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Summary

Dendritic cells (DC) are mediators of the adaptive immune response
responsible for antigen presentation to naive T cells in secondary lymph
organs. Human immunodeficiency virus (HIV-1) has been reported to
inhibit the maturation of DC, but a clear link between maturation and func-
tion has not been elucidated. To understand further the effects of HIV-1 on
DC maturation and function, we expanded upon previous investigations
and assessed the effects of HIV-1 infection on the expression of surface mol-
ecules, carbohydrate endocytosis, antigen presentation and lipopolysaccha-
ride (LPS) responsiveness over the course of maturation. In vitro infection
with HIV-1 resulted in an increase in the expression of DC-specific inter-
cellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) as well as
decreases in maturation-induced CCR7 and major histocompatibility
complex (MHC)-II expression. Retention of endocytosis that normally
occurs with DC maturation as well as inhibition of antigen presentation to
CD8+ T cells was also observed. Mitogen-activated protein kinase (MAPK)
responsiveness to LPS as measured by phosphorylation of p38, c-Jun
N-terminal kinase (JNK) and extracellular-regulated kinase (ERK)1/2 was
not affected by HIV-1 infection. In summary, in-vitro HIV-1 impairs DC
maturation, as defined by cell surface protein expression, with selective
alterations in mature DC function. Understanding the mechanisms of DC
dysfunction in HIV infection will provide further insight into HIV immune
pathogenesis.
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Introduction

Dendritic cells (DC) are critical mediators of the interac-
tion between the adaptive and innate immune systems
and are responsible for the presentation of antigens and
co-stimulatory molecules to naive T cells in the secondary
lymph organs [1]. When not presenting antigens in the sec-
ondary lymph organs, DC are located throughout the body in
tissues in an immature form, where they constantly ‘sample’
their environment for pathogens through pattern recognition
receptors [2]. During normal maturation, DC change from
antigen capture cells to antigen-presenting cells [3]. Matura-
tion is characterized by a decrease in phagocytic and pinocytic

activities [3] and decreases in the expression of cell surface
molecules associated with those functions, including
mannose receptors, CD14 and C-type lectin receptors such
as DC-specific intercellular adhesion molecule-3-grabbing
non-integrin (DC-SIGN) [4–6]. These changes are accompa-
nied by concomitant increases in the expression of surface
molecules that facilitate antigen presentation and adaptive
immune system activation such as CD80, CD86, CD40, major
histocompatibility complex (MHC)-I and MHC-II [7–11].
Additionally, expression of the immunoregulatory surface
molecule CD83 increases when DC mature and this is accom-
panied by decreases in the expression of the chemokine recep-
tor CCR5 and increases in CCR7 expression [12–14].
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Another important component of DC physiology
involved in maturation is signal transduction by the
mitogen-activated protein kinase (MAPK) pathways [15].
MAPKs are highly conserved signal transduction pathways
important in the function and differentiation [16]. In the
case of DC, three specific pathways have been identified as
important components of normal DC physiology.

Stimulation of the p38 MAPK has been observed to be
critical for normal maturation and function of DC [17].
Specifically, p38 activation has been implicated in the regu-
lation of the surface expression of CD80, CD86, CD40,
CCR7 and MHC-II molecules as well as cytoskeletal rear-
rangement, endocytosis, cytokine secretion and response
[18–25]. Stimulation of the c-Jun N-terminal kinase (JNK)
pathway has been found to be important in CD80 and CD86
expression as well as expression of CD83, MHC-II, Toll-
like receptor (TLR) function, cytokine secretion and
response and T cell stimulation [26–31]. Activation of the
extracellular-regulated kinase (ERK) MAPK pathway has
been observed contribute to TLR function and cytokine
production and responsiveness [32–34].

