicating the consistency of the findings across
cohorts and of the image analysis methodology across GE and Siemens MRI acquisition
systems at different field strengths.
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The age-related increase in lateral ventricle volume is in agreement with decades of findings
(e.g. Coffey, et al. 1998, Jernigan, et al. 2001, Sullivan, et al. 1995, Walhovd, et al. 2005,
2009). We found the relationship between volume and age per decade is 2.6 times greater in
the subjects over 60 years of age than the middle-age and younger groups. This is consistent
with the literature, including Walhovd and colleagues (2005, 2009), who reported a higher
rate of lateral ventricles volume increase in elderly subjects compared to the middle-age and
younger subjects.

The thalamus was found to have smaller volumes with increasing age in several studies
((Pieperhoff, et al. 2008, Sullivan, et al. 2004, Van Der Werf, et al. 2001, Walhovd, et al.
2005, 2009); however, Jernigan and colleagues (1991, 2001) did not report such an age
effect. We found the age effect on thalamus volume is of 3% per decade for the middle-age
group with no difference in younger subjects but with a decreased age effect in the older
group to less than 1% (which is a statistically non-significant rate of decline in the elderly
sample). This is in agreement with findings of one study (Van Der Werf, et al. 2001), which
reported a smaller rate of thalamic volume reduction in elderly compared to middle-age
samples.

Caudate volume was consistently found to decline with age in several cross-sectional
(Greenberg, et al. 2008, Gunning-Dixon, et al. 1998, Hasan, et al. 2008, Jernigan, et al.
2001, Krishnan, K. R., et al. 1990b, Walhovd, et al. 2005) and longitudinal studies ((Raz, et
al. 2005, 2003). We found the same overall effect for the entire California sample; however
when subjects were divided into separate age groups, the caudate volume is greater in older
subjects. This is consistent with the findings of Walhovd and colleagues (2009) in their
analysis of 883 subjects from 5 different samples which also showed caudate volume
increases for subjects between 60 and 95 years of age. A possible confounding factor
contributing to this volume increase may be the presence of periventricular white matter
signal hyperintensities (PWMSH) that could have been misclassified as caudate. PWMSH
are common in elderly subjects and in T1 images are often difficult to distinguish from grey
matter. The authors believe this phenomenon is responsible for the counter-intuitive increase
in caudate volume.

Putamen volume showed a consistent decrease in age-related volume throughout the range
studied (19–85 years). This is in agreement with other findings (Greenberg, et al. 2008,
Gunning-Dixon, et al. 1998, Raz, et al. 2003, Walhovd, et al. 2005, 2009). In contrast,
Jernigan and colleagues (2001) did not find age effects on the lenticular nuclei which
includes the globus pallidus and putamen; the aggregation of these two structures may have
contributed to their failure to find an age effect.

Age changes in pallidum volume were less consistently reported in the literature than for the
other structures mentioned above. No age effect was found in several studies (Gunning-
Dixon, et al. 1998, Jernigan, et al. 2001, Luft, et al. 1999, Raz, et al. 2003), while Walhovd
and colleagues reported a trend (2005), and a significant negative association with age
(2009). Our results also showed less of an age effect on the pallidum than on other
structures. In fact, the age effect was only observed when the entire California sample (n =
184) was included in the analysis.

Many studies have focused on the hippocampus and its volume changes with age. The
majority of these studies reported volume reductions with age (Allen, et al. 2005, Greenberg,
et al. 2008, Jernigan, et al. 2001, Mu, et al. 1999, Pruessner, et al. 2001, Raz, et al. 2010,
Walhovd, et al. 2005, 2009), while others found no age-related hippocampal volume
changes (Du, et al. 2006, Liu, et al. 2003, Sullivan, et al. 1995, 2005, Van Petten 2004). We
found hippocampus volume to correlate negatively with age in both middle-age (California
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and Hawaii cohorts combined) and older subject groups, with the correlation considerably
stronger in the elderly subjects.

For the amygdala, a negative correlation between volume and age was found when all
California subjects were analyzed together; however, this effect was not present when
younger or middle-age groups (both in California and Hawaii) were examined separately.
This is consistent with a number of studies that found amygdala age-related volume
reduction in elderly samples (Allen, et al. 2005, Mu, et al. 1999, Walhovd, et al. 2005,
2009), but not in middle-age samples (Doty, et al. 2008, Jernigan, et al. 2001, Pruessner, et
al. 2001).

Finally, our finding of age related volume differences in the accumbens across all age
groups is consistent with the three previous reports in the literature (Jernigan, et al. 2001,
Walhovd, et al. 2005, 2009). We found the rate strength of the negative age-related
correlation for accumbens volume in the older group is 2.7 times that of the middle-age and
younger groups.

