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Abstract

Background
and aims

We review evidence for hybridization of Phragmites australis in North America and the impli-
cations for the persistence of native P. australis ssp. americanus populations in North America.
We also highlight the need for an updated classification system, which takes P. australis intra-
specific variation and hybridization into account.

Methodology We reviewed available published, in press and in preparation literature to assess the likeli-
hood of hybridization and interbreeding in genotypes of P. australis present in North
America.

Principal results Experimental results demonstrate that hybridization among introduced and native haplo-
types is possible within the genus Phragmites, yet evidence that hybridization has occurred
naturally is only starting to emerge. The lag in identifying hybridization in Phragmites in
North America may be related to under-sampling in some parts of North America and to a
lack of molecular tools that provide the capability to recognize hybrids.

Conclusions Our understanding of the gene flow within and between species in the genus Phragmites is
moving at a fast pace, especially on the east and Gulf coasts of North America. More atten-
tion should also be focused on the Great Lakes region, the southwestern and the west coast
of the USA, where sympatry has created opportunities for hybridization. Where hybridiza-
tions have been detected, there are currently no published data on how hybridization
affects plant vigour, morphology, invasiveness or conservation of the genetic integrity of
the North American native subspecies. We conclude that the detection of more hybridiza-
tion is highly likely and that there is a need to develop new markers for the different Phrag-
mites species and lineages to fill current knowledge gaps. Finally, we suggest that the
classification system for P. australis should be updated and published to help clarify the
nomenclature.
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Introduction
As an ecologically and economically globally important
species, Phragmites australis has been of significant
interest to researchers for decades (e.g. Harris and
Marshall 1960; Haslam 1969; Hauber et al. 1991;
van der Putten 1997; Brix 1999; Chambers et al. 1999;
Meyerson et al. 1999; Orson 1999). Because of its
global distribution, its ability to thrive in a wide range
of environmental conditions (Meyerson et al. 2000a, b),
sexual and clonal reproductive strategies (Brisson et al.
2010; Saltonstall et al. 2010) and high genetic diversity
within the species (McCormick et al. 2010a, b; Saltonstall
2011; Lambertini et al. 2012a), Phragmites is increasingly
used as a model species in a variety of ecological
and genetic research. The identification of three distinct
lineages of P. australis in North America (i.e. North
American native, introduced and Gulf Coast) and the de-
velopment of species-specific chloroplast and nuclear
markers catalysed research on the ecology, evolution
and success of different P. australis haplotypes
(Saltonstall 2002, 2003). The current genetic knowl-
edge of Phragmites worldwide is largely based on this
original set of markers.

One area of particular interest for ecology and evolu-
tion is whether genotypes of this cosmopolitan grass
are able to disperse across continents and interbreed
within P. australis, as well as hybridize across species
within the genus Phragmites. It has been speculated
that hybridization in Phragmites could potentially result
in offspring with even greater vigour than the highly in-
vasive genotypes that are currently expanding across
North America, and that pollen swamping or outbreeding
depression could hasten the decline of North American
native populations (Meyerson et al. 2010a). Phragmites
australis is self-compatible (e.g. Ishii and Kadono 2002),
but Kettenring et al. (2011) clearly demonstrated that in
the Chesapeake Bay P. australis needs to outcross
in order to produce significant amounts of viable seed.
This need for outcross pollen would seem to greatly
increase the likelihood of hybridization, especially in
newly invaded areas where within-species pollen may
not be available but where pollen from related species
(or subspecies) might be abundant. Despite evidence
that native and introduced populations can interbreed
under controlled conditions (Meyerson et al. 2010a), no
convincing data have been published that demonstrate
wild hybrids resulting from crosses of the North American
native and introduced Phragmites (Saltonstall 2011).
Recently, however, conclusive evidence for hybridization
between the introduced and the more distantly related
Gulf Coast lineage has been confirmed using different
molecular markers (Lambertini et al. 2012a) and that

suggests that detection of interbreeding between the
native and introduced lineages and native and Gulf
Coast lineages is only a matter of time.