During most viral infections, mature DC are responsible
for the presentation of viral antigens to naive T cells within
secondary lymphoid organs, resulting in the generation of an
antigen-specific adaptive immune response and clearance of
the virus [35]. However, this is not the case with human
immunodeficiency virus (HIV-1) infection [36]. During
infection with HIV-1, the virus is not cleared and a chronic
systemic infection develops characterized by immune dys-
function, CD4+ T cell depletion, systemic inflammation and
opportunistic infections [37–40].

How the virus evades immune system elimination is not
completely understood. It has been suggested that initial
HIV-1 interactions with DC may actually enhance viral
spread to naive T cells in secondary lymphoid tissue. Rather
than process and present critical viral antigens to induce a
virus-specific adaptive immune response, there have been
reports suggesting that DC enhance HIV-1 dissemination
during infection via the transfer of intact cell surface and
endosomal viral particles to naive T cells in the secondary
lymphoid organs [41,42].

HIV-1 itself does not appear to stimulate the maturation
of DC but, rather, may induce DC dysfunction, inhibit matu-
ration and reduce DC numbers in vivo [43–46], although
there are reports that suggest otherwise [47–54]. In fact, a
number of HIV-1-derived peptides have also been observed
to induce maturation of DC [55–57].

To describe more comprehensively the effects of HIV-1 on
DC, we expanded upon previous studies of the influence of
HIV-1 on DC maturation and function. In addition to inves-
tigating the effects of HIV-1 infection on the expression of
surface molecules pertinent to DC maturation, we studied
simultaneously the effects of HIV-1 on DC function, includ-
ing endocytosis, antigen presentation and cell signalling, in
response to bacterial lipopolysaccharide (LPS).

Materials and methods

Preparation of monocytes and DC

Peripheral blood mononuclear cells (PBMC) were isolated
from whole blood from healthy donors using Ficoll Paque™
PREMIUM (GE-Healthcare Bio-Sciences, Mississauga, ON,
Canada) density separation by centrifugation. Monocytes
were isolated from PBMCs with anti-CD14-coated micro-
beads (Miltenyi Biotec, Mississauga, ON, Canada) and main-
tained in complete media (RPMI-1640 medium containing
L-glutamine, 100 mg/ml streptomycin and 100 U/ml penicil-
lin; Invitrogen, Burlington, ON, Canada) at 1 ¥ 106 cells/ml.

Generation of DC

Monocytes were differentiated into immature monocyte-
derived DC (iMDDC), as described previously [58]. Isolated
monocytes were incubated in complete media supplemented
with 500 U/ml recombinant human interleukin (rhIL)-4 and
1000 U/ml recombinant human granulocyte–macrophage
colony-stimulating factor (rhGM-CSF) (R&D Systems,
Burlington, ON, Canada) at 1 ¥ 106 cells/ml at 37°C and
5% CO2 for 24 h.

To induce maturation, iMDDCs in complete media at a
density of 1 ¥ 106 cells/ml were incubated with 1000 U/ml
tumour necrosis factor (TNF)-a, 10 ng/ml IL-1b, 10 ng/ml
IL-6 and 1 mM prostaglandin E2 (PGE2) (R&D Systems) for
48 h at 37°C and 5% CO2 [58].

Flow cytometric analysis of monocytes and MDDCs

Monocytes and MDDCs were incubated with saturating
concentrations of fluorescein isothiocyanate (FITC)-
conjugated anti-CD14, DC-SIGN, CD80, CD86, CCR5,
CCR7, MHC-I or MHC-II antibodies, phycoerythrin (PE)-
conjugated anti-MHC-I antibodies or isotype controls in
5-ml polypropylene round-bottomed tubes (Becton Dickin-
son and Company, Franklin Lakes, NJ, USA). Surface expres-
sion was measured using a Coulter Epics Altra flow
cytometer (Beckman-Coulter Canada Inc., Mississauga, ON,
Canada) and analysed with FCS Express 2·00 software (De
Novo Software, Los Angeles, CA, USA).