Our findings are consistent with that of many other studies, in particular, Walhovd and
colleagues (2009) who studied the largest sample among all age related studies of
subcortical structures and incorporated results from FreeSurfer’s ASEG (subcortical
segmentation) (Fischl, et al. 2002). Both FIRST and ASEG were trained from manual
segmentations provided by the CMA (Center for Morphometric Analysis), providing the
same definitions of each structure. The two automated methods do differ in methodology.
FIRST uses a surface based shape/appearance model approach, where intensities are sample
normal to the surface. FreeSurfer uses an integrated volumetric registration and
segmentation, incorporating voxel-wise shape and intensity priors. In addition, the
consistency of the findings between our two cohorts with MRIs acquired at two separate
sites utilizing different magnets (a 1.5T GE and a 3.0T Siemens) confirms the reliability of
the delineation method. Furthermore, the agreement between this study which used FIRST
and previous studies using other segmentation methods (e.g. FreeSurfer or manual methods)
adds to the limited, but growing number of studies demonstrating the accuracy and
reliability of FIRST as a structural imaging tool. The results of the study demonstrate
increased age related differences in the older group (60 years of age and older) for lateral
ventricles, putamen, hippocampus, amygdala and nucleus accumbens and validate the
hypothesis that brain changes accelerate with increasing age.
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Figure 1.
Sixteen brain subcortical structures (left and right) examined in this study.
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Figure 2.
Flowchart of the steps for subcortical structure segmentation and volume measurement when
a non-linear registration is utilized.
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Figure 3.
Subcortical volumes (in mm3) vs. age in California controls. Linear and quadratic regression
curves with their associated R2 values are displayed on each plot.
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Figure 4.
Subcortical volumes (in mm2) vs age in California controls and Hawaii controls. Linear
regression curves with their associated R2 values are displayed on each plot.
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Table 2
Age-related difference in volume per decade for subjects younger and older than 60 years
of age

SUBCORTICAL
STRUCTURE

Volume difference per decade (%)

Under 60
(n = 114)

60 & Above
(n = 70)

Lateral Ventricles 13.13** 34.31**

Thalamus −2.99** −0.83

Caudate −3.30** 4.55.053

Putamen −3.48** −4.20**

Pallidum −1.21061 −1.28

Hippocampus −0.08 −4.91**

Amygdala −0.03 −4.24*

Nucleus Accumbens −4.27** −11.80**

Trends are reported as superscripted p levels.

*
Effect is significant: p ≤ 0.05

**
p ≤ 0.01.

Psychiatry Res. Author manuscript; available in PMC 2013 August 03.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Goodro et al. Page 18

Ta
bl

e 
3

A
ve

ra
ge

 s
ub

co
rt

ic
al

 s
tr

uc
tu

re
 v

ol
um

es
 f

or
 C

al
if

or
ni

a 
an

d 
H

aw
ai

i c
on

tr
ol

s 
of

 t
he

 s
am

e 
ag

e 
ra

ng
e 

(3
5 

to
 6

0 
ye

ar
s)

SU
B

C
O

R
T

IC
A

L
ST

R
U

C
T

U
R

E

C
al

if
or

ni
a 

C
on

tr
ol

s
M

ea
n 

V
ol

um
e

(n
 =

 7
1)

H
aw

ai
i C

on
tr

ol
s

M
ea

n 
V

ol
um

e
(n

 =
 4

2)

E
ff

ec
t 

Si
ze

 (
%

)
(P

ar
ti

al
 e

ta
 s

qu
ar

e

A
ge

Si
te

Si
te

 ×
A

ge

L
at

er
al

 V
en

tr
ic

le
s

18
39

5
16

29
5

1.
3

1.
0

1.
5

T
ha

la
m

us
16

18
3

15
26

1
14

.5
**

1.
6

3.
3.

05
6

C
au

da
te

68
63

65
36

4.
3*

*
0.

0
0.

1

P
ut

am
en

98
19

96
32

10
.2

**
0.

0
0.

0

P
al

lid
um

34
58

36
59

0.
2

0.
5

1.
0

H
ip

po
ca

m
pu

s
75

63
80

29
6.

7*
*

1.
5

0.
3

A
m

yg
da

la
28

52
28

94
0.

1
1.

1
0.

6

N
uc

le
us

 A
cc

um
be

ns
10

09
96

1
9.

7*
*

1.
7

1.
4

A
ll 

vo
lu

m
es

 a
re

 r
ep

or
te

d 
in

 c
ub

ic
 m

ill
im

et
er

s.

T
re

nd
s 

ar
e 

re
po

rt
ed

 a
s 

su
pe

rs
cr

ip
te

d 
p 

le
ve

ls

* E
ff

ec
t i

s 
si

gn
if

ic
an

t: 
p 

≤ 
0.

05

**
p 

≤ 
0.

01
.

Psychiatry Res. Author manuscript; available in PMC 2013 August 03.