In this paper, we review evidence for hybridization of
P. australis in North America and the implications for
the persistence of native Phragmites populations. We
also highlight the need for an updated classification
system that takes P. australis intraspecific variation and
hybrids into account, and the need for new molecular
markers to facilitate hybrid identification.

Overview of the different lineages
present in North America
A growing body of published literature from the last
decade describes the ecology and genetics of both
the native and introduced (haplotype M) lineages of
P. australis in North America, particularly on the Atlantic
coast. Fewer papers have focused on the Gulf Coast type
I and the invasion of type M to the Gulf Coast (Howard
et al. 2008; Hauber et al. 2011; Lambertini et al.
2012a), and only two publications have described the
additional haplotypes that have recently been found in
the Gulf Coast (Hauber et al. 2011; Lambertini et al.
2012a). The literature describing Phragmites in the
western USA is growing, particularly in the southwest
where haplotype M is sympatric with the native lineage
and with haplotype I (e.g. Kulmatiski et al. 2010; Meyer-
son et al. 2010b; Saltonstall 2002). However, there has
been very little published on Phragmites on the Pacific
Coast of North America, which is colonized by both the
North American native and Eurasian introduced haplo-
types (Saltonstall 2002). Below, we briefly describe
each of the identified lineages present in North
America (summarized in Table 1) and then discuss the
evidence for hybridization in some of these lineages
and the likelihood that it is occurring in others.

Geographic distribution of Phragmites genotypes
in North America

North American lineage North American native
P. australis haplotypes are distributed throughout
Northern Quebec to North Carolina and west of the
Great Lakes, the Pacific northwest of the USA and
southern British Columbia, and the southwestern USA
(Table 1). Native haplotypes of P. australis do not occur
south of North Carolina on the east coast or Gulf Coast
of the USA. The native haplotypes appear very closely
related to each other (Saltonstall 2002; Lambertini et al.
2006, 2012a; Vachon and Freeland 2011; Saltonstall
and Lambertini 2012) and are considered one single
lineage in this review, though their origin is still
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unknown. Their closest relative appears to be haplotype
Q, distributed in Asia and Australia (Saltonstall 2002; Chu
et al. 2011; Saltonstall and Lambertini 2012). Lambertini
et al. (2006) detected a weak nuclear relationship with
Phragmites japonicus in the Far East. However, this
relationship was not evident in Lambertini et al.
(2012a) where North American native P. australis ssp.
americanus appeared to have evolved from within
P. australis. Another relationship detected recently is
with Phragmites mauritianus in Zambia (Lambertini
et al. 2012a), which shares a mutation in the trnT-trnL
region with the native North American lineage.
Phragmites diversity in Asia and Africa has so far been
under-represented in phylogeographic studies at the
global scale (Saltonstall 2002; Lambertini et al. 2006,
2012a). Collection and analysis of more samples from
these continents promise to disclose the origin of the
genus (Lambertini et al. 2006) and the history of the
North American lineage.

Eleven P. australis haplotypes considered native to
North America were first identified by Saltonstall in
2002 and since that time five additional native haplo-
types have been added. Meadows and Saltonstall
(2007) added haplotypes AB and AC, and Vachon and

Freeland (2011) added haplotypes E2, E3 and E4.
However, of these, only E4 is identified as a new
haplotype based on Saltonstall’s classification system,
which does not consider cp-microsatellite variants
(Saltonstall 2002).