HIV-1 infection of MDDCs

Immature MDDCs were incubated with live dual tropic
HIV-1CS204 (a gift from Dr Francisco Diaz-Mitoma at the
Children’s Hospital of Eastern Ontario, Ottawa, ON,
Canada) [multiplicity of infection (MOI)] of 1 for 24 h
at 37°C and 5% CO2. After 24 h, MDDCs were incubated
with 20 ml of HIV-1CS204 or an equivalent volume of mock
solution for 24 h, washed and suspended in complete media
supplemented with rhIL-4 (500 U/ml) and of rhGM-CSF
(1000 U/ml) in 12-well tissue culture plates at a density of
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1 ¥ 106 cells/ml at 37°C and 5% CO2. HIV-1 infection was
evaluated 3 days post-infection using Alu-nested polymerase
chain reaction (PCR) detection and a commercially available
p24 antigen enzyme-linked immunosorbent assay (ELISA)
kit (National Cancer Institute, Frederick, MD, USA).

Alu-nested PCR detection of HIV-1 DNA

Viral infection was confirmed by Alu-nested PCR amplifica-
tion adapted from previous work [59]. The first-round PCR
cycle conditions consisted of a denaturation step (7 min at
94°C) and 12 cycles of amplification (94°C for 1 min, 59°C
for 1 min and 72°C for 1 min) using Taq PCR Mastermix
(Qiagen, Mississauga, ON, Canada) with two outward-
facing Alu primers (300 nM) and an HIV-1 long terminal
repeat (LTR)-specific primer (300 nM). During the second
round of PCR, 1/10 of the first-round PCR products were
amplified using a lambda-specific primer (Lambda T)
(300 nM) and an LTR primer (AA55M) (300 nM). Second-
round PCR cycle conditions consisted of a denaturation step
(7 min at 94°C) and 30 amplification cycles (94°C for 1 min,
59°C for 1 min and 72°C for 1 min) in Taq PCR Mastermix
using an Eppendorf Mastercycler ep 543X instrument
(Eppendorf, Mississauga, Canada).

Primers

The primers used were as follows: L-M667 – ATGCC
ACGTAAGCGAAACTCTGGCTAACTAGGGAACCCACTG;
Alu 1 – TCCCAGCTACTGGGGAGGCTGAGG; Alu 2 –
GCCTCCCAAAGTGCTGGGATTACAG; Lambda T – ATG
CCACGTAAGCGAAACT; and AA55M – GCTAGAGATT
TTCCACACTGACTAA.

Dextran endocytosis assay

A total of 250 000 MDDCs differentiated and infected as
described above were incubated in 5 ml polypropylene
round-bottomed tubes with 1 mg of FITC-conjugated
dextran (Sigma-Aldrich, Milwaukee, WI, USA) in the dark
for 1 h on ice or at 37°C and 5% CO2. Cells were then washed
in phosphate-buffered saline (PBS) and subjected to flow
cytometric analysis using FCS Express 2·00 software.

Preparation of cell lysates and immunoblot analysis

Changes in the phosphorylation of the ERK, JNK and p38
proteins in response to LPS after HIV-1 infection were mea-
sured using immunoblot analysis, as described previously
[60]. HIV-1-infected or -uninfected MDDCs were centri-
fuged, incubated in the presence or absence of 2 mg/ml LPS
(Escherichia coli, 0111:B4; Sigma-Aldrich) for 1 h at 37°C
and 5% CO2. Cells were then collected by centrifugation,
washed, and then lysed on ice using 250 ml lysis buffer
[0·05 M HEPES, 0·15 M NaCl, 10% glycerol, 1% Triton-X-

100, 7·5 ¥ 10-4 M MgCl2, 0·1 M NaF and 0·001 M ethylene
glycol tetraacetic acid (EGTA) (pH 7·7)] (Fisher Scientific
Canada Limited, Ottawa, ON, Canada). Samples were boiled
with ¥4 treatment buffer [8% sodium dodecyl sulphate
(SDS), 10% 2-mercaptoethanol, 30% glycerol, 0·008% bro-
mophenol blue, 0·25 M Tris HCl] for 10 min, and 40 mg of
total protein of each lysate was added to each well of an 8%
SDS polyacrylamide gel and subjected to electrophoresis.
Next, proteins were transferred electrophoretically to nitro-
cellulose sheets (Protran®, Bioscience, Schleicher and
Schuell, Mandel, ON, Canada) via semidry electrophoretic
transfer (Biorad Labratories Inc., Burlington, ON, Canada)
and blocked with Amersham™ ECL Advance Blocking agent
(GE-Healthcare Bio-Sciences).

