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1 Introduction
Molecular recognition forms the basis for virtually all biological processes. Understanding
the interactions between proteins and their ligands is key to rationalize molecular aspect of
enzymatic processes and the mechanisms by which cellular systems integrate and respond to
regulatory signals. From a medicinal perspective there is great interest in the development of
computer models capable of predicting accurately the strength of protein-ligand association.
[1] Structure-based drug discovery models seek to predict receptor-ligand binding free
energies from the known or presumed structure of the corresponding complex.[2, 3] Within
this class of methods docking and empirical scoring approaches,[4, 5] which are useful in
virtual screening applications,[6, 7] are now routinely employed in drug discovery
programs. This review focuses on a class of computational methodologies based on the
fundamental physical and chemical principles that govern molecular association equilibria.
[8, 9, 10, 11, 12] Given a sufficiently accurate model of molecular interactions these
methods have the potential to incorporate greater detail and achieve sufficient accuracy to
address aspects of drug development such as ligand optimization, and to address questions
such as drug specificity and resistance.

Despite their potential, physics-based models of protein-ligand binding are not widely
employed in academic and industrial research, and their effectiveness as predictive tools
remains uncertain.[10, 3, 12] There are clearly many reasons that this is the case. Models of
this kind are more computationally demanding than alternative empirical techniques, and
require expert training for setting them up properly. Early applications of physics-based
models of binding, when molecular models, computer algorithms, and computer hardware
technologies had not reached a sufficient level of maturity, eventually yielded discouraging
results, likely dissuading adoption by the current generation of researchers.[13]

In the past decade however a revival of the field has taken place with the development of
better atomistic models and simulation algorithms, and more powerful computers. A new
awareness of the limits of applicability of the technologies and the interplay between the
various elements of the models have recently led to more trustworthy and realistic outcomes.
As the models become more widely employed and these technical developments progress to
produce more precise and reproducible results, it is also important to remain aware and
deepen our understanding of the statistical mechanics theory of binding on which these
models are based.

Thermodynamically, the strength of the association between a ligand molecule and its target
receptor is measured by the standard free energy of binding. A statistical mechanics theory
of molecular association equilibria exists which is nowadays well understood and widely
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accepted.[14] Various computational implementations of this theory have been proposed.
Computational models can not capture all of the complexities of molecular interactions and
all of them, implicitly or explicitly, apply approximations or simplifications. Knowledge of
the relationships between the theory and its implementation helps to appreciate the meaning
and limits of approximations. This knowledge can also serve as a guide in the design of
more realistic computational models and can suggest approaches for the analysis of the
results in ways that further our understanding of the binding process. It is only relatively
recently that subtle but potentially critical aspects of the theory have been fully appreciated
and are being incorporated into computational models.

Theoretical accounts of the theory of binding are somewhat scattered in the current literature
and the various descriptions are often tailored to specific numerical implementations and
applications, making it often difficult to resolve commonalities. The purpose of this review
is to partially fill this gap. The first part describes a statistical mechanics theory of non-
covalent association, with particular focus on deriving the fundamental formulas on which
computational methods are based. This section also introduces the thermodynamic quantities
that often appear in the recent literature as well as their nomenclature. The second part
reviews the main computational models and algorithms in current use or development,
pointing out the relations with each other and with the theory developed in the first part.

2 Theory of non-covalent binding
2.1 Statistical mechanics formulation of molecular association equilibria

Consider an ideal solution of receptor molecules R and ligand molecules L in equilibrium
with their complexes RL. The affinity between the two species can be expressed by the
standard binding free energy  associated with the bimolecular reaction

(1)

given by

(2)

where Kb is the dimensionless binding constant expressed as

(3)

where […] are concentrations, C○ is the standard state concentration (often set as 1M or 1
molecule/1668 Å3), and the eq subscript states that all concentrations are evaluated at
equilibrium. It should be noted that this quasi-chemical description of binding is based on
the idea that the bound complex RL can be treated as a distinct chemical species. As further
discussed below, this is a reasonable approach if the interaction between the ligand and the
receptor is strong, yielding a thermodynamically stable complex. We make this implicit
assumption in what follows, noting however that if the receptor-ligand interactions are weak
and non-localized, it would be more appropriate to treat the receptor/ligand mixture as a
non-ideal solution of the components.

A statistical mechanics expression for the binding constant is available under these
assumptions, which, when a generally small pressure-volume term is neglected, can be
expressed as[14]
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(4)

where ZN is the configurational partition function of the solvent bath composed of N
molecules, and ZN,RL, ZN,R, and ZN,L are the configurational partition functions of the
complex, receptor, and ligand, respectively, in solution. A critical aspect of this formulation
is that each partition function includes only the internal degrees of freedom of each species.1

For example (to simplify notation here and elsewhere we omit Jacobian factors for
curvilinear coordinates)

(5)

is the configurational partition function of the ligand placed in an arbitrary position and
orientation in solution integrated over the 3nL – 6 internal degrees of freedom of the ligand
xL where nL is the number of atoms of the ligand, rs denotes the degrees of freedom of the
solvent and U(xL, rs) is the potential energy of solvent+ligand system. The six external
degrees of freedom of the ligand ζL (three translations and three rotations) correspond to as
many additional internal degrees of freedom of the complex specifying the position and
orientation of the ligand relative to the receptor.[15] The configurational partition function
of the complex is then written as

(6)

where the integral runs over all conformations of the complex that are deemed bound, for
example those in which the ligand is within a specified binding site. A convenient choice is
to use the the external coordinates of the ligand relative to the receptor to define this state.
[14, 15] An indicator function I(ζL) is introduced set to 1 for values of ζL corresponding to
positions and orientations of the ligand which are considered bound to the receptor and zero
otherwise. Note that in this formalism the value of the binding constant depends on this
arbitrary definition of the complex, raising the question of how to choose it appropriately.
This is a more general issue which is further discussed below.

The integral of I(ζL) measures the extent of the defined bound state

(7)

where Vsite is the integral over translational coordinates and Ωsite the integral over the
orientational coordinates. Vsite represents the physical volume of the binding site, while Vsite
measures the allowed range of orientations of the ligand in the complex. If I(ζL) is
independent of the orientational coordinates (such that is the definition of the complex is
based only on the position of the ligand relative to the receptor), then Ωsite = 8π2.

2.2 Alchemical formulation
In order to make Eq. (4) amenable to computation it is convenient to express it in terms of
combinations of ensemble averages. To do so we need to express ratios of partition
functions in Eq. (4) such that numerators and denominators have the same number and types
of degrees of freedom. This is achieved by multiplying and dividing Eq. (4) by Eq. (7) times
the configurational partition function of the ligand in vacuum

1The separation of the overall translations is exact, while the separation of rotational degrees of freedom neglects vibrational-
rotational couplings. The latter is generally a valid approximation at physiological temperature.
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(8)

yielding the following equivalent expression for Kb

(9)

where V○ = 1/C○. In Eq. (9) ΔG2, defined by

(10)

is the free energy for establishing receptor-ligand and solvent-ligand interactions, while the
ligand is in the receptor binding site (where I(ζL) is non zero). The quantity

(11)

is the binding energy between the ligand and the receptor plus solvent environment; U(xR
rs), is the potential energy of the receptor-solvent system in absence of the ligand and U(xL)
the internal potential energy of the ligand. Similarly ΔG1, defined by

(12)

is the free energy for establishing ligand-solvent interactions (the same as the solvation free
energy of the ligand).

As specified in Eqs. (10) and (12), the free energy changes ΔG2 and ΔG1 are expressed as
averages over the ensembles corresponding to, respectively, the free solvated receptor with
the ligand in the gas phase (Rslv + Lgas), and the pure solvent with the ligand in the gas
phase (slv + Lgas). In either case the ligand is located in the binding site, as specified by the
indicator function I(ζL), but not interacting with the receptor and the solvent. We will
therefore refer to these states as decoupled.2

By inserting Eq. (9) in Eq. (2) we finally obtain an expression for the standard binding free
energy

(13)

where

(14)

is a free energy penalty (Ωsite is smaller than 8π2) for restricting the isotropic distribution of
ligand orientations in solution to the those allowed in the complex, and

2However, note that integration over the external degrees of the freedom ζL for the solvation free energy calculation [Eq. (12)] is
unnecessary and has been explicitly indicated only for consistency with the thermodynamic cycle indicated below; both the solution
and gas phases are homogeneous and isotropic, and therefore integration over the translational and rotational degrees of freedom ζL
yields a canceling factor of VsiteΩsite in both the numerator and the denominator of Eq. (12).
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(15)

is the free energy for transferring the ligand from a solution at concentration C○ to a volume
of size Vsite. For later use we define here the quantity ΔGI, as the concentration-independent
component of the standard free energy of binding,

(16)

which will be referred to as the interaction free energy of binding. As the other terms in Eq.
(13) can be evaluated analytically, it is the computation of the interaction free energy which
is the main goal of computer simulations of binding.

The alchemical thermodynamic path underlying Eq. (13) is illustrated in Fig. 1. The overall
binding process (upper horizontal equilibrium) is decomposed into a thermodynamic cycle
with three distinct processes. The ligand is first transferred from the bulk solution at
concentration C○ to a volume in the bulk solution identical to the binding site volume (left
downward process) including any imposed orientational restraints. The free energy
associated with this first step is  given by Eqs. (15) and (14). In the second step
(bottom horizontal process) the ligand is transferred from this volume in solution to an
equivalent volume in the gas phase; as noted above the free energy change for this step is the
negative of the solvation free energy of the ligand. Finally (right upward process), the
interactions of the ligand with the receptor and the solvent are turned on while the ligand is
confined within the receptor binding site. This decomposition of the binding free energy
forms the basis of the double decoupling class[11, 10] of computational methods that will be
discussed later in this review.

2.3 Potential of mean force formulation
An equivalent statistical mechanics formulation for the binding constant follows from the
direct binding process corresponding to the upper horizontal process in Fig. 1. The binding
constant effectively measures the probability of occurrence of configurations of the system
in which the ligand is found within the binding site, that is conformations in which I(ζL) is
non-zero, relative to the unbound conformations where I(ζL) = 0. It should be therefore
possible to compute the binding constant by means of a suitable direct thermodynamic path
connecting these two conformational states without resorting to intermediate gas phase
thermodynamic states. To derive such a formalism note that the product of partition
functions in the numerator of Eq. (4) can be written as ZN,RLZN = Z2N,RL, where Z2N,RL is
the configurational partition function of the complex in a solution with twice as many
solvent molecules. Similarly, the denominator can be written as Z2N,R+L, the partition
function of the unbound state when the receptor and the ligand are at infinite separation in a
solution with 2N solvent molecules. For sufficiently large N so that finite size effects are
negligible, the ratio between Z2N,RL and Z2N,R+L is independent of N and can be written as
ZN,RL/ZN,R+L. The expression for the binding constant then becomes

(17)

where  specifies an arbitrary position of the ligand in the solvent bulk sufficiently removed
from the receptor so that it does not interact with it. Eq. (17) can be rewritten as[16, 17]
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(18)

where ΔF(ζL) is the potential of mean force (PMF) along the ζL coordinates, that is the free
energy of the system when the position and orientation of the ligand is fixed at ζL relative to
the receptor. From Eq. (17) we see that ΔF(ζL) is defined as

(19)

which explicitly sets to zero the potential of mean force at . In practice, the binding PMF is
computed along only one of the dimensions of ζL (a receptor-ligand distance d, typically)
while the other five coordinates are averaged or kept fixed.[18, 19]

2.4 Implicit representation of the solvent
More concise expressions for the binding constant are obtained by removing explicit
integration over the solvent degrees of freedom by introducing the solvent potential of mean

force. Starting, for example, from Eq. (4) we multiply and divide by  and divide each
partition function by ZN. The solvent partition function yields a factor of 1. The ZN,R/ZN
ratio can be expressed as

(20)

where U(xR) is the intramolecular potential energy of the receptor, u(xR, rs) denotes the
receptor-solvent interaction energy, U(rs) is the solvent-solvent potential energy and W(xR)
is the solvent potential of mean force for the xR conformation of the receptor defined by[20]

(21)

Based on Eq. (21) the solvent potential of mean force is interpreted as the solvation free
energy of the of the receptor when this is fixed in conformation xR. The other ratios of
partition functions can be treated similarly to define the solvent potentials of mean force,
W(xL) and W(xR, xL, ζL), for the ligand and the complex. Finally by a similar derivation
that yielded Eq. (9) we can write[14]

(22)

where ZRL and ZR+L are the configurational partition functions of the complex in the bound
and uncoupled states, respectively, and the interaction free energy ΔGI is defined by their
ratio as

(23)
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which is formally equivalent to Eq. (10) with potential energies U replaced by effective
potential energies Ueff = U + W. The effective binding energy u in Eq. (23) has the same
form as in Eq. (11) expressed in terms of differences of effective potential energies

(24)

It is straightforward to show, from the definition of the solvent potential of mean force [Eq.
(21)], that the effective binding energy is the interaction free energy with explicit solvation
[Eq. (16)] for a fixed conformation (xL, ζL, xR) of the complex. Eq. (23) then expresses a
combination rule to obtain the total interaction free energy for binding by averaging over the
ensemble of the conformations of the uncoupled state of the complex.

Note that the meaning of the average  in Eq. (23) is different than in Eq. (10). In both
averages the ligand is sequestered in the binding site region, however in Eq. (10) the ligand
is considered as not interacting with either the receptor or the solvent, whereas in Eq (23) the
average is over the conformations of the receptor and the ligand while both of these interact
with the solvent continuum in absence of the binding partner [note the absence of the
binding energy term in the denominator of Eq. (23)]. The standard binding free energy can
then be written as

(25)

where  and  have the same meaning as in Eq. (13) and ΔGI is defined by Eq. (23).
The potential of mean force ΔF(ζL) in Eq. (19) can be similarly expressed in terms of the
solvent potential of mean force and the effective potential energy.

From a computational point of view the most noticeable difference between the expression
for the binding free energy in explicit solvent [Eq. (13)] and that in implicit solvent [Eq.
(25)] is that the latter involves only one free energy calculation (ΔGI) whereas the former is
based on the difference between two free energy calculations (one for the transfer of the
ligand in solution, yielding ΔG1, and another for its transfer to the complex, ΔG2).

2.4.1 Connection with Potential Distribution Theory—A useful representation for

the standard binding free energy  in the implicit solvent representation is obtained by

writing the average  in Eq. (23) in terms of a probability distribution density of
the effective binding energy:[21]

(26)

where p0(u), formally defined as

(27)

is the probability distribution for the effective binding energy over the ensemble of
conformations in the uncoupled state (see above), that is the state in which the ligand is in
the binding site of the receptor but both interact only with the solvent continuum. Note that,
as discussed above, Eq. (26), although derived in the implicit solvent representation, is valid
in general. In the explicit solvent representation p0(u) is interpreted as the distribution of
binding free energies for fixed conformations of the complex drawn from the ensemble of
conformations obtained when the ligand and the receptor are not interacting.
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The larger the value of the integral in Eq. (26), the more favorable is the binding free
energy. An example of a p0(u) distribution is illustrated in Fig. 2. As further discussed in
Section 3.3, the magnitude of the p0(u) distribution at positive, unfavorable, values of the
binding energy u measures the entropic thermodynamic driving force which opposes
binding, whereas the tail at negative, favorable, binding energies measures the energetic gain
for binding due to the formation of ligand-receptor interactions. The interplay between these
two opposing forces ultimately determines the strength of binding.

Eq. (26) has the same form as the fundamental equation of the potential distribution theorem
(PDT)[22, 23], of which the particle insertion method of solvation thermodynamics[24] is a
particular realization.[25] In particle insertion the standard chemical potential of the solute,
μ, is written in terms of the probability distribution p0(v) of solute-solvent interaction
energies, v, corresponding to the ensemble in which the solute is not interacting with the
solvent:

(28)

This expression, is equivalent to Eq. (26) with the solute-solvent interaction energy v
replaced by the protein-ligand binding energy u. It follows that the formalism described
above for the binding free energy can be regarded as a ligand insertion theory for protein-
ligand binding, where the protein atoms and the solvent continuum play the same role as the
solvent molecules in particle insertion.

A known result of PDT is a relationship between p0(v), the probability distribution of solute-
solvent interaction energies in the absence of solute-solvent interactions, and p1(v), the
corresponding probability distribution in the presence of solute-solvent interactions.[26] In
the present notation we have

(29)

where μ is the chemical potential. The corresponding expression linking p0(u), the
probability distribution of ligand-protein binding energies for the uncoupled (R+L) reference
state, and p1(u), the probability distribution for the bound state RL is

(30)

where ΔGI is defined by Eq. (26). It follows that p1(u) is proportional to the integrand in Eq.
(26) for the interaction free energy. Note however that this does not imply that the
interaction free energy can be computed by integration of p1(u), as obtained for example
from a conventional simulation of the complex in the presence of ligand-receptor
interactions. The integral of the normalized probability distribution p1(u), which is by
definition unitary, does not contain any information about the interaction free energy. As
expressed by Eq. (30), the proportionality constant between p1(u) and the integrand of Eq.
(26) is related to the interaction free energy, which is exactly the quantity we are seeking to
compute.

The p1(u) distribution is nevertheless a useful quantity for the analysis of the relative
contributions to the binding free energy. Using Eq. (26) we can write Eq. (22) as

(31)

where, based on Eq. (30),
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(32)

can be interpreted as a measure of the contribution of the conformations of the complex with
binding energy u to the binding constant. We thus call the function k(u) the binding affinity
density.[21] See Fig. 2. The binding affinity density k(u) is proportional to p1(u), the binding
energy probability distribution in the bound state. (The critical distinction between the two is
that the integral of the latter is equal to 1 whereas the integral of the binding affinity density
is equal to the binding constant.) It thus follows that the relative contributions to the binding
constant of two macrostates, one with binding energy u1 and another with binding energy u2,
is simply given by their relative populations in the ligand-bound state when the interactions
between the ligand and the receptor are fully turned on.

2.5 Definition of the bound state
The expressions for the standard binding free energy presented above depend on the
definition of the bound state through the indicator function I(ζL). This function can be
chosen for example so as to as much as possible include only conformations that lack
receptor-ligand clashes or it can be defined at a coarser level by specifying for example an
enveloping sphere containing the binding site of interest. Since the choice of I(ζL) is to
some level arbitrary, there is a question as to which definition is appropriate. This issue has
been reviewed in a number of studies.[14, 17, 27] The main conclusion is that if the binding
is strong and specific (as formally defined below) the specific choice for the definition of the
bound state is for the most part irrelevant as long as it covers all important conformations of
the complex. The conditions of strong and localized binding are the same conditions at the
basis of the quasi-chemical description of the non-covalent binding equilibrium embodied in
Eq. (3).

Consider for example Eq. (18). The largest contributions to the integral come from regions
where the binding potential of mean force ΔF(ζL) is large and favorable and exp[−βΔF(ζL)]
is large compared to 1, the value obtained in regions where the receptor and the ligand are
not significantly interacting. If the minima of ΔF(ζL) are deep and localized, that is binding
is strong and specific, the choice of the domain of integration has a small effect on the value
of the integral as long as it covers all the regions where ΔF(ζL) is deep.

This analysis has been confirmed in at least one recent molecular simulation study,[21] in
which the binding constant of a T4-Lysozyme complex was computed using Eq. (22) by
varying the extent of the definition of the binding site region (Fig. 3). The results showed
that, provided that it contains the main binding site, the binding site volume has a small
effect on the computed binding constant. The variations at small binding site volumes in Fig.
3 are due to the fact that in this regime the binding site definition misses some important
conformations of the complex. The nearly constant behavior at larger binding site volumes
are found to be due to a cancellation between the increasing Vsite term in Eq. (22) and the
linear decrease of the exp[−βΔGI] term with increasing binding site volume definition.
Enlarging the binding site definition beyond the space that can be physically occupied by the
ligand does not appreciably change the value of the integral in the numerator of Eq. (23)
because the additional volume contains only points ζL that cause ligand-receptor overlaps,
where u(xL, ζL, xR) is large and exp[−βu(xL, ζL, xR)] is small. On the other hand the
integral at the denominator, which does not contain the u(xL, ζL, xR) energy term, increases
linearly with increasing binding site volume definition thereby canceling the Vsite term at the
numerator of Eq. (22). The result is a nearly invariant value of the binding constant. This
example also shows that the values of , ΔGr, and ΔGI in Eqs. (13), (16) and (25) are not
unique. An increase in the chosen binding site volume, for instance, lowers the values of
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 and ΔGr at the expense of ΔGI that becomes less favorable, so that their sum remains
nearly constant. Therefore it is important in binding free energy calculations of this kind to
include the appropriate standard state terms to obtain answers that are not as affected by
arbitrary model parameters.

The example above involved a buried binding site. For calculations involving surface sites
(as well as buried sites for binding site volumes large enough to extend into the solvent)
however, the binding constant is expected to vary linearly with the volume of the binding
site for large enough binding sites. Which value of the binding site volume is then
appropriate? One simple answer is that in practical terms, as discussed above, if the binding
is strong and localized most reasonable choices for the binding site will yield reasonably
accurate results. For example, doubling Vsite would decrease the binding constant by a factor
of two and increase the binding free energy by only ~ 0.4 kcal/mol at room temperature; a
relatively small change compared to typical strong protein-ligand binding affinities of the
order of −10 kcal/mol. This occurs because the slow logarithmic dependence of the binding
free energy on Vsite is not as significant compared to the larger effect due to strong ligand-
receptor interactions.

For weak and less localized binding, however, the dependence on Vsite would be more
noticeable. In addition, from a theoretical perspective we would like to understand the
paradox that, even though Eq. (4) depends on an arbitrary definition of the complex, the
binding constant is a measurable quantity. This has led to the conclusion that, apparently,
“Nature knows how to define the complex, even if we do not.”[28] Mihailescu & Gilson
have reviewed this issue,[27] and concluded that, first of all, the theoretical expression for
the binding constant depends on the experimental technique used. Only methods based on
spectroscopic reporting (such as fluorescence quenching)[29] can be shown to be modeled
by the quasi-chemical theory considered here. (Equilibrium dialysis techniques, for example,
follow a different but related law,[27] which does not require a definition of the binding site
volume.) Moreover Mihailescu & Gilson conclude that the definition of the binding site
volume most appropriate to reproduce measurements based on spectroscopic reporting is the
exclusion zone of the complex, generally defined as the region that includes the binding
minimum and the source of the spectroscopic signal, and extends up to a point where there
would be enough space to allow a second ligand to interact more strongly with the receptor.
[27]

2.6 Thermodynamic decompositions
The free energy of binding is the result of a delicate balance between opposing
thermodynamic forces. The main driving force towards binding is the formation of receptor-
ligand interactions. However these occur at the expense of solvent interactions producing
desolvation effects that often oppose binding. Intuitively binding is necessarily accompanied
by the loss of translational freedom and therefore entropic forces tend to disrupt complex
formation. In addition, both the ligand and the receptor lose free energy to adapt their
conformations to match those compatible for binding. Given the complexity of the process it
is very difficult to predict variations of the binding equilibrium. To rationalize binding
affinities it is therefore often beneficial to consider contributions to the binding free energy
each easier to rationalize than the total. We summarize below three relevant decompositions.

2.6.1 Enthalpy/entropy decomposition—A decomposition of the binding free energy
into entropic and enthalpic contributions seeks to separate energetic factors from factors
related to the loss of conformational freedom.[30] Obvious candidates in this role are the
entropy and enthalpy of binding, which reflect changes in standard thermodynamic
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potentials. The standard binding entropy is by definition given by the temperature derivative
of the standard binding free energy. From Eq. (13):

(33)

where

(34)

is the change in average potential energy for establishing receptor-ligand and solvent-ligand
interactions, and

(35)

the change in average potential energy for establishing solvent-ligand interactions. The
standard binding enthalpy is given by:

(36)

From these expressions we immediately see that only the entropy of binding depends on the
standard concentration C○ = 1/V○ through the first term on the r.h.s. of Eq. (33) which
corresponds to the work  for imposing translational and orientational constraints.
We will refer to this term as the translational entropy of binding

(37)

whereas we will use the term interaction entropy to refer to the concentration-independent
remainder ΔSI defined from Eq. (16) by

(38)

The standard entropies and enthalpies of binding are measurable quantities. They are often
obtained directly by isothermal calorimetry or by measuring variations of binding constant
with temperature.[31] Although they yield quantities directly comparable to experimental
measurements, Eqs. (33) and (36) are rarely used in computational studies with explicit
solvation because of the difficulties of converging the changes in total average potential
energies ΔU2 and ΔU1, which are given by the difference of two large values [each average
in Eqs. (34) and (35) scales as O(N), where N is the size of the system, whereas their
difference, which is local to the binding site, is O(1)]. Estimating  by evaluating 
over a range of temperatures and evaluating the derivative by finite differences[32] is also
problematic because using a small temperature range causes amplification of statistical
errors whereas using a large temperature range may introduce systematic bias.

Eq. (33) is not valid with implicit solvation because in this case, unlike the potential energy
U(x), the effective potential energy Ueff(x) is temperature dependent. From Eq. (23) we
have:[33]

(39)
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where

(40)

is the change in total effective potential energy upon turning on receptor-ligand interactions
and

(41)

is the corresponding change in the average temperature derivative of the solvent potential of
mean force. The binding enthalpy is again given by  or

(42)

The sum of the first two terms in the r.h.s. of Eq. (39) is usually referred to as the
configurational entropy of binding,[30]

(43)

whereas the last term, which would be zero for a temperature-independent potential,
corresponds to the change in solvent entropy. Similarly, the last term in the r.h.s. of Eq. (42)
is the solvent contribution to the binding enthalpy.

It can be shown that[30] Eq. (43) is equivalent to taking the difference of the entropies of the
bound and uncoupled states each evaluated using the fundamental equation

(44)

where ρ(x) = exp[−βU(x)]/Z is the configurational distribution function.3

One interesting result from Eqs. (39) and (42) is that the ∂W/∂T terms cancel out when
evaluating the interaction free energy as ΔGI = ΔHb – TΔSI, yielding

(45)

Consequently, the configurational entropy and the effective enthalpy of binding form a valid
decomposition in that their sum, together with the appropriate concentration-dependent
terms in Eq. (25), and without approximation, gives the standard binding free energy. On the
other hand ΔUeff and ΔSconf, lacking proper solvent contributions, do not directly reflect the
measurable entropies and enthalpies of binding. Conversely, ΔUeff and ΔSconf are not
directly measurable thermodynamic quantities. Nevertheless the effective enthalpy/
configurational entropy decomposition can yield valuable insights on the driving forces in
favor and against association. Moreover, because they are evaluated with implicit solvation,
these quantities are also more amenable to computation relative to the full binding entropies
and enthalpies. Indeed, as discussed below, some computational methods with implicit

3In principle Eq. (44) should include an additional constant term corresponding to the multiplicative factor necessary to make the
classical partition function dimensionless. This term, which cancels the dimensions of the distribution function within the logarithm in
Eq. (44), is omitted here for brevity because it cancels out when taking differences between the quantities corresponding to the
unbound and bound states.

Gallicchio and Levy Page 12

Adv Protein Chem Struct Biol. Author manuscript; available in PMC 2012 September 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



solvation, such as MM/PBSA, are based on Eq. (45) and independent estimates of ΔUeff and
ΔSconf.

2.6.2 The reorganization free energy—Working within the implicit solvent
representation, we can think of the binding process as occurring in two separate steps. First
the ligand and the receptor reorganize their conformational ensembles to match those of the
bound complex, and then receptor-ligand interactions are established. Since there is no
change in the configurational distributions of the binding partners, from Eq. (44) we see that
the entropy change for the second step is zero. Moreover the enthalpy change for the second
step is limited to the establishment of the receptor-ligand interaction energy , where u is
the binding energy defined by Eq. (24) and the RL subscript denotes averaging over the
bound conformations of the complex. The remainder. ΔGreorg, defined by the identity

(46)

is then the free energy for the reorganization step.

By adding and subtracting  from Eq. (46) and using Eqs. (24), (40),
and (43), we can rewrite the reorganization free energy as

(47)

where δSconf is the configurational entropy defined above, and

(48)

is the reorganization energy defined as the change in the average internal potential energies
of the receptor and the ligand in going from to the unbound state to the bound state while
they are not interacting. Eq. (47) confirms that the configurational entropy corresponds to
the entropic cost of reorganizing the conformational ensembles of the binding partners to
form the complex.

The reorganization free energy is necessarily positive because without mutual interactions
the ligand and the receptor would spontaneously relax to their conformational ensembles at a
lower free energy. Therefore based on Eq. (46) we conclude that the average binding energy

 is the only term that can be favorable to binding, while reorganization always opposes
it.

In some applications other definitions of the reorganization free energy appear in which the
intermediate state is one in which the receptor and the ligand conformational ensembles by
construction do not match exactly those of the complex.[34] Consider for example Fig. (4)
in which the binding free energy (here the ligand is assumed to be already placed in the

binding site) is decomposed into the free energy  of restraining the ensembles of
conformations of the receptor and the ligand in solution to chosen macrostates R* and L*
(for instance an application is described below in which the R* macrostate is defined with
respect to a sidechain conformation). The free energy for this process is related to the

population , defined as the probability of finding a conformation belonging to the
macrostate, in the absence of restraints:

(49)
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Following this step, we consider the binding free energy, , between the R* and L*
species, that is the binding free energy when the receptor and the ligand are limited to the

chosen macrostates.  is defined, for example, as in Eq. (23) where in addition to the
binding site indicator function I(ζL), indicator functions I(xR) and I(xL) are present which
limit the range of the receptor and ligand internal degrees of freedom. In general the
resulting state of the complex, denoted by (RL)* in Fig. 4, does not match the full
complexed state RL because in the former the receptor and the ligand are limited to their
respective macrostates. If the chosen macrostate encompasses most of the conformational
ensemble of the complex, the (RL)* and RL species are virtually equivalent. Otherwise we

need to consider the free energy difference, , of releasing the macrostate restraints in
the complexed state, given by

(50)

where  is the population of the macrostate when the ligand and the receptor are
interacting. Putting all together we finally obtain

(51)

which expresses ΔGI as the sum of a term,  corresponding to the binding free energy of
a macrostate of the complex plus a free energy term corresponding to the preparation and
release of this macrostate.

The result in Eq. (51) also very clearly shows that to accurately estimate the binding free
energy it is sufficient to sample only those macrostates whose population is affected by the

binding reaction. From Eq. (51) we see that  as long as , that is the
binding free energy computed within a chosen macrostate is an accurate estimate of the
binding free energy if the population of the macrostate is approximately the same in the
unbound and bound states. So for example, it is not strictly necessary to thoroughly sample
regions of a protein receptor far away from the binding site as these are often not
substantially affected by the binding of the ligand. Arguably, it is precisely for this reason
that computer simulations, which necessarily sample a very small fraction of conformational
space, can be applied to the computation of binding free energies. Eq. (51) is also the basis
for the “restrain-and-release” double decoupling method discussed below which is useful in
cases when it is convenient to conduct the binding free energy calculation within a limited
portion of conformational space.

2.6.3 Conformational decomposition—We showed in Section 2.4.1 that the binding
affinity density measures the contribution of the conformations with a particular binding
energy to the overall binding constant. In this section we generalize this result in the
conformational dimension. Often the affinity between a receptor and a ligand is the result of
not one but multiple binding modes differing for example in the orientation of the ligand in
the binding site. We would then like to estimate the contribution of each mode to the total
binding free energy. As discussed later, this question has computational relevance in that if
we have a way to combine the binding free energies of multiple modes into a single overall
binding free energy, then it would be possible to simplify the calculation by treating each
mode separately. As we show in this section, a conformational decomposition of this kind is
possible.

Let us work in the implicit solvent representation using the binding energy distribution
formalism presented in Section 2.4.1. Given a set of macrostates i = 1, …, n of the complex
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we consider the joint probability distribution p0(u, i), expressing the probability of observing
the binding energy u while the complex is in macrostate i. Assuming that the set of
macrostates collectively covers all possible conformations of the complex (which is always
possible by including a “catch-all” macrostate), we can express p0(u) as a marginal of p0(u,
i):

(52)

where we have introduced the conditional distribution p0(u|i) and the population P0(i) of
macrostate i in the uncoupled reference state, and used the relationship p0(u, i) = P0(i)p0(u|i)
between the joint and conditional distributions. By inserting Eq. (52) into Eq. (32), we have

(53)

where

(54)

represents the binding affinity density for macrostate i. In analogy with Eq. (31) we define a
macrostate-specific binding constant

(55)

where  represents an ensemble average in the unbound state of the complex limited
to macrostate i. The macrostate-specific binding constant Kb(i) represents therefore the
binding constant that would be measured if the conformations of the complex were limited
to macrostate i. From Eqs (55) and (53), the sum of the macrostate-specific binding
constants weighted by the macrostate populations P0(i) is the total binding constant:

(56)

Eq. (56) expresses the fact that each conformational macrostate contributes to the total
binding constant proportionally to its macrostate-specific binding constant Kb(i) weighted
by the population, P0(i), of the macrostate in the unbound state.[35] Using Eq. (2), the
composition formula for the binding free energy corresponding to Eq. (56) is

(57)

where  is the standard binding free energy for macrostate i.

Although Eqs. (56) and (57) have been derived in the implicit solvation representation, it
can be shown that they are valid in general. In the explicit solvent representation, the
macrostate i refers to the solvated state for the receptor and for the gas phase for the ligand,
and it is assumed that the same definition of macrostate i is used for both legs of the double-
decoupling process [Eqs. (10) and (12)]. Eq. (57) also forms the basis of integration over
parts approaches[35, 36, 37] to the calculation of binding free energies. The idea is that the
binding free energy can be obtained by the appropriate combination of the binding free
energies of a series of binding modes. These methods are attractive because it is easier to
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localize the calculation to a macrostate than achieving equilibration between distinct binding
modes. The challenge is to to identify the collection of modes that contribute the most to the
total binding free energy. Misidentification of the highest contributing mode can introduce
major errors, while neglecting secondary modes generally has a smaller effect on accuracy.
[36, 21]

The ratio P0(i)Kb(i)/Kb measures the relative contribution of macrostate i to the overall
binding constant. We can see that a large macrostate-specific binding constant Kb(i) is not a
sufficient condition for a large contribution to the overall affinity. It must be also the case
that the macrostate has a significant population P0(i) in the unbound state. This result can be
interpreted as a generalization of the reorganization free energy concepts developed in
Section 2.6.2. ΔGreorg = −kT ln P0(i) measures the reorganization free energy penalty for
restraining the system into macrostate i in the unbound state, whereas  measures the
association free energy in that macrostate. For a macrostate to contribute significantly to the
binding affinity, the reorganization penalty and the association gain must combine so as to
be favorable overall to binding.

It is straightforward to show from Eqs. (55) and (30) that[21]

(58)

where

(59)

is the population of macrostate i in the bound state. In other words, this analysis shows that
the relative contribution of macrostate i to the binding constant is equal to the physical
population of that macrostate of the complex. If a particular binding mode of the complex
can be observed, by for example X-ray crystallography, it can be concluded therefore that its
population is high and that it likely contributes significantly to the binding affinity.

It is also of interest to estimate the effect of having missed a particular binding mode in a
binding free energy calculation. An expression for the binding constant, Kb(−j), when
macrostate j, say, has been missed can be derived by removing the corresponding term in the
sum in Eq. (56) and, in addition, by renormalizing the macrostate populations so that they
add to one. The result is:

(60)

From this result we can see that, as expected, missing macrostate j has a large effect in the
computed binding constant if this macrostate provides a large contribution to the overall
binding constant [the P0(j)Kb(j) term in Eq. (60)]. It also shows, however, that the binding
constant can also be severely overestimated if the j macrostate is highly populated in
solution [the 1 – P0(j) term at the denominator is small]. In other words, large errors in
binding free energy calculations are expected either if important macrostates of the bound
complex are missed or if important macrostates of the unbound states are missed. The latter
occurs because the calculation would underestimate the free energy required to reorganize
the binding partners into their bound ensembles.
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3 Computational methods
The development of a statistical mechanics theory of non-covalent association is only the
first step in the development of computational models and methods for the calculation of
binding affinities. To begin with, the expressions for the free energy of binding presented
above depend on the definition of a potential energy function U(x). We also require some
prescription to generate ensembles, or set of conformations x of the system, compatible with
the thermodynamic state of the system and the potential energy model. In this review we
focus on all-atom classical force fields[38, 39, 40, 41] energy models, and on Molecular
Dynamics (MD) or Monte Carlo (MC)-based conformational sampling methods, which are
most commonly applied models for protein-ligand binding free energy estimation. Atomistic
force field models are not reviewed further here except to say that they are parametrized
functions of the Cartesian coordinates of the atoms of the system, describing electrostatic,
dispersion, and steric non-covalent interactions as well as covalent interactions between
atoms. Force fields are used with explicit representations of solvent molecules (water in the
applications described below), as well as in conjunction with implicit models of hydration.
[42, 43, 44, 45, 46]

A very active and rich area of research is focused on the development of computer
algorithms for the evaluation of free energies[13] given an energy model. One class of free
energy methods applicable to binding free energy simulations is based on connecting the
unbound and bound states by a suitable thermodynamic path. At a fundamental level
thermodynamic path methods are capable of computing ratios of partition functions as in Eq.
(4). Another class of free energy methods, often referred to as end point methods compute
binding free energies by explicitly estimating the free energies of the bound and unbound
states.[47]

3.1 Free energy estimators
Eqs. (10) and (12), for explicit solvation, and Eq. (23), for implicit solvation, suggest a
simple algorithm to the computational evaluation of binding free energies by means of
exponential averaging of the binding energy in an appropriate reference ensemble. In
practice these expressions suffer from several limitations, and are rarely implemented as
such. Instead, suitable free energy estimators have been developed which are discussed in
this section.

Eqs. (10), (12), and (23) are particular realizations of the free energy perturbation (FEP)
identity,[48] which states that the free energy difference ΔG between two states 1 and 0 is

(61)

where Z1 and Z0 are the corresponding configurational partition functions and ΔU(x) =
U1(x) – U0(x) is the difference of potential energies between state 1 and 0 (the perturbation),
and the average is over conformations x sampled from the reference state 0. In our case state
1 is the bound state and state 0 is the uncoupled state of the complex. Because they are very
difficult to converge, however, in binding free energy applications the FEP formulas are
rarely evaluated directly. To understand why consider for example Eq. (26) and Fig. 2. The
distribution of binding energies in the unbound state, p0(u), is largest for large positive
values of u. This is expected since in this state the ligand is restrained in the binding site
where, in the absence of receptor-ligand interactions, the ligand is more likely to sample
conformations with unfavorable clashes with receptor atoms rather than conformations with
favorable interactions. The values of u in the extreme negative binding energy range
correspond to the low energy conformations of the complex, which are very rarely visited in
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absence of ligand-receptor interactions. On the other hand the exponential factor, exp(−βu),
amplifies the contribution of these conformations to the integral in Eq. (26), causing the
average to be dominated by rare events. This results in unreliable results, requiring the
accumulation of an inordinate, and practically unachievable, number of independent samples
to reach convergence.[49]

An equivalent way to assess this problem is to consider the distribution, p1(u) of binding
energies in the bound ensemble (illustrated in Fig. 2 as a dashed curve). We concluded
above [Eq. (31)] that most of the contribution to binding comes from conformations where
p1(u) is large. The amount of overlaps between p1(u) and p0(u) is a measure of the
probability that one of these conformations is generated by chance in the uncoupled
ensemble. As we can see from Fig. 2, the amount of overlap is small and the binding affinity
is expected to be difficult to assess by sampling only the uncoupled ensemble. This is a
general result, which states that the FEP formula is applicable for the computation of free
energy difference between closely related states whose distributions of the perturbation
energy overlap significantly.[50, 13, 49]

The technique known as stratification[13] is a general way to circumvent the problem of
poor distribution overlap in FEP binding free energy calculations. The first ingredient is a λ-
dependent hybrid potential, which at λ = 0 typically corresponds to the unbound state and at
λ = 1 corresponds to the bound state. A straightforward, although not necessarily optimal,
choice for the hybrid potential in binding free energy calculations is

(62)

where U(xR)+U(xL) represents the energy in the unbound state and u is the binding energy.
Here we have used the notation for implicit solvation denoting for simplicity the effective
potential as U. The expression for hybrid potential, Eq. (62), can easily adapted to the
solvation and binding steps [Eqs. (12) and (10)] with explicit solvation. The hybrid potential
defines a thermodynamic path connecting the unbound and bound states through an arbitrary
number of unphysical intermediate states at 0 < λ < 1 in which the receptor and the ligand
are only partially coupled. In addition, states with similar λ have similar characteristics and,
in particular, binding energy distributions with significant overlap, allowing the application
of the FEP formula for the computation of their free energy difference:

(63)

where Δλ = λ2 − λ1. Given a set of n intermediate states at λ = λi the free energy
difference can then be evaluated as the sