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Since the inception of Title IX in 1972, female 
participation in sports has increased dramatically. 
Consequently, this has led to an increase in overall 

sports-related injuries in females. Lower extremity injuries are 
common in sports, totaling approximately 60% of all collegiate 
basketball injuries.2 Specifically, females suffer a higher risk 
of anterior cruciate ligament (ACL) injuries than males.30 The 
majority of ACL injuries occur by noncontact mechanisms, 
including cutting, pivoting, and landing from a jump.1,3,18 Altered 
movement patterns can be described by the specific plane 
in which the majority of the discrepancy between the sexes 
occurs. For example, the sex-based disparity observed in ACL 
injury rates may be strongly influenced by differences in the 
frontal plane joint motions and moments.

The link between frontal plane knee loading and resultant 
increases in ACL strain is demonstrated by cadaveric, in 
vivo, and computer modeling experiments.15,25,29,31 Physiologic 
dynamic valgus torques on the knee can significantly increase 
anterior tibial translation and load on the ACL severalfold.15 
A prospective combined biomechanical-epidemiologic study 
showed that knee abduction moments (valgus torques) and 
angles were significant predictors of future ACL injury risk.21 
During landing activities, females demonstrate more knee 

abduction (valgus) than males from a variety of heights and 
landing techniques, possibly placing the ACL in a vulnerable 
position.§ Biomechanical research has focused on modifiable 
risk factors to reduce ACL injury risk, including the development 
of neuromuscular training protocols designed to modify landing 
techniques. However, despite advances in the understanding of 
injury mechanisms, the sex difference in ACL injury incidence is 
still present.1

While kinematic/kinetic evaluation of the knee has been 
a common method of evaluating ACL injury risk, not all 
studies show sex differences. Therefore, it is clinically relevant 
to determine why consistent sex differences do not occur 
throughout all landing movements. Differences in study design, 
population, and task may explain the lack of consistent results. 
Because of the greater number of ACL injuries in females, along 
with the identification of knee abduction as a risk factor for the 
injury, the purpose of this systematic review of the literature 
was to determine if females have significant differences in 
frontal plane knee motion and moments during landings 
compared with males. The results and potential methodological 
differences between studies were identified and presented. We 
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expect clinicians, coaches, and researchers to factor in, during 
their screening and risk identification procedures, landing 
movements that consistently display sex differences, especially 
with regard to sex differences in ACL injury.

Methods

A systematic review of the literature involving sex differences 
while landing was performed. A search of MEDLINE, CINHAL, 
and SportDISCUS was conducted (1982–June 2010) with the 
following search keywords: “knee AND sport AND (abduction 
OR valgus OR frontal OR coronal) AND (sex OR gender).” 
The results were limited to studies that examined a landing 
maneuver (single or double leg), compared knee abduction 
(valgus) motion or moments between sexes, and used 
3-dimensional motion analysis. We extracted the mean knee 
abduction (angle or moment) for male and female groups and 
whether the sex difference met statistical significance in the 
specific study. Joint moments were interpreted on the basis 
of external moment convention. Effect size (Cohen d)10 and 
the confidence interval (95%) for the noncentrality parameter 
were estimated for each study that presented mean data.38 
Additional data that related to patient population, age, task, 
instrumentation, and variables were extracted from each article 
(Table 1). A standardized rating of each study was not included 
in this review.

Results

A total of 27 studies met the study requirements and were 
included in this review (Table 1). The total number of 
subjects from the included studies was 1449 (853 female, 596 
male), with sample sizes ranging from 12 to 315. All but 3 
studies9,24,28 used high-speed imaging systems with passive 
or active sensors. Sixty-three percent of the studies (15 of 
24) that investigated angular motion found that females had 
significantly greater magnitudes of knee abduction compared 
with males. Only 8 articles analyzed in this review presented 
knee abduction moments during landings. Three studies (38%) 
found significantly greater external knee abduction moments in 
females compared with males. Of the 8 studies, only 2 reported 
internal moment conventions26,27 and were transformed to 
external moments for interpretation throughout this review.

Not all the included studies provided the necessary data 
to calculate effect size. Rather, it was reported whether 
significant differences were observed and in which direction 
those differences were seen (ie, females greater than males). 
However, effect size was calculated for 24 instances of knee 
abduction angle (Figure 1). An effect size favoring knee 
abduction in females was calculated in 22 of the 24 instances 
(92%). Of these 22, large effect size (≥0.8) was calculated 
for 13 studies (59%), and moderate effect size (≥0.6) was 
calculated for 3 studies (14%). Of note, the only 2 instances 
in which an effect size favoring increased knee abduction 
in females was not calculated9,40 also reported no significant 
difference between sexes.