Specifically, Vachon and Freeland (2011) submitted
two identical trnT-trnL sequences that they identified
as E1 and E2, but these sequences are a cp-microsatellite
variant of haplotype AB (Meadows and Saltonstall 2007)
following Saltonstall (2002). Similarly, haplotype E3
(Vachon and Freeland 2011; Freeland and Vachon 2012)
corresponds to a cp-microsatellite variant of haplotype
E, again following Saltonstall (2002). Haplotype E4
(Vachon and Freeland 2011; Freeland and Vachon 2012)
is a new haplotype that would be given a new letter in
the classification that Saltonstall initiated (Saltonstall
2002). Adding more complexity, there is yet another
haplotype E4 that was deposited in GenBank by Chu
et al. (2011) that was found in South Korea. In GenBank
it is identified as P. australis, but it is thought to be
P. japonicus, a haplotype closely related to haplotype
AM (Lambertini et al. 2012a, b). The implications of
these examples for Phragmites classification are dis-
cussed in the concluding section.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Identified types of P. australis in North America. This table summarizes the origins and ranges of different haplotypes identified in
the North American native, introduced and Gulf Coast lineages. Note, however, that some North American haplotypes are common and
widespread, such as E, while others are relative rare and geographically localized, such as AB. The three ‘Greeny’ Phragmites types have also
been found in Europe, but they may have originated elsewhere and also been introduced to Europe relatively recently. Question marks
indicate ‘origin’ is probably still under investigation. 1Saltonstall (2002), 2Meadows and Saltonstall (2007), 3Hauber et al. (2011), 4Lambertini
et al. (2012a, b), 5L. A. Meyerson and J. T. Cronin, in review. Morphology of the different lineages is detailed in Swearingen and Saltonstall
(2010).

Common designation Haplotype Origin North America range

North American native (A-H, S, Z, AA, AB, AC,

E1/E2, E3, E4)1,2

North America Widely distributed

North American introduced M1, L5 Eurasia Widely distributed

New European-related

introductions to the Gulf

Coast

M1 (Delta)3,4

Greeny 1 (M)4

Greeny 2 (AD)3,4

Greeny 3 (AI)4

Mediterranean region

(South Europe, North Africa,

Middle East)

Mississippi ‘birdfoot’ Delta, sporadically in

Terrebonne Bay, LA and Grand Isle State

Park, LA. Two samples in Florida

Europe? Atlantic Coast, Great Lakes, Mississippi

‘birdfoot’ Delta

North America? Or Europe? Mississippi ‘birdfoot’ Delta

South Africa? Mississippi ‘birdfoot’ Delta

Or Europe?

North American Gulf Coast Land (I)4 South America (Colombia,

Ecuador, Peru) or

Gulf Coast Texas to Florida, South West

(California)

Africa (Uganda Burkina Faso,

Senegal)
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Euroasiatic lineage Until relatively recently, it was
believed that there was only a single type of
introduced P. australis from Eurasia introduced to North
America, haplotype M. This haplotype has been
detected throughout North America, overlaps the
range of native P. australis (described above) and
extends into the Gulf Coast of the USA, where it is
known as a ‘short form’ of P. australis (Hauber et al.
2011) or the EU-type (Lambertini et al. 2012a).
However, more recently, a cp-microsatellite variant of
haplotype M, described as haplotype M1 or the Delta-
type (Hauber et al. 2011; Lambertini et al. 2012a, b),
has been detected in the Mississippi Delta and Gulf
Coast (described below in the section Gulf Coast
lineages), raising the possibility that some populations
have been misidentified as type M. M1 differs from
haplotype M in the number of repeats in one
microsatellite in the trnT-trnL region (Hauber et al.
2011; NCBI accession no. JF271678). It is, therefore,
very closely related to haplotype M and is thought to
originate from the Mediterranean region, extending
throughout North Africa, the Middle East and Southern
Europe (Lambertini et al. 2012a, b). Another introduction
to North America of haplotype L (most likely from Europe)
was found in Quebec, Canada, providing conclusive
evidence of multiple introductions of P. australis to
North America (L. A. Meyerson and J. T. Cronin, in review).

Gulf Coast lineages Similar to the evolving understanding
of the Euroasiatic lineage, Phragmites researchers
had evidence for only one other lineage colonizing
the Gulf Coast of the USA: haplotype I. Haplotype I
was also detected in the southwestern USA (Meyerson
et al. 2010b). However, multiple other haplotypes
(Table 1) were recently found in the Mississippi Delta
and surrounding marshes, and one sample of M1
was found also in Florida, which makes the story
of Phragmites in North America more complicated
and suggests additional opportunities to detect
interbreeding.

Haplotype I As with the Eurasian haplotypes (M, M1),
haplotype I also exhibits cp-microsatellite variation.
Gulf Coast Phragmites is one such cp-variant (also
called the ‘land type’; Lambertini et al. 2012a; NCBI
accession no. HQ664450) and was detected along the
Gulf Coast of the USA from Texas to Florida and in the
Mississippi River Delta. This haplotype is shared with a
population of P. australis in South America (Ecuador,
Peru) and with the species P. mauritianus in Uganda
and Burkina Faso (Lambertini et al. 2012a). Nuclear
alleles indicate a hybrid origin for both the Gulf
Coast and the South American populations from a

cross between the two species P. mauritianus and
P. australis. As the current distribution ranges of these
species overlap only in tropical Africa, an African origin
has been suggested (Lambertini et al. 2012a). However,
given the similarities between the Gulf Coast and South
American populations and their long establishment in
the Americas, a different earlier distribution range of
P. mauritianus could also entail an autochthonous
American origin. With the data available, it is not
possible to distinguish between an old accidental
introduction and the radiation of Phragmites species
(Lambertini et al. 2012a).

European-related haplotypes Three other recently
detected haplotypes of P. australis are named for the
special blue-green colour of their leaves: Greeny 1
(haplotype M), Greeny 2 (haplotype AD) and Greeny 3
(haplotype AI). Haplotype AI differs from haplotype K
(Saltonstall 2002) in one single substitution in the
rbcL-psaI region (Lambertini et al. 2012a; NCBI
accession no. HQ664451; see Table 1). Although the
three Greeny genotypes have three distinct haplotypes,
they share the same European nuclear alleles (alleles
195 and 197 at locus PaGT 22, which are distinctive in
this group and are shared, along with many more
alleles, among the European and North American
introduced genotypes). Given the high nuclear
similarities among the three Greeny types, their most
likely origin is somewhere in Europe. All three
haplotypes (M, AD and AI) have, in fact, also been
found in Europe (Lambertini et al. 2012b). However, the
Greeny 2 haplotype (AD) is closely related to the native
North American haplotypes, whereas the best
candidate for the origin of Greeny 3 is the South
African population of P. australis with haplotype K
(Lambertini et al. 2012a). This suggests that the three
Greeny types may also have been previously introduced
to Europe as well and this possibility further clouds an
identification of the historical introduction pathways.

Hybridization of Phragmites in North
America
Does Phragmites hybridize in the wild in North America?
The answer is probably yes, but so far the conclusive evi-
dence is limited to the Gulf Region of the USA (Fig. 1,
Table 1). An interspecific hybrid between the tropical
African species P. mauritianus and P. australis became
established long ago in South America and on the Gulf
Coast of the USA. The hybrid is the ‘land-type’, previously
described as P. australis var. berlandieri. Being an inter-
specific hybrid, the specific epithet australis does not
appear appropriate any longer and should be dropped
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and renamed when the variation within haplotype I,
including its hybrids, is further resolved and better
understood.

The recent introductions of the European-related hap-
lotypes of P. australis (M, M1, AD and AI) to the Missis-
sippi River Delta have brought the hybrid in sympatry
with its paternal species P. australis. Hybridization in
the Gulf Coast appears to be due to back-crossing of
the P. mauritianus × P. australis hybrid (haplotype I)
with P. australis haplotypes (M, M1, AD and AI) (Fig. 1).
Given the high similarities in nuclear markers among
haplotypes M, AD and AI, and their sympatry in
Europe, it has not been possible to assign haplotype to
the European alleles that introgressed into land-type
Phragmites. For this reason, in Fig. 1, the dotted line
refers to high nuclear similarities among haplotypes,
which probably imply extensive gene flow. In this case,
evidence against gene flow should be provided to
exclude interbreeding.

Another interesting case suggesting gene exchange is
given by the Greeny 2 genotypes of haplotype AD.

Haplotype AD shares a mutation in the trnT-trnL region
that appears exclusive to the native North American
haplotypes, and shares the nuclear alleles with the
Euroasiatic genotypes of haplotype M (Lambertini et al.
2012a). Further investigations of this group could
reveal another history of hybridization.

Why has hybridization not been detected
previously?

Since 2002, multiple papers have reported the failure to
detect intra- or interspecific breeding in the genus
Phragmites (e.g. Saltonstall 2002, 2011; Meyerson et al.
2010a, b) in the wild, despite evidence that it can
occur (Meyerson et al. 2010a). Paul et al. (2010) detected
possible hybrids in Canadian populations where native
and introduced lineages are sympatric, but recombining
alleles, providing evidence of interbreeding between the
two lineages, have not been found. Recent studies by
Chu et al. (2011) and Lambertini et al. (2012a) have iden-
tified an explanation for this failure. Chu et al. detected
hybrids between P. japonicus and P. australis in the

Fig. 1 Hybridization of Phragmites in the Gulf Coast of the USA. The stars represent P. mauritianus (red) and P. australis (blue) nuclear
alleles and indicate how they are recombined in the hybrids. Arrows indicate parent–offspring relationships and gene flow direction
detected. Dashed lines refer to high nuclear similarities among lineages which probably imply extensive gene flow. In each box, Phrag-
mites species, haplotype and geographic location of populations involved in gene flow are indicated.
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sequences of the PhaHKT1 gene (high-affinity K+ trans-
porter gene). Lambertini et al. detected two hybridiza-
tion events between P. mauritianus and P. australis,
one where P. mauritianus is the seed parent (in the
Gulf Coast and South America) and one where
P. australis is the seed parent (in Senegal), in nuclear
DNA fragments amplified by the grass-waxy gene
primers. Introgression in P. australis in the Gulf Coast
was recognized by distinguishing ancestral alleles,
shared with the native populations, from newly evolved
alleles, shared among haplotypes in the Gulf Coast
areas but absent in the native populations and therefore
probably acquired by gene flow (Lambertini et al. 2012a).
Lambertini et al.’s approach, involving a large geographic
and taxonomic sampling and the integration of several
DNA sources, showed that microsatellite data alone
may fail to detect hybridization.

The reason for this failure may be our reliance on the
original set of microsatellite primers specifically devel-
oped by Saltonstall (2003) to study variation in the
nuclear DNA of P. australis in North America. These
markers were designed based on variation in the Euro-
asiatic introduced haplotype M (Saltonstall 2011), and
therefore may not be optimally transferrable across
species (Barbara et al. 2007) and across Phragmites hap-
lotypes. Meyerson et al. (2010a) produced hybrids with
native chloroplast but detected alleles from the Euro-
asiatic lineage using the microsatellite primers, yet
the same microsatellites did not detect native alleles
when the hybrid had a chloroplast from the Euroasiatic
lineage. Microsatellites specifically designed for the
maternal and paternal lineages should optimally be
combined to detect hybrids (Symonds et al. 2010).
However, this will only increase the support for hybrid-
ization hypotheses and will not provide compelling
evidence, at least until a sufficiently wide part of
the genome can be screened for hybridization. Other
approaches, like the aforementioned PhaHKT1 gene or
the grass-waxy primers, may work but more markers
need to be developed to detect Phragmites hybrids.
Until then, amplified fragment length polymorphisms
(AFLPs) appear to be a simple and low-cost solution
(Lambertini et al. 2006, 2012a; Kettenring and Mock
2012) to evaluate hybridization on a case-by-case basis
in combination with microsatellites or other nuclear
markers. Technical advances to the protocol introduced
by Vos et al. (1995) have presented new opportunities
for data analysis (Bensch and Åkesson 2005; Meudt
and Clarke 2007), among which are adaptations for
the study of hybrids (Vela et al. 2011).

Another reason that microsatellites have failed to
detect hybrids may be that polysomic variation (samples
with more than two alleles at a microsatellite locus)

has so far been largely disregarded. Microsatellite soft-
ware programs are mostly designed for diploid organ-
isms, so three or more co-dominant alleles cannot be
analysed in two-entry matrices. Binary matrices are an
alternative for the analysis of polysomic markers and a
few programs for tetraploids have been developed
(AUTOTET, Thrall and Young 2000; TETRA, Liao et al.
2008; TETRASAT, Markwith et al. 2006; ATETRA, van
Puyvelde et al. 2010) and for polyploids with different
ploidy levels (PopDist, Guldbrandsten et al. 2000). Given
the different ways of handling heterozygotes, calcula-
tions of Fst statistics are determined according to
ploidy level and should be taken into account when
interpreting the results (van Tienderen and Meirmans
2012). While difficult to analyse, polysomic variation
may in fact provide evidence of hybridization. Polysomies
reflect genomes of recent polyploid origin (which might
include F1 hybrids and allopolyploids) that have not
yet undergone diploidization (Otto and Whitton 2000)
and/or that have somatic instability in chromosome
number (Li et al. 2010). An excellent review on poly-
ploidy, hybridization and invasion was recently published
by te Beest et al. (2012).

