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Summary
Numerous computational methodologies have been developed to facilitate the process of drug
discovery. Broadly, they can be classified into ligand-based approaches, which are solely based on
the calculation of the molecular properties of compounds, and structure-based approaches, which
are based on the study of the interactions between compounds and their target proteins. This
chapter deals with two major categories of ligand-based and structure-based methods for the
prediction of biological activities of chemical compounds, namely quantitative structure-activity
relationship (QSAR) analysis and docking-based scoring. QSAR methods are endowed with
robustness and good ranking ability when applied to the prediction of the activity of closely
related analogs; however, their great dependence on training sets significantly limits their
applicability to the evaluation of diverse compounds. Instead, docking-based scoring, although not
very effective in ranking active compounds on the basis of their affinities or potencies, offer the
great advantage of not depending on training sets and have proven to be suitable tools for the
distinction of active from inactive compounds, thus providing feasible platforms for virtual
screening campaigns. Here, we describe the basic principles underlying the prediction of
biological activities on the basis of QSAR and docking-based scoring, as well as a method to
combine two or more individual predictions into a consensus model. Finally, we describe an
example that illustrates the applicability of QSAR and molecular docking to G protein-coupled
receptor (GPCR) projects.
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1. Introduction
The discovery of new drugs involves the expenditure of large amounts of money and
manpower. Introducing a compound into clinical trials typically entails the scouting and
biological evaluation of a large set of diverse molecules. This lengthy process can now be
assisted and accelerated through the integration of a computer-aided drug discovery
(CADD) strategy that helps the selection of candidate compounds, provides mechanistic
hypotheses on their mode of action, and facilitates their development. Notably, CADD is a
rapidly growing field and has already experienced a significant advancement since the early
days, thanks to the efforts that academic researchers and pharmaceutical companies are
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putting into the development of new and improved computational methods and to the rapid
technological improvement of computers (1-2).

CADD strategies can be broadly categorized into ligand-based and/or structure-based
approaches (2-3). The former methods rely on the analysis of molecular properties of known
ligands without taking into account explicitly the interactions of the ligands with their target
protein. Clearly, ligand-based methodologies can only be applied when known ligands exist.
Structure-based approaches, instead, are based on the direct calculation of protein-ligand
interactions and can be applied only when the structure of the target protein has either been
solved experimentally or generated through computational modeling.

In this chapter, after a brief introduction to two specific categories of ligand-based and
structure-based CADD approaches to the prediction of biological activities of chemicals,
namely quantitative structure-activity relationship (QSAR) analysis and docking-based
scoring, we describe the various phases necessary for their implementation (see Figure 1).
We also describe how to generate consensus models that combine the predictions of two or
more individual models (see Figure 2). Moreover, we illustrate the application of QSAR and
molecular docking to the prediction of the activity of ligands of G protein-coupled receptors
(GPCRs), a superfamily of proteins that, in light of their vast physiological and
pathophysiological implications, are among the most pursued targets for pharmacological
intervention (4). In particular, we present a case study that deals with the prediction of the
activity of ligands for the β2-adrenergic receptor (5).

1.1. QSAR
QSAR methods encompass a number of ligand-based analyses designed to correlate
biological activities with molecular properties calculated using two-dimensional (2D) or
three-dimensional (3D) ligand structures (6-7). QSAR analyses can only be conducted when
a set of ligands with known biological activities, known as a training set, is available.
Statistical models linking biological activities to molecular properties are built on the basis
of such training sets and subsequently applied to the prediction of the activity of novel
compounds. In the field of GPCRs, biological activity data have been published for ligands
of numerous receptors and can be utilized to generate training sets. For this reason and
because of the paucity of information on the 3D structure of GPCRs that, up until recently,
has characterized the superfamily, QSAR has been extensively applied to the prediction of
the activity of GPCR ligands (3). However, for orphan or less studied receptors, the absence
or the paucity of known ligands may prevent or seriously hinder the application of ligand-
based modeling.

QSAR analyses require the calculation of molecular descriptors that reflect the topology or
the physicochemical properties of molecules. Once such descriptors have been calculated for
the whole dataset, the correlation between descriptors and experimental activities is studied
through statistical analyses, such as linear regression, multiple linear regression (MLR), or
partial least square (PLS) regression.

In 2D-QSAR, molecules are described through properties calculated on the basis of their 2D
topology. Instead, 3D-QSAR analyses are based on molecular properties that depend on the
3D structure of the molecules. For the calculation of some of these properties, models of the
bioactive 3D conformation of the ligands are sufficient. For others, instead, a 3D alignment
of the bioactive conformation of all the ligands is also necessary. In a pure ligand-based
modeling approach, 3D alignments are generated simply by superimposing the ligands on
the basis of their common features. However, more effectively, 3D alignments can be
obtained through molecular docking, with a strategy that combines structure-based and
ligand-based modeling (see Figure 1).
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Within 3D QSAR methodologies, it is worth mentioning two techniques that have been
among the most widely applied to the prediction of the activity of GPCR ligands (2), namely
Comparative Molecular Field Analysis (CoMFA) (8) and Comparative Molecular Similarity
Index Analysis (CoMSIA) (9). CoMFA and CoMSIA are based on the representation of
ligands through molecular fields measured in the space that surrounds them. In particular,
molecular fields are sampled at each point of a 3D lattice in which the aligned ligands are
immersed and used as descriptors in a subsequent QSAR analysis. Due to the high number
of descriptors that CoMFA and CoMSIA entail, a fundamental factor that contributed to
their development has been the introduction of the PLS regression technique. This statistical
method combines characteristics from principal component analysis (PCA) and MLR and
reduces the dimensionality of the independent variables into fewer orthogonal components,
thus allowing the conduction of regression analyses even when the number of independent
variables is very high (10-11).

Recently, alignment independent 3D-QSAR analyses have also been developed and applied
to study of GPCR ligands, for instance the autocorrelation of molecular electrostatic
potential approach devised by Moro and coworkers (12-13) and the grid-independent
descriptors (GRIND) approach devised by Clementi, Cruciani and coworkers (14-15).

QSAR models are very dependent on the nature of the training set. They are endowed with
high predictive power when applied to compounds structurally related to those included in
the training set, but perform poorly when applied to structurally diverse molecules. Thus, to
ensure a robust predictive power, their use should be circumscribed to the analysis of
compounds with molecular characteristics well represented within the training set.

1.2. Docking-based scoring
Predictions of biological activities based on docking scores do not require a training set of
ligands with known activities. However, an absolute condition for the molecular docking
experiments that lie at their foundation and the subsequent calculation of the protein-ligand
interactions is that the structure of the target protein be known, possibly experimentally. For
a long time, their applicability to the discovery and the development of GPCR ligands has
been hampered, although not precluded, by the paucity of structural knowledge that has
characterized the superfamily. In particular, for years, rhodopsin has been the only receptor
with experimentally derived 3D information and has served as a prototype for the study of
the whole GPCR superfamily (16). In recent years, however, breakthroughs in GPCR
crystallography led to the solution of additional crystal structures, while many more are
expected to be solved in the near future (17). Notably, besides their obvious direct
application to structure-based CADD, these crystal structures will also provide an
increasingly solid platform for the construction of homology models for the members of the
superfamily that have yet to be experimentally elucidated (18-20).

The most accurate structure-based methodologies to rank the binding affinity of a set of
given ligands for a target protein are those that rely on first-principle methods for the
calculation of their free binding energy, for instance through free energy perturbations (FEP)
or thermodynamic integration (TI) (21-22). However, these techniques are time-consuming
and require significant effort for the preparation and optimization of the system to allow
high-throughput application. Moreover, they are best suited for the analysis of closely
related compounds. For these reasons, in the context of molecular docking, compounds are
usually ranked through simpler and faster scoring functions, broadly classifiable into force
field-based, empirical or knowledge-based methods (3). Scoring functions are notorious for
yielding scores that lack fine correlation with experimental affinities, even when the
calculations are based on geometrically accurate complexes (23). Nevertheless, they have
been shown capable of effectively distinguishing between active and inactive compounds
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(1). Accordingly, many studies have demonstrated the applicability of molecular docking
methods to virtual screening campaigns, including those targeting GPCRs, especially when
the structure of the receptor is known crystallographically (5, 24-28). Particularly
noteworthy are recent studies that reported the discovery, in high yields, of novel ligands of
the β2-adrenergic and the adenosine A2A receptors through docking-based virtual screening
targeting the crystal structures of the two receptors (24-27). Moreover, sufficiently accurate
in silico models of GPCRs, although outperformed by crystal structures, have been shown to
be effectively applicable to virtual screening not only in controlled studies but also through
real-life quests for new ligands (25-26, 28, 33-37).

2. Materials
2.1. Software

Molecular descriptors can be calculated using a plethora of dedicated software, including,
but certainly not limited to, DRAGON, CODESSA, MOE, the Schrödinger package, and
ICM (38-42). Alternatively, they can be measured experimentally. CoMFA and CoMSIA
calculations are implemented in SYBYL (43). Molecular docking experiments can be
carried out by means of a variety of modeling software, including, but certainly not limited
to, MOE, the Schrödinger package, SYBYL, GOLD, and ICM (40-44). Some modeling
packages, including, but certainly not limited to, the Schrödinger package, MOE, SYBYL,
and ICM, allow directly performing statistical analyses. Specialized software packages for
statistical analyses are also available, including, but certainly not limited to, R (45) and
STATISTICA (46).

2.2. Skills
Molecular modeling software can run with a variety of operating systems, including various
implementations of Unix and Linux. Some software can be operated through a graphic user
interface (GUI). However, most software can also (or exclusively) be operated through
command-line or through scripts written by the user. For these reasons, some knowledge of
the Unix/Linux operating systems as well as the ability of writing scripts and interacting
with software through command-line is advisable.

2.3. Data
2.3.1. Structure and biological activity of ligands—Sets of known ligands, to be
used as training and/or test sets, can be compiled using in-house data or data retrieved from
the literature (see Note 1). Instead sets of novel potential ligands, to be evaluated in silico
prior to their experimental testing, can be designed through computer-aided or classic
medicinal chemistry approaches.

The 3D structures of the retrieved ligands can either be sketched within the chosen
molecular modeling package or, if available, downloaded from databases such as PubChem
(pubchem.ncbi.nlm.nih.gov). Particular attention to the chirality of the compounds is
necessary. Once drawn, the structures should be saved in a format readable by the software
chosen for the docking or the QSAR analysis. Some programs require one file per ligand;
others allow the use of one file enlisting all the ligands.

For training and test sets, but not for novel putative ligands, biological activities - preferably
binding affinities - need to be collected, either from the literature or from in-house data, and
properly codified. If the experimental measurements were conducted on different species, it
is advisable to verify the presence of sufficient similarity in the amino acid sequence of the
target protein across species, especially within the binding cavity. If there are discrepancies
between the activities reported for a compound by different articles, the data can either be
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excluded or an average value can be considered. Of note, information on GPCR ligands,
with references to the relevant literature, is available through the GLIDA database
(pharminfo.pharm.kyoto-u.ac.jp/services/glida) (47).

For the statistical analyses, a spreadsheet must be compiled, in the format required by the
chosen software, listing the biological activity of the ligands along with the values of the
molecular descriptors associated to them and/or their docking scores. Several software
packages allow the calculation of the descriptors and also the subsequent statistical analyses.
Usually, these packages require saving structures and biological activities in a single
spreadsheet file.

2.3.2. Protein Structure—A file with the 3D coordinates of the target protein is required
in order to perform docking experiments. For proteins that have been solved experimentally,
such files can be downloaded from the Protein Data Bank (www.rcsb.org). Alternatively,
homology models of the receptor can be constructed (18-20).

3. Methods
3.1 Preparation of the ligands

Known or candidate ligands, collected or designed as indicated in section 2.3.1, need to be
subjected to a careful preparation procedure in order to: add hydrogen atoms, if these are not
present; generate all ionization and tautomeric states available to the molecules within a
certain pH range; generate all possible stereoisomers by varying the configuration of all the
chiral centers in a combinatorial manner (unless the dataset contains molecules with known,
specified chiralities); minimize the energy of the ligands through a molecular mechanics
engine.

For pure ligand-based QSAR analyses, the most probable ionization and tautomeric state of
each compound can be chosen on the basis of energetic considerations. Instead, for docking-
based calculations, the ionization and tautomeric state favored by the receptor can be
identified for each compound on the basis of the docking scores. All the other states can then
be discarded, leading to a dataset containing only a single instance for each molecule.

3.2 Preparation of the protein
Crystal structures downloaded from the Protein Data Bank and homology models must be
carefully inspected and processed in order to: add hydrogen atoms, if they are not present;
optimize the geometry and interaction network of the hydrogen atoms; ensure that bond
orders are properly assigned; ensure that disulfide bridges are properly connected; delete
water molecules, if so desired; and add capping groups to truncated termini (see Note 2).
Most docking packages offer automated procedures that help carry out these operations in an
automated manner.

3.3 Generation of protein-ligand complexes trough molecular docking
As illustrated in Figure 1, besides being a fundamental step in the calculation of structure-
based scores that reflect protein-ligand interactions, molecular docking is also our method of
choice for the generation of the structural alignments of ligands necessary for most 3D-
QSAR analyses, such as CoMFA and CoMSIA (5, 48).

During the docking procedure, typically, a variety of ligand conformations and orientations
are sampled within the target protein by means of specific algorithms. Most docking
software requires the user to specify a region of the protein within which to confine the
docking of the ligands. Knowledge of the biology of the target is fundamental for a correct
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identification of the binding site. When data are not available, all the cavities present within
a protein and on its surface should be explored. Target proteins are usually treated as rigid
molecules, mostly to reduce calculation times. Most software packages, however, allow
granting some flexibility to the receptor, if so desired, although usually with a considerable
increase of the computational demand. Most docking programs allow usage of constraints on
protein-ligand interactions derived from experimental data. For example, required hydrogen-
bonds or hydrophobic interactions may be specified, or the occupation of a particular region
of the binding pocket may be enforced.

3.4 Prediction of biological activities through QSAR analysis
After the collection of the compounds and, where necessary, their alignment, QSAR
analyses can be conducted through the steps described in the following paragraphs.

3.4.1. Calculation of the independent variables: QSAR based on molecular
descriptors—Different numerical values associated with each molecule, known as
descriptors, can be either calculated trough a variety of existing software packages or
measured experimentally (see Note 3) – for a non-comprehensive list of programs that can
calculate molecular descriptors see the Materials section. While for the calculation of 2D
descriptors only the topology of the ligands is required, the calculation of 3D descriptors
requires also the bioactive conformation and, in some instances, the 3D alignment of the
ligands. As mentioned, our method of choice for the derivation of bioactive conformations
and structural alignments is molecular docking. Alternatively, ligand-based conformational
analyses and 3D superimpositions can be applied. Most of the software allows including the
descriptors in the same spreadsheet that contains the structures and biological activities of
the compounds.