Each of the included studies measured one or both of 
the previously mentioned variables, but the time frame (eg, 
initial contact, maximum during landing) in which data were 
evaluated varied (Figure 2). The landing phase of movements 
began at initial contact. In studies that evaluated the stop jump 
or drop vertical jump tasks, the first landing, prior to vertical 
jump, was used for evaluation (drop landings and forward 
hops involved only 1 landing). Regardless of landing task, 
the majority of studies (67%) evaluated the maximum value 
(peak) for abduction during the landing phase of the specified 
movement.|| The second-most common event for evaluation 
(48%) occurred with each participant’s initial contact with the 
ground, also described as foot contact or heel contact.¶ Multiple 
studies identified a specific event during landing and reported 
the knee abduction variable at that corresponding event. These 
events included when the knee reached 40° of flexion,36 peak 
knee flexion,8,9,37,42 peak vertical ground reaction force,8,9,33,39 
and peak anterior shear force of the tibia,7 and another 
evaluated the flight phase of a stop jump, just prior to landing.6

The majority (89%) of all included studies evaluated knee 
motion or moment at either initial contact or a maximum 
value. Of the 17 studies that reported sex differences when 
landing, 14 (83%) were among these groups. Among these 
14 studies, 12 (86%) reported females landing with increased 
abduction compared with males.

Discussion
Effects of Landing Movements

Of the studies included in this review, the landing phase of 
drop landings, stop jumps, forward hops, and drop vertical 
jumps were evaluated. Drop landings are often used to 
simulate decelerations experienced during athletic activities. Six 
studies investigated single-leg drops, compared with double-
leg landings in 7 studies. Three of the single-leg investigations 
(50%) found that females demonstrated greater knee abduction 
than males13,35,37 during drops from 13.5 cm, 40 cm, and 60 cm. 
Another study included single-leg drop landings from 60 cm and 
failed to identify significant difference in abduction moment but 
did show that males landed with a greater external adduction 
moment than females.16 The remaining 2 studies, however, found 
no sex differences during single-leg landings.28,33

Studies involving double-leg landings have been more 
consistent in identifying sex differences in knee abduction. 
Of 7 studies involving 220 participants, 6 reported that 
females demonstrated greater abduction angles when landing. 
When performing a jump to a self-selected height, upon 
landing, females demonstrated greater abduction angles than 
males.22 These findings were supported when performing 
drop landings from 60 cm,27 52 cm,17 50 cm,26 and 40 cm.35,36 
Only 1 study reported no sex differences during a double-
leg landing,39 in which participants performed vertical jumps 

||References 8, 11, 12, 13, 14, 16, 17, 19, 20, 22-24, 26-28, 32, 36, 40.
¶References 4, 9, 13, 17, 19, 20, 22, 27, 32, 33, 37, 39, 42.
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to 50% of their maximum effort. Among participants included 
in this study, the mean vertical jump height ranged from 27.94 
± 4.97 cm for prepubescent girls to 55.79 ± 10.93 cm for adult 
males. Therefore, the mean drop height for participants was 
much lower than 40 cm, the lowest drop height among those 
reported for double-leg landings. Furthermore, while the 
previously mentioned study by Hughes et al22 did not require 
participants to drop from a fixed height, it is reasonable to 
assume that collegiate volleyball players performing a block on 
a regulation net would demonstrate much greater jump heights 
than those used by Swartz39 when no sex differences were 
observed.

The stop jump is another movement that requires a sudden 
deceleration but is followed immediately by rapid acceleration, 
usually in the form of a jump. The similarity with movements 
that are common in sports like basketball and volleyball 
make the stop jump a common maneuver in biomechanics 
research. It is a demanding maneuver that has been associated 
with noncontact ACL injuries.5,34 No significant sex differences 
were found when the single-leg stop jump was performed.4 
However, when a double-leg stop jump was performed, 
females demonstrated greater knee abduction angles42 and 
moments 7 during landing. An interesting study examined the 
flight phase prior to landing and found no sex differences in 
knee abduction angles and moments.6

As with the stop jump, 4 studies evaluated a total of 101 
participants performing single-leg forward hops. One of 
the included studies showed females landing with greater 
knee abduction angles when following a 100-cm hop.19 
The remaining 3 studies failed to support these findings 
and reported no sex differences in abduction angle23,24 or 
moment8 upon landing. Only 1 study among these involved a 
predetermined distance for the hop.19

The drop vertical jump combines a drop landing with a 
maximum vertical jump. Attempting to rebound a shot in 
basketball or perform a spike or block in volleyball are just 
2 examples of movements that might require an athlete to 
perform a vertical jump immediately following a landing. 
Eight studies assessed a total of 743 participants performing 
drop vertical jumps. Of the 8 studies, 5 showed that females 
landed with increased abduction angles.11,12,14,20,32 Ford et al 
showed a difference in knee abduction angles at maximum 
between male and female basketball and soccer players.14 This 
has been supported by 3 additional investigations; 2 involved 
the move from similar heights (30 cm).11,20 McLean et al also 
confirmed these findings, in addition to increased abduction 
moment in females, when a drop vertical jump from 50 cm 
was performed.32 Three studies reported no sex differences 
when a drop vertical jump was performed.8,9,40 Two studies8,9 
involved recreational athletes, and another included male 
recreational athletes and collegiate female soccer players.40 
Participants performed the same movement to their maximum 
abilities.

Sex differences in knee abduction variables were most 
glaring during double-leg landings. Seventy-two percent of 
double-leg landings reported a significant difference between 
sexes, as opposed to just 45% among single-leg landings.

Effects of Landing Height and Jump Distance

In studies of drop landings, the height of the drop varied. 
Increased drop heights were associated with greater ground 
reaction forces upon landing.41,43 Only 3 studies required landing 
from a drop of 30 cm or less. When participants landed on 1 
leg from either 20 or 30 cm, no sex differences were found.28,33 
In a study with a height of only 13.5 cm with medial and lateral 
drops, females increased knee abduction angle during both 
landing conditions.12 At 40 cm, females increased knee abduction 
angle during single- and double-leg landings.35,36 Whether 
stepping off a box from a height of 50 cm or 52 cm, females 
increased knee abduction angle when landing with both legs.17,27 
At 60 cm, females increased both abduction angle and moment 
when landing with both legs27 or a single leg.37 Furthermore, 
Garrison et al found no sex difference in knee abduction 
moment, but males landed with increased knee adduction (varus) 
moment compared to females during single-leg landings.16

Swartz et al found no sex differences with a height set to 50% 
of each participant’s maximum vertical jump.39 To re-create 
actual demands in volleyball, Hughes et al used a rope at the 
height of a regulation volleyball net similar to blocking a shot 
by an opposing player and the subsequent 2-legged landings. 
Females demonstrated significantly greater knee abduction 
angle than males (–10.4° ± 7.7° vs –2.9° ± 7.9°).22

There were 8 drop vertical jump studies, 6 at 30 cm. Females 
demonstrated increased knee abduction angles in 4.11,12,14,20 Sex 
differences were not found in 2 additional investigations.8,9 
At 50 cm, females landed with increased abduction angle 
and moment.32 In the lone study that set the drop height at 
the participants maximum vertical heights, there were no sex 
differences.40

Unlike the studies with the various heights used in drop 
landing tests, studies involving the stop jump and forward hop 
tests generally did not include any standardized length of the 
jump. Rather, participants performed a self-selected approach 
toward the landing. In the one exception, participants 
performed a single-leg forward hop of 100 cm onto a force 
platform.19 Females demonstrated greater knee abduction 
angles. The 3 forward hop studies without a predetermined 
jump distance all reported no sex differences with landing.8,23,24

Overall, studies suggest that when drop height/distance is 
standardized, sex differences in knee abduction are shown. 
Seven of 8 studies reported females landing with increased 
abduction angle or moment when performing a drop landing 
from a fixed height greater than 40 cm. By comparison, 2 
of 3 studies reported no sex difference a drop landing was 
performed from 30 cm or lower.

(text continues on p. 381)
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Effects of Participant Population

Although the research is limited, postpubertal females tend 
to increase knee abduction angles when landing compared 
with prepubertal and pubertal females.20 Children demonstrate 
greater knee abduction than adults when landing, suggesting 
that physical development influences landing patterns, which in 
turn can affect injury risk.39 In this review, the mean age ranged 
from 9.6 ± 1.0 years to 28.8 ± 3.9 years. Three studies involved 
44 participants aged 11 years and younger; 3 studies involved 
417 participants aged 12 to 17 years; and 22 studies involved 635 
participants aged 18 years and older.

At least 4 studies suggested that age, or maturation, plays 
a role in frontal plane knee motion and, therefore, injury 
risk.14,20,39,42 Swartz et al suggested that children (girls, 9.2 ± 1 
years; boys, 9.6 ± 1.0 years) increased abduction angle when 
compared with adults (women, 24.2 ± 1.0 years; men, 23.6 ± 1.0 
years).39 Hewett et al reported that postpubertal females (15.5 ± 
1.5 years) demonstrated greater abduction angles compared with 
pubertal (12.6 ± 1.1) and prepubertal (11.5 ± 0.7) females when 
performing drop landings.20 Yu et al supported these findings 
demonstrating that females landed with greater abduction angles 
with increased age.42 Under the age of 12 years, both males and 
females demonstrated knee abduction while landing. After age 
12 years, females continued to increase knee abduction when 
landing, while males began to land in a varus knee position.42 A 
longitudinal study by Ford et al found that knee abduction angle 
was significantly increased in pubertal females during rapid 
adolescent growth compared with males.14 The activity level 
of participants and method for describing activity level varied 
among studies. Three studies gave no specific details regarding 
the participants’ fitness levels or participation in exercise.8,11,17

The majority of studies involved recreational and/or 
competitive athletes, with a total of 790 participants included 
in these 2 groups. Eleven studies were included among the 
recreational athlete group, and the findings were inconsistent.# 
Findings among the competitive athlete group were more 
consistent at identifying sex differences (80%).** Among 
competitive athletes, females landed with increased abduction 
knee angle when performing drop landings12,13,20,22 and single-
leg hops19 and increased abduction moment during drop 
vertical jumps.32 Within this group, there were no significant 
sex differences during single- or double-leg landings.16,33,40

Conclusions

Females appear to land with greater knee abduction motion 
than males across a variety of movements common in high-risk 
sports measured in biomechanics studies. While the majority of 
the studies reported significant statistical differences between 
sexes, the effect sizes indicating an increase in abduction angle 
in females are even more convincing (Figure 1).
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