Interbreeding between European
and North American P. australis
Meyerson et al. (2010a) showed that no phenological or
genetic barriers existed between the North American
native and European (M) lineages when the populations
were hand-crossed. The recent work by Lambertini et al.
(2012a) and the earlier evidence provided by Meyerson
et al. (2010a) make the likelihood of conclusive evidence
of wild hybrids of the North American and European
lineages a near certainty. Saltonstall (2011) showed
that despite multiple threats, the genetic diversity in
extant populations of native P. australis in eastern North
America is being maintained. However, it would be worth-
while to re-analyse these populations for evidence of
gene flow using different molecular approaches.

Conclusions and forward look
Our understanding of the gene flow within and between
species in the genus Phragmites is moving at a fast pace.
The new approaches that have confirmed Phragmites
hybridization in the Gulf Coast represent significant pro-
gress and promise to provide insights for Phragmites
gene flow throughout North America. While the east
coast of North America is likely to be a focal point for
research because of the extensive sympatry of North
American native and Eurasian introduced P. australis,
the Great Lakes region, the southwest and west coast
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deserve more attention. Furthermore, we do not yet
have data on how hybridization will affect vigour,
morphology and invasiveness of the introduced types
or alter conservation strategies for the native Phragmites
lineage, but these clearly warrant additional investiga-
tions, as highlighted by Schierenbeck and Ellstrand
in their 2009 review of hybridization and invasion. In
addition, there is a need to develop new markers for
the different Phragmites species and lineages.

The lack of a published standardized classification
system has resulted in a confused nomenclature. Several
sequences are deposited in GenBank that are identified
using letters that should indicate haplotype but do not
follow the classification system implemented by Salton-
stall (2002) and therefore are misleading and can be
misinterpreted. In addition, often only one of the two
sequences needed to identify Phragmites haplotypes is
deposited (e.g. either trn-T or rbc-L) and no indication
of the haplotype of the other sequence is provided in
GenBank or in publications. Therefore, haplotypes already
deposited in GenBank should be revised as needed and
meta-data, such as information on the sample collection
site, would be helpful.

Furthermore, Phragmites researchers must reach con-
sensus on whether the microsatellite variations in the
trnT-trnL and rbcL-psaI regions that are frequently
detected constitute new haplotypes (requiring new
labels) or whether the cp-microsatellite variants simply
represent intra-haplotype variation. In the latter case,
these variants should also be coded consistently. Finally,
developing an accessible common published classifica-
tion system would greatly increase the understanding of
Phragmites distribution and phylogeography worldwide.
While K. Saltonstall and C. Lambertini (pers. commun.)
have begun to examine this issue, contributions from
the wider research community would make this effort
more robust.

A revision of the taxonomic and systematic classifica-
tion of Phragmites is also needed, but also needed
are morphological characters and nuclear markers to
describe and identify Phragmites hybrids. It is especially
relevant to further investigate DNA variation within
haplotypes, particularly within haplotype I, which was
recently shown to hybridize liberally (Lambertini et al.
2012a, b). These missing pieces of the puzzle are critical
to ascertain the most appropriate classification system
for species that readily interbreed and cannot be classi-
fied into separate species based on biological species
concept (i.e. reproductive barriers, Mayr 1942).

The genus Phragmites is an excellent model system for
studying ecology, evolution and species invasions, and is
particularly interesting from the perspective of inter- and
intraspecific hybridization and reverse evolution. Dogged

pursuit by researchers to solve the issues raised in this
paper will yield insights and opportunities for future
studies.
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