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Summary

Autoimmune diseases are more represented in Down syndrome (DS) indi-
viduals compared to chromosomally normal people. Natural T regulatory
cells (nTreg) have been considered to be primary in the role of controlling the
intensity and targets of the immune response. We have investigated the phe-
notypical and functional alteration of nTreg in a group of DS people. The
phenotypical characteristic of Treg cells of 29 DS was analysed and compared
with an age-matched healthy control group. The inhibitory potential of
CD4+CD25highCD127low T regulatory cells was evaluated on autologous
CD4+CD25- T cell proliferation in response to activation with a mytogenic
pan-stimulus (anti-CD2, anti-CD3 and anti-CD28 antibodies). The
CD4+CD25high cells in the DS and control groups were 2·692 � 0·3808%,
n = 29 and 1·246 � 0·119, n = 29%, respectively (P = 0.0007), with a percent-
age of forkhead box protein 3 (FoxP3)-expressing cells of 79·21 � 3·376%,
n = 29 and 59·75 � 4·496%, respectively (P = 0.0015). CD4+CD25+FoxP3+

cells were increased in peripheral blood from DS subjects (DS mean
5·231 � 0·6065% n = 29, control mean 3·076 � 0·3140% n = 29). The major-
ity of CD4+CD25high were CD127low and expressed a high percentage of FoxP3
(natural Treg phenotype). While the proliferative capacity of DS T cells was not
altered significantly compared to normal individuals, a reduced inhibitory
potential of Treg compared to healthy controls was clearly observed (mean
healthy control inhibition in Teff : Treg 1:1 co-culture: 58·9% � 4·157%, n = 10
versus mean DS inhibition in Teff : Treg 1:1 co-culture: 39·8 � 4·788%, n = 10,
P = 0.0075; mean healthy control inhibition in Teff : Treg 1:0·5 co-culture:
45·10 � 5·858%, n = 10 versus DS inhibition in Teff : Treg 1:0·5 co-culture:
24·10 � 5·517%, n = 10, P = 0.0177). DS people present an over-expressed
peripheral nTreg population with a defective inhibitory activity that may
partially explain the increased frequency of autoimmune disease.
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Introduction

Autoimmune diseases have a high incidence and prevalence
among Down syndrome individuals (DS) compared to chro-
mosomally normal people [1–3]. Coeliac disease has a preva-
lence of 4·5–7%, autoimmune thyroiditis is diagnosed in
5–54% of DS subjects and type 1 diabetes (T1D) is present in
1%. DS is caused by trisomy of human chromosome 21 and
occurs in approximately one of 700 newborns. DS shows
various complex phenotypes, including developmental
abnormalities, immune system deficiency, typical facial

features, mental retardation and congenital heart and gas-
trointestinal malformations [4–6]. Leukaemias and testicu-
lar tumours have an abnormally high incidence in DS
individuals, while solid tumours are extremely rare [7]. In
the past, when DS children were commonly institutional-
ized, mortality from respiratory infections was particularly
elevated [8]. The increased susceptibility to bacterial or viral
infections and leukaemias has been attributed to the dys-
regulation of the immune system that is one pathological
feature of the syndrome [9,10]. In 1979, Levin et al. were the
first to reveal in a group of 15 infants (aged 1–15 months)
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that the thymic histological picture was abnormal [11]. They
showed that ‘the normal thymic cortico-medullary demar-
cation was often missing due to marked lymphocyte deple-
tion in the cortex’. In 1992 Murphy et al. demonstrated an
interferon (IFN)-g and tumour necrosis factor (TNF)-a
over-expression [12] and in 1995 they proposed a model
suggesting that in DS the over-expression of chromosome
21-encoded gene products leads to impaired interaction
between immature thymocyte and thymic stromal cells [13].
The thymus has two main functions for sustaining immu-
nological self-tolerance: clonal deletion of self-reactive T
cells (negative selection) and the production of natural
CD4+CD25high regulatory T cells (Treg) cells that express the
transcription factor forkhead box protein 3 (FoxP3) [14].
The FoxP3-expressing cells differentiate and mature in the
human and murine thymus under the influence of thymic
stromal lymphopoietin (TSLP) together with IL-7 [15–18]
following ligation of high-affinity T cell receptor (TCR) [19].
The TCR of thymocytes is reduced in DS patients [20]. Sub-
sequently the natural T (nTreg), CD4+CD25high migrate into
the periphery, suppress the autoreactive T cells that escape
the thymic negative selection and simultaneously regulate
the pathogen-induced inflammatory reactions [21–25]. nTreg

play also a role in favouring tumour growth, tolerance
towards transplanted organs or suppressing the graft-versus-
host reaction in transplanted patients [26,27].