3.4.2. Calculation of the independent variables: CoMFA and CoMSIA—CoMFA
(8) and CoMSIA (9) are 3D-QSAR analyses implemented in SYBYL (43). Once the
molecules have been aligned, our protocol for the development of CoMFA and CoMSIA
models proceeds as follows: Gasteiger-Hückel charges are calculated for all the compounds;
a 3D cubic lattice is defined, extending 4 Å over the aligned molecules in all directions, with
a spacing of 1 Å and a probe atom consisting of an sp3 hybridized carbon (c.3) with a charge
of +1.0; two molecular interaction fields (steric and electrostatic) are calculated for CoMFA
studies, using a distance dependent dielectric and a cut-off of 30.0 kcal/mol for the
calculation of the Coulombic electrostatic energy; five fields (steric, electrostatic, H-bond
donor, H-bond acceptor, hydrophobic) are calculated for CoMSIA studies, using the
standard parameters.

3.4.3. Statistical analysis—The relationships between the descriptors and the
experimental activity can be studied through various statistical analyses, for instance MLR
or PLS regression. Several statistical parameters can then be employed to assess the quality
of the model, the most prominent of which are the square of the correlation coefficient (r2)
and the root mean square error (RMSE) (see Note 4) of the predictions. For CoMFA and
CoMSIA studies, PLS regression analyses are directly carried out within SYBYL (43), using
4-6 components as independent variables and the experimental pIC50 or pKi values of the
molecules as a dependent variable.

3.4.4. Validation of the model—Models can be validated through the use of cross-
validation techniques. Among these, one of the most widespread is the leave-one-out test,
which involves taking one molecule out of the training set and predicting its activity on the
basis of a model trained with the remaining molecules. The operation is repeated until all the
molecules, in turn, have been taken out of the training set one by one. The most used
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parameter to assess the quality of a leave-one-out cross-validation model is the cross-
validated r2, or q2 – see Golbraikh and Tropsha for further details and caveats (49).
Moreover, and most effectively, models can be validated through the evaluation of the
activity of a test set, i.e. an additional set of molecules not included in the training set.

3.4.5. Prediction of the activity of novel compounds—Once a QSAR model has
been built and validated, it can be used to predict the activity of newly designed compounds
on the basis of the molecular properties associated with them. Following these initial
predictions, the compounds can be further modified in order to improve their predicted
activity. Eventually, all the designed compounds are ranked on the basis of the QSAR
predictions and selected for experimental testing.

3.5 Prediction of biological activities through docking-based scoring
In molecular docking, the generated protein-ligand complexes are scored through specific
scoring functions, which are based on different principles and endowed with different levels
of accuracy (2) (see Note 5). Parallel docking calculations can be run combining various
docking algorithms and scoring functions. If experimentally solved protein-ligand
complexes are available, they may be conveniently used as controls to assess the accuracy of
the docking poses and choose the algorithm the most suitable algorithm to work with a given
target.

Docking-based scoring does not require training sets and can be directly used to rank the
relative predicted affinity of a set of compounds. The numeric values of the docking scores
do not represent free binding energies or affinities and can only be used to estimate the
affinity of a compound relativity others. However, if a set of known ligands is available, this
can be used as a training set in order to correlate docking scores and the experimental
affinities through linear regression analysis. The affinity of novel ligands can then be
inferred on the basis of the calculated relationship between docking scores and experimental
affinity values. Just as in ligand-based QSAR, the quality of the models can be assessed on
the basis of statistical parameters such as r2 and RMSE of calculated and experimental
affinities. Cross-validation and external validation techniques can then be used to validate
the models prior to their application to the prediction of the affinity of novel ligands.
Moreover, when a training set is available, it can also be used to infer adhoc “trained”
scoring functions through regression analysis, cherry-picking and combining the
components that better correlate with the experimental affinities. However, such ad hoc
scoring functions incur the risk of being predictive only within the training set for which
they were generated, and deserve a careful and extensive validation through external test
sets in order to assess their applicability.

As a caveat, it is worth mentioning that docking scores are rather crude and hence not very
effective in the fine ranking of active compounds on the basis of their affinities or potencies.
Instead, they are usually suited for distinguishing active from inactive compounds. If a set of
known ligands is available, this ability can be monitored through controlled experiments in
which the ligands are docked at the target protein together with a large set of decoy
compounds. The receiver operating characteristic (ROC) curves obtained in these pilot
screenings can be conveniently used to optimize the docking protocol and select the most
appropriate scoring functions for a given target.

3.3. Consensus Models
Our method for the construction of consensus models is based on a PLS regression in which
the experimental activities are used as the dependent variable, while the activities predicted
through different individual models are used as independent variables (see Figure 2) (5, 48).
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In particular, the independent variables are converted into one or more components through
PLS (see Note 6) and then the regression analysis is performed. As usual, the quality of the
model can be monitored on the basis of its r2 and RMSE values. Moreover, cross-validations
and validations with external test sets can be performed.

Consensus modeling can be applied to combine different ligand-based models, different
structure-based models, or even ligand-based and structure-based models together. As
mentioned in the introduction, since our consensus models originate from PLS regressions, a
training set is necessary for their construction, even if the individual components are
exclusively structure-based models.

4. Notes
1. The selection of the ligands is a very important step in the construction of a QSAR

model. To generate a broadly applicable model, it is fundamental to collect a
representative set of diverse ligands.

2. If the protein structure is truncated, i.e. misses a few residues at the N-terminus or
the C-terminus, N-acetyl and N-methylamide groups are often used to cap the first
solved N-terminal and last solved C-terminal residue, respectively. This operation
prevents the first and last solved residues from being unnaturally electrically
charged.

3. In order to avoid overfitting, the model must not be based on an excessive number
of descriptors (independent variables). A commonly observed rule prescribes the
use of no more than one independent variable per 10 observations (50-51). For
instance, if the training set contains 100 compounds, no more than 10 descriptors
should be used. Validating the model through an external test set, i.e. a set of
compounds that have not been used to generate the model, is also a good practice to
assess the quality of the model, since overfitted models, although very good within
training sets, usually perform poorly with external test sets.

4. Many statistical analyses require the variables to follow a normal distribution.
Thus, it is recommended that the activity of compounds included in QSAR studies
be expressed in logarithmic form, since the use of logarithmic values may help
normalizing the distribution of a variable. For instance, the expression of affinities
as pKi (-log Ki) rather than Ki values is preferable. Furthermore, in order to ensure
a correct interpretation of QSAR equations and an immediate perception of the
weight of each descriptor on the basis of the value of its coefficient, it is also
important that the descriptors be standardized. One way of doing this is subtracting
to the value of a descriptor calculated for a particular molecule the mean value of
the descriptor and dividing the resulting number by the standard deviation of the
descriptor (52).

5. The computational time required to score a set of ligands with a scoring function is
usually directly correlated to the accuracy of the scoring function. The fastest, less
accurate, functions are intended to be used when docking a very high number of
molecules; on the contrary, the most accurate and slowest functions are intended to
be used when docking a smaller number of molecules.

6. The number of components to be used in a PLS regression should be determined in
each case, trying to keep it to a minimum and terminating the introduction of
additional components when the last added component barely adds anything to the
explanation of the variance of the data.
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Figure 1.
Flowchart for the construction of ligand-based and structure-based models. According to
this scheme, molecular docking plays a key role at the basis of both approaches.
Alternatively, as indicated by the dashed arrow on the left side of the figure, a pure ligand-
based approach can be adopted, in which the conformation and the alignment of the ligands
are derived exclusively from their molecular features. Additionally, the scheme also
illustrate that, when a training set of ligands with known activity is available, this can be
used to train structure-based scoring functions. Alternatively, as indicated by the dashed
arrows on the right side of the figure, a pure structure-based approach can be adopted in
which prepackaged scoring functions are applied without the need for the use of a training
set.
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Figure 2.
Flowchart for the construction of a consensus model based on the combination, through PLS
regression, of the predictions derived from n individual models.
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