The membranes were incubated at 4°C with the primary
phosphorylated anti-p38, JNK/stress-activated protein
kinase (SAPK) or ERK1/2 and b-actin antibodies (9215S,
9251S, 99101S and 4967; Cell Signaling Technologies, New
England Biolabs Limited, Toronto, ON, Canada) at a titre
of 1:500 in Amersham™ ECL Advance Blocking agent in
¥1 Tris-buffered saline (TBS) (Fisher Scientific Canada
Limited) plus Tween 20 (Fisher Scientific Canada Limited)
(TBST) for 24 h. The membranes were washed and incu-
bated with secondary antibodies bound covalently to horse-
radish peroxidase (HRP) (Santa Cruz Biotechnology, Santa
Cruz, CA, USA) at a titre of 1:1000 in Amersham™ ECL
advance blocking agent in TBST at 4°C for 24 h. The mem-
branes were washed and signals were detected using Super-
signal HRP substrate (Pierce Chemical Company, Brockville,
ON, Canada) and AlphaEase FC 6·0·0 software (Cell Bio-
sciences, Santa Clara, CA, USA).

MDDC co-culture

MDDCs, differentiated and infected as above, were pulsed
for 3 h with 3 mg/ml of a CEF peptide pool containing 23
human leucocyte antigen (HLA)-ABC-restricted T cell
epitopes from human cytomegalovirus, Epstein–Barr and
influenza viruses (CEF) (Anaspec Inc., Fremont, CA, USA).

The negative fraction obtained from the monocyte iso-
lation (to serve as the pool of autologous T cells) was
suspended at 1 ¥ 107 cells/ml in 5 mM CellTrace™ carboxy-
fluorescein succinimidyl ester (CFSE) 10 min at 37°C and
5% CO2 in 15 ml polypropylene conical tubes in the dark.
The cells were then washed, incubated for 5 min on ice,
pelleted by centrifugation and suspended at 1 ¥ 106 cells/ml
in complete media.

A total of 250 000 CFSE-labelled autologous cells from the
negative fraction and 25 000 DC from each condition were
co-cultured together in the dark for 7 days at 37°C and 5%
CO2 with a negative control culture containing colchi-
cine (100 ng/ml) (Sigma-Aldrich, Milwaukee, WI, USA).
Co-cultures were then transferred to 5-ml polypropylene
round-bottomed tubes and stained with PE-conjugated anti-
CD8 antibodies (R&D Systems). CD8+ T cell proliferation
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was measured by flow cytometric analysis (CFSE dilution).
Only those cultures that proliferated in response to the CEF
antigen pool beyond the level of media controls were
included in the analysis (six of 12).

Statistical analyses

Data were analysed using paired t-tests or the Wilcoxon
rank-sum test when appropriate for identification of statis-
tically significant differences (P � 0·05 was considered sig-
nificant) between experimental groups using Sigma Plot 8·0
(Systat Software Inc., Chicago, IL, USA).

Results

Monocyte and DC phenotype

Monocytes isolated from PBMCs of healthy donors using
CD14+ magnetic bead isolation expressed high surface
levels of CD14, CD40 and MHC I and low levels of
surface DC-SIGN/CD209, CD83, CD80, CD86 and MHC II

(Fig. 1a), consistent with the published literature [3,61].
Immature MDDCs differentiated from monocytes using
GM-CSF and IL-4 expressed low surface levels of CD14 and
high levels of DC-SIGN (Fig. 2). Immature MDDC also
expressed higher levels of surface CD83, CD80, CD86, CD40,
MHC-I and MHC-II (Fig. 1b). Finally, after incubation of
the iMDDC with the maturation-inducing cytokine cocktail
consisting of TNF-a, IL-1b, IL-6 and PGE2 for 48 h,
mMDDC were observed to express high levels of CD83,
CD80, CD86, CD40, CCR7 and MHC-I and MHC-II, with a
low level of DC-SIGN expression and negligible CD14
expression (Fig. 1c). Therefore, monocytes, iMDDCs and
mMDDCs all expressed surface molecules consistent with
that reported in the literature [58].

HIV infection of DCs: evidence of integrated
HIV-1 DNA

After a 24-h incubation with HIV-1 and 48 h of culture,
HIV-1 DNA was detected consistently in HIV-1-infected
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Fig. 1. Cell surface phenotype of monocytes, immature monocyte-derived dendritic cells (iMDDC) and mature MDDC (mMDDC). Monocytes

isolated from peripheral blood mononuclear cells (PBMCs) from healthy donors were differentiated into iMDDCs with interleukin (IL)-4 and

granulocyte–macrophage colony-stimulating factor (GM-CSF) and then matured into mMDDCs with tumour necrosis factor (TNF)-a, IL-1b,

IL-6 and prostaglandin E2 (PGE2). Expression of CD14, dendritic cell (DC)-specific intercellular adhesion molecule-3-grabbing non-integrin

(DC-SIGN), CD83, CD80, CD86, CD40, CCR7, major histocompatibility complex (MHC)-I and MHC-II as measured by flow cytometry on

(a) monocytes, (b) iMDDCs and (c) mMDDC were observed at expected levels. Results are expressed as means � standard deviation of percentage

of total cells expressing each surface molecule (n = 3).
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Fig. 2. Monocyte-derived dendritic cells (MDDC) are infected by human immunodeficiency virus (HIV)-1. HIV-1 DNA was detected by nested

polymerase chain reaction (PCR) using two outward-facing Alu primers and an HIV-1 LTR-specific primer during the first round of replication.

First-round PCR products were then amplified using a Lambda T and a long terminal repeat (LTR) primer during a second round of replication.
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control for detection of integrated HIV-1 DNA.
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cultures (Fig. 2). There was no detectable HIV-1 DNA in
the mock-infected cultures over the same period of time
(Fig. 4).

HIV infection inhibits maturation of MDDC

Phenotypic analysis. HIV-1 has been observed to have a
variety of effects on dendritic cell maturation both ex vivo
and in vitro. While HIV-1 has been reported to induce DC
maturation [47,62], there is considerably more evidence to
suggest that HIV-1 does not induce maturation [44,63–67].
Because one measure of DC maturation is the surface
expression of distinct surface molecules, we first determined
if HIV-1 infection influences the cell surface phenotype of
MDDC during the course of maturation.

After incubation with HIV-1 for 24 h and 48 h of culture,
there was no change in the expression of CD80, CD86,
CD83, CD40, CCR7, MHC-I or MHC-II, indicating that
HIV-1 itself was not capable of inducing DC maturation.
There was, however, an increase in DC-SIGN expression
following HIV-1 infection (Fig. 3a).

After iMDDC were infected with HIV-1 and then stimu-
lated to mature, they expressed lower levels of CCR7 and
MHC-II than that observed in uninfected cells (Fig. 3b,c),
suggesting that HIV-1 inhibits the full maturation of
iMDDCs.

Functional analysis. Analyses were conducted as follows.

1. Endocytosis: while a phenotypic analysis of MDDC can be
used to partially identify the maturation status of an MDDC,
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determining the effects of HIV-1 on the functional character
of MDDC over the course of maturation is required to elu-
cidate a comprehensive picture of the effects of HIV-1 on
MDDC maturation.

One critical function of DC is the uptake of antigen from
the periphery for processing and presentation in lymphoid
organs [3]. After endocytosing antigens, immature DC
undergo maturation and move from the anatomic periphery
to secondary lymphoid organs where their role becomes that
of antigen presentation and not uptake [3,68].As a measure of
endocytic activity, and therefore the maturation state of
MDDC, the effect of HIV-1 on dextran uptake was evaluated.

As expected, maturation of uninfected iMDDC resulted in
a decrease in FITC–dextran uptake (Fig. 4a). While HIV
infection had no impact on the ability of iMDDC to take
up dextran (Fig. 4b), HIV-1 infection was associated with
blunted down-regulation of endocytosis by iMDDC (Fig.
4c). HIV-1 infection therefore appeared to inhibit matura-

tion reflected by the fact that HIV-1 infected DC partially
retain their endocytic function.

2. Antigen presentation: a primary function of DC is the
presentation of antigens to naive T cells in peripheral lym-
phoid tissue [3]. The effect of HIV-1 infection on the ability
of MDDC to present antigen to autologous CD8+ T cells was
determined by incubating HIV-1-infected MDDC with
autologous PBMC in the presence of a CEF peptide pool, as
described previously [69].

After culturing CEF peptide-pulsed iMDDC with autolo-
gous PBMCs for 7 days, CD8+ T cells proliferated as expected
(Fig. 5). When iMDDC were infected with HIV-1, however,
CD8+ T cell proliferation in response to the CEF peptide pool
was not observed (Fig. 5), suggesting that HIV-1 infection of
DC prevented or interfered with antigen presentation.

3. MAP kinase analysis: the p38, JNK and ERK MAPKs have
been found to be integral for the maturation of DC [70–72]
so, to characterize further the effect of HIV-1 on DC matu-
ration, MAPK activation in response to LPS was evaluated.

When iMDDC were infected with HIV-1, they exhibited
similar patterns of LPS-induced phosphorylation of p38,
JNK and ERK (Fig. 6a–c) to that observed in uninfected
cells. Similarly, the patterns of MAPK phosphorylation
observed after LPS stimulation of mMDDC were not
affected by HIV-1-infection (Fig. 6d–f).

Discussion

Mature DCs are primarily responsible for the presentation
of foreign antigens to T cells in secondary lymphoid
tissues. Most viral infections stimulate immature DCs to
mature through infection or by activation of TLRs. In
either case, after maturation, DCs present viral antigens to
T cells within the secondary lymph organs and initiate an
adaptive immune response that results in clearance of the
infection. During HIV-1 infection, however, the virus

evades immune clearance and chronic, persistent infection
results.

Integrative, productive HIV-1 infection of DC occurs at
low levels compared to that of T cells [73]. Proposed expla-
nations for the observed low infectivity of DC by HIV-1
include level of DC maturation [74], low levels of HIV-1
receptor and co-receptor expression [75], the characteristic
ability of DC to degrade attached virions [76] and intrinsic
host resistance factors that prevent productive HIV-1 infec-
tion [77]. Despite this, HIV-1 infection of DC has been
observed with a number of effects on their maturation and
function [78].

Initial investigations into the effects of HIV-1 on DC
maturation and function revealed that DC from HIV-1-
infected individuals had impaired ability to stimulate autolo-
gous T cell recall and proliferation [79,80]. Their ability to
induce a mixed leucocyte reaction in co-culture was also
compromised [79,80]. More recent examination of the
effects of HIV-1 on DC have included additional analyses of
the effects of HIV-1 on their maturation that support these
initial investigations. Granelli-Piperno et al. found that
HIV-1 infection of DC did not induce their maturation as
measured by CD83, MHC-II and DC-lysosomal-associated
membrane protein (LAMP) surface expression, but rather
inhibited cytokine-induced maturation of DC [42]. While
confirming previous reports that HIV-1 impairs the ability
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autologous 5 mM CellTrace™ carboxyfluorescein succinimidyl ester

(CFSE)-stained peripheral blood mononuclear cells (PBMC) at a ratio

of 1:10 for 7 days. While preincubation of uninfected iMDDC induced

the proliferation of autologous monocyte depleted PBMC, HIV-1CS204

infection of iMDDCs impaired the presentation of a CEF peptide

pool as measured by CFSE dilution. Results are expressed as

means � standard deviation. *P = 0·02 by paired t-test (n = 6).
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of DC to stimulate allogeneic T cells, they also observed
an increase in IL-10 secretion from HIV-1-infected DC
co-cultures that may contribute to the observed inhibition of
T cell stimulation by HIV-1-infected DC [42].

While the majority of evidence suggests that the effect of
HIV-1 on DC is one of inhibition of maturation and induc-
tion of DC dysfunction, other groups have reported con-
trasting results. In 2006, Harman et al. published findings
detailing increases in myeloid DC maturation measured
through increases in both co-stimulatory molecule mRNA
and surface expression [47]. While their results describing
increases in co-stimulatory molecule expression were

contrary to the findings of the group led by Granelli-
Piperno, they were in agreement with the partial DC activa-
tion observed in ex-vivo studies [81–84].

Other reports that describe HIV-1 induced maturation of
DCs focus on highly virus-sensitive plasmacytoid DC which
have immunologically and anatomically distinct character-
istics from those of myeloid lineage [48–54]. The activation
of pDC by HIV-1 has also been reported to induce the matu-
ration of bystander DC of myeloid origin [49]. However, in
this case it is not a direct effect of HIV-1.

In the present study, our initial investigations focused
on the effects of HIV-1 infection on DC maturation as

Fig. 6. Human immunodeficiency virus

(HIV)-1 infection does not alter

lipopolysaccharide (LPS)-induced

mitogen-activated protein kinase (MAPK)

phosphorylation in monocyte-derived dendritic

cells (MDDC). HIV-1-infected or uninfected

immature monocyte-derived DC (iMDDC)

were incubated with or without tumour

necrosis factor (TNF)-a, interleukin (IL)-1b,

IL-6 and prostaglandin E2 (PGE2) and then

stimulated with LPS for 1 h. Changes in the

phosphorylation of the extracellular-regulated

kinase (ERK), c-Jun N-terminal kinase (JNK)

and p38 proteins in response to LPS after

HIV-1 infection were measured using

immunoblot analysis. HIV-1CS204 infection did

not affect LPS-induced phosphorylation of p38

[a: iMDDC; b: mature monocyte-derived DC

(mMDDC); JNK, c: iMDDC; d: mMDDC] or

ERK1/2 (e: iMDDC; f: mMDDC). Densitometry

analysis was performed on three individual

experiments and results are expressed as

means � standard deviation.
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evaluated by cell surface molecule expression. Consistent
with previous reports that described HIV-1-induced inhibi-
tion of DC maturation [44,63–67], we also found that HIV-1
inhibited the expression of several cell surface molecules
associated with a mature phenotype. Specifically, it was
observed that up-regulation of CCR7 and MHC-II was
inhibited by HIV-1. The observed inhibition of MHC-II
expression in the presence of sustained co-stimulatory mol-
ecule expression after incubation with maturation-inducing
cytokines also complements previous ex-vivo observations in
which DC expressing only select maturation markers were
found to accumulate abnormally in the lymphoid tissues of
HIV-1 infected individuals [81–84]. This lower MHC-II
molecule expression could result in impaired DC-mediated

presentation of exogenous antigens in both the periphery
and in secondary lymphoid organs.

The significance of blunted CCR7 up-regulation is
unknown, but may contribute to HIV-1 pathogenesis.
While reduced CCR7 expression may not facilitate the dis-
semination of HIV-1 to naive T cells in secondary lym-
phoid tissue, it could delay the development of an effective
adaptive immune response. Specifically, impaired expres-
sion of CCR7 by activated DC in an inflammatory
cytokine-rich environment would allow for the mainte-
nance of partially activated HIV-1-infected DC in the ana-
tomical periphery in the presence of virus-susceptible
resident effector T cells and potentially increase HIV-1
infectivity [3].

Fig. 6. Continued

Mock HIV-1

0 min 5 min 15 min 30 min 60 min 0 min 5 min 15 min 30 min 60 min

0 min 5 min 15 min 30 min 60 min 0 min 5 min 15 min 30 min 60 min

JNK-1-P

JNK-2-P

β-actin

Mock
HIV-1

In
te

g
ra

te
d
 d

e
n
s
it
y
 v

a
lu

e

Time

250

200

150

100

50

0

0 
m

in

5 
m

in

15
 m

in

30
 m

in

60
 m

in

0 
m

in

5 
m

in

15
 m

in

30
 m

in

60
 m

in

n = 3

Mock + cytokines

Mock

HIV-1 + cytokines

HIV-1

β-actin

In
te

g
ra

te
d
 d

e
n
s
it
y
 v

a
lu

e

Time

400

300

200

100

0

0 
m

in

5 
m

in

15
 m

in

30
 m

in

60
 m

in

0 
m

in

5 
m

in

15
 m

in

30
 m

in

60
 m

in

n = 3

JNK-1-P

JNK-2-P

(c)

(d)

HIV effects on dendritic cell maturation

109© 2012 The Authors
Clinical and Experimental Immunology © 2012 British Society for Immunology, Clinical and Experimental Immunology, 170: 101–113



To complement the characterization of the effects of
HIV-1 on cell surface molecule expression, we also investi-
gated several functional aspects of mature DC. Maturation
of DC is associated with decreases in endocytic activity
[3,68], which was confirmed in our experimental system
(Fig. 4a). When DC were infected with HIV-1, this inhibition
of endocytosis was blunted (Fig. 4c), demonstrating that
HIV-1 infection inhibits functions associated with mature
DC in addition to its effects on surface marker expression.

To define further the effects of HIV-1 on the functional
aspects of mature DC stimulated to undergo maturation, we

evaluated antigen presentation as measured by autologous T
cell proliferation. To do so, HIV-1-infected (or -uninfected)
DC were pulsed with a peptide pool derived from CEF and
then co-cultured with CFSE-stained autologous T cells. Con-
sistent with published reports [79,80], we found that HIV-1
infection of DC inhibited autologous T cells proliferation.
This impaired T cell proliferation occurred despite the fact
that HIV-1 had no effect on MHC-I expression (data not
shown). This indicates that the degree of MHC-I expression
does not appear to be a factor in the observed HIV-1 effects
on T cell proliferation.
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Because a critical aspect of immature DC physiology con-
cerns appropriate MAPK responses to pathogenic stimula-
tion that trigger the maturation of DC [3], we next
investigated whether HIV-1 had any effect on LPS-induced
MAPK signalling. Interestingly, we found that HIV-1 infec-
tion had no effect on the p38, JNK or ERK MAPK signalling
pathways in immature DC or in-vitro matured DC. This was
consistent with our phenotypic observations that HIV-1 did
not affect CD14 expression on DC (data not shown), which
is necessary for TLR-4 recognition of bacterial LPS [3].

Despite some conflicting reports, it is generally accepted
that HIV-1 inhibits DC maturation. This is based largely on
the effects of HIV-1 on the expression of cell surface markers
associated with the state of DC maturation. Within the
present comprehensive set of experiments, not only have we
confirmed that HIV-1 alters cell surface marker expression
consistent with the inhibition of maturation, but for the first
time have clearly linked these changes with a number of
aspects of DC function (endocytosis, antigen presentation).
The fact that HIV-1 interferes with important aspects of DC
function has implications in both HIV-1 pathogenesis as it
relates to the immunological control of HIV replication, and
in the immunodeficiency and risk of opportunistic infec-
tions associated with HIV disease.
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