The higher prevalence of autoimmune disorders present in
DS, along with the role of nTreg cells, led us to investigate if the
frequency and the function of circulating nTreg were normal in
a group of 29 children and young adults with DS. For this
purpose, Treg cells, sorted as CD4+CD25highCD127low, were
isolated and cultured with autologous T cells and stimulated
with a pan-T stimulus (anti-CD2, anti-CD3 and anti-CD28
monoclonal antibodies-loaded beads). We expected to find a
significantly reduced number of nTreg, but their frequency in
the periphery was actually increased. Interestingly, when cul-
tured in vitro, they displayed a reduced suppressive activity, as
could be expected according to the increased incidence of
autoimmunity in DS individuals.

Materials and methods

Subjects

Eligible patients were selected from a group of subjects with
Down syndrome connected to a specific follow-up pro-
gramme based on AAP (American Academy of Pediatrics)
guidelines [3] at our Institution. Flow cytometry data were
obtained from 29 DS subjects and 29 healthy age- and sex-
matched donors’ control group (HD); the proliferation assays
were carried out on 10 DS and 10 age- and sex-matched
control subjects. DS group included 15 males and 14 females
(mean age 11·4 years, range: 1·4–22·8 years). The HD group
included 15 males and 14 females (mean age 9·3 years, range:
1·2–23 years); clinical data are summarized in Table 1. In the

DS group, five patients (17·2%) had positive antibodies
against thyroid peroxidase (TPO) and specific ultrasound
scan characteristics for Hashimoto’s disease. One patient had
positive antibodies against thyrotrophin (TSH) receptor.
Positive anti-gliadin antibodies of IgG class were found in 14
patients (45%). Three patients (10·5% overall) presented
positive anti-endomysial, anti-tissue transglutaminase
immunoglobulin (Ig)A antibodies and a positive duodenal
biopsy. One patient was diagnosed with chronic inflamma-
tory demyelinating polyneuropathy (3·5%) and one had viti-
ligo (3·5%). In our group no patients had type 1 diabetes
(T1D). The study protocol was approved by the Ethics Com-
mittee of the Insubria University.All parents provided written
informed consent prior to participation in the study.

Flow cytometry analysis of peripheral T cells and
assessment of the Treg phenotype

Human peripheral blood mononuclear cells were freshly
separated by Ficoll-Paque (BioWhittaker 17-829E; BioWhit-
taker, Milan, Italy) from 10–20 ml blood of 29 DS subjects
and 29 healthy controls. Immunophenotypic analysis was
performed by flow cytometry (BD FACSAria II™ apparatus)
and immunofluorescence using the following antibodies:
phycoerythrin (PE) mouse anti-human CD25 (clone
M-A251; BD Pharmingen, Milan, Italy), PE-cyanin 7 (Cy7)
mouse anti-human CD4 (clone: SK3; BD Pharmingen),
PE-Cy5 mouse anti-human CD8a (clone: RPA-T8; eBio-
science, Milan, Italy) and AlexaFluor® 647 mouse anti-
human CD127 (clone HIL-7R-M21; BD Pharmingen). After
surface staining, cells were stained intracellularly for FoxP3
according to the manufacturer’s recommendations (FoxP3
staining buffer set; eBioscience), and treated with fluorescein
isothiocyanate (FITC) rat anti-human FoxP3 antibody
(clone: PCH101; eBioscience). Flow cytometry analysis was
made with the BD FACSAria II™ apparatus.

In-vitro suppression assay

CD4+CD25highCD127low Treg cells [28] and CD4+CD25-

responder T cells (Teff) from patients with DS and HD were

Table 1. Clinical characteristics of Down syndrome (DS) and healthy

donor (HD) subjects.

Group DS HD

Number (n) 29 29

Gender (male/female) 15/14 15/14

Mean age/range (years) 11·4/1·4–22·8 9·3/1·2–23

Hashimoto thyroiditis 5 –

Grave’s disease 1 –

Coeliac disease 3 –

Atopy 2 –

Vitiligo 1 –

Type 1 diabetes mellitus 0 –

Chronic inflammatory demyelinating

polyneuropathy

1 –

Down syndrome
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isolated from peripheral blood mononuclear cells (PBMCs)
by fluorescence-activated cell sorting. The functional char-
acteristic of Treg cells was tested with the Suppression Inspec-
tor human kit (Miltenyi Biotec GmbH, Bergisch Gladbach,
Germany). It is based on anti-biotin MACSiBead™ particles
that are loaded with biotinylated anti-CD2, anti-CD3 and
anti-CD28 monoclonal antibodies. One MACSiBead particle
per cell (bead-to-cell ratio 1:1) is used for stimulation. Treg

were analysed functionally in vitro by a co-culture assay
system with Teff at different ratios (Teff : Treg, 1:0, 1:0·5 and
1:1) in the presence of MACSiBead™ polyclonal stimulus.
Treg alone show a hypoproliferative response (anergy),
whereas Teff alone show a proliferative response. Briefly,
5 ¥ 104 Teff cells were stained with carboxyfluorescein diac-
etate succinimidyl ester (CFSE) (5mM CFSE staining solu-
tion) and incubated alone or in the presence of 2·5 ¥ 104 or
5 ¥ 104 purified Treg for 4 days at 37°C in RPMI-1640 culture
medium. Because CFSE is incorporated into living cells, its
intensity decreases as a function of cell proliferation. The
suppressive capacity of Treg cells towards responder cells in
co-culture (Teff : Treg ratio 1:0·5 or 1:1) was expressed as the
ratio between the percentage of cells proliferating in the
presence or absence of Treg according to the formula
[100 ¥ (1 – % CFSE low CD4+CD25-T cells in co-culture/%
CFSE low CD4+CD25- T cells alone)].

Statistical analysis

The normality of variable distribution was assessed, and
once the hypothesis of normality was accepted (P < 0·05)
comparisons were performed by Student’s paired or
unpaired t-tests, as appropriate. Results were expressed as
the mean � standard error of the mean. Grubbs’ test was
performed on reference interval data to detect outliers.
All statistical analyses were performed using Prism ver-
sion 5·0 software (GraphPad Software, San Diego, CA,
USA; QuickCalcs, http://www.graphpad.com/quickcalcs/
index.cfm). P-values less than 0·05 were considered
significant.

Results

Circulating T cells

To assess the proportion of distinct subpopulations of T cells
in DS patients, a comparative study of CD4+ and CD8+ T cells
was performed. In DS subjects CD4+ cells were decreased
compared to HD; conversely, CD8+ T cells appeared to be
slightly increased (see Fig. 1). As a result the CD4/CD8 ratio
was decreased significantly (1·4% versus 2·1%).

CD4+CD25highFoxP3+ T cells are over-represented
in DS patients

Flow cytometric analysis in DS patients highlighted a
more represented CD4+CD25high population compared to

HD (DS mean 2·692 � 0·3808%, n = 29, HD mean 1·246 �

0·119%, n = 29), P = 0.0007. FoxP3 was over-expressed
in the CD4+CD25high population of DS subjects
(mean 79·21 � 3·376%, n = 29) compared to HD
(mean 59·75 � 4·496%, n = 29), P = 0.0015. Moreover,
CD4+CD25+FoxP3+ cells were increased in peripheral blood
from DS subjects (DS mean 5·231 � 0·6065 n = 29, HD
mean 3·076 � 0·3140, n = 29), P = 0.0026 (see Fig. 2). We
found a slightly increased CD4+CD25+FoxP3+ population in
Down patients with autoimmune disorders (mean popula-
tion with autoimmunity: 5·7 � 1·5% n = 9), but with no
statistical relevance. We then analysed and compared the
CD4+CD25+ population for expression of the CD127 marker
(a-chain of the IL-7 receptor). Low expression of this
marker is associated strongly with the Treg phenotype, with
functional suppressive features [28]. We found that the vast
majority of CD4+CD25high were also CD127low (see Fig. 3),
with no statistical difference in the proportion between HD
and DS patients. Moreover, a high percentage of FoxP3+ was
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seen in the CD4+CD25highCD127low cell subset (98·3% in DS
and 96·4% in HD).

CD4+CD25highCD127low T cells from patients with DS
exhibit impaired suppressive function in vitro

In order to investigate the regulatory potential of Treg

(CD4+CD25highCD127low) in DS patients, T cell proliferation
assays were set up in which DS and HD Treg were incubated
with autologous Teff (CD4+CD25–) stimulated in vitro by a
pan-T stimulus (anti-CD2-, anti-CD3- and anti-CD28-
coated beads). No statistical difference between the prolif-
eration rate of DS CD4+CD25- and HD T cells was found
after the pan-stimulus in the absence of Treg (72·8% versus
79·5%, respectively, P = 0.41). Conversely, when Treg cells
from the same subject were added to the culture, a signifi-
cantly reduced inhibition of T cell proliferation was observed
for DS-derived Treg compared to HD-derived Treg. Indeed, the
percentage of inhibition (see Fig. 4) by 10 healthy control
Treg was 58·9 � 4·157% (co-culture Teff : Treg 1:1) and
45·10 � 5·858% (co-culture Teff : Treg 1:0·5), whereas the
percentage of inhibition by 10 DS Treg was 39·8 � 4·788%
(co-culture Teff : Treg 1:1), P = 0.0075 and 24·10 � 5·517%
(co-culture Teff : Treg 1:0·5), P = 0.0177.

Discussion

DS patients have a characteristically altered immunological
asset [9,10]. In our DS population we found a decreased
number of circulating CD4+ and an increased number of
circulating CD8+ cells [29]. In this study we show that the
proliferative capacity of T cells was not altered significantly
compared to T cells from normal individuals, provided
that the activation stimulus was exerted through several
co-stimulatory molecules such as insoluble anti-CD2, anti-
CD3 and anti-CD28 monoclonal antibodies (72·8% versus
79·5%, respectively, P = 0.41). As outlined previously,
autoimmune diseases are represented much more in Down
syndrome than in healthy controls [1–3]. Although several
hypotheses have been put forward in the past to explain the

high incidence of autoimmune diseases in DS patients
[30,31], the immunological basis of this event is still unclear.
An impaired function of nTreg cells has been shown in many
human and murine autoimmune subjects [32]. Mice that
lack Treg (scurfy mice) and individuals with altered expres-
sion of FoxP3 gene develop a severe autoimmune-like
disease which progresses rapidly to death [immune dysregu-
lation, polyendocrinopathy, enteropathy, X-linked (IPEX)
syndrome] [33]. Natural Treg cells are generated in the
thymus [18], but the DS thymus presents profound anatomi-
cal and architectural abnormalities which may alter the
maturation process of these cells. This phenomenon has
been documented in patients with Omenn syndrome, a
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severe congenital immunodeficiency, who carry a severe Treg

defect and a profound anatomical alteration of the thymus
gland [34]. DS children also have decreased T cell receptor
excision circles (TREC), which are DNA by-products of a TCR
recombination that reflect production of new T cells in
the thymus [35]. Similarly, decreased TRECs as a measure of
decreased thymopoiesis are seen in infants with congenital T
cell defects [36]. Treg may be particularly sensitive to this
altered maturation process and thus exit the thymus with
functional defects. The high incidence of autoimmune dis-
eases in DS may be related at least partially to the functional
impairment of Treg. The mechanisms of suppression by nTreg

include modulation of the cytokine microenvironment,
metabolic disruption of the target cell and alteration of den-
dritic cell activation capacity and cytolysis [37]. In our study
we have assessed only their suppressive function, using the
dilution of CFSE by proliferating T target cells. Natural
Treg cells which arise in the thymus co-operate with induced
Treg cells which are generated in the periphery following
CD4+ T cell activation [22].

In our DS group the circulating Treg cells are increased
in number compared to HD, whereas their function is
impaired. In IPEX syndrome, nTreg cells are present but
dysfunctional [38].

These characteristics are present in all our DS individuals,
irrespective of their actual autoimmune status. We cannot be
strongly affirmative on the pathogenic role of the functional
defect of these Treg because different subpopulations of Tregs

exist, many of them differentiating in the periphery [32]. We
should also take into account that different types of Treg

regulate different types of T helper type 1 (Th1)-, Th2- and
Th17-mediated immunity [39–42]: in our in-vitro experi-
ments we used a pan-stimulus for T cells. A functional
impairment of these cells is often associated with organ-
specific autoimmunity and these disorders can be blocked by
the infusion of new Treg [43]. In DS patients the organ-
specific autoimmunity (T1D; Hashimoto thyroiditis and
coeliac disease) is remarkably increased in incidence while
generalized autoimmunity, such as systemic lupus erythema-
tosus, is present with similar frequency, as in kariotypically
normal individuals [44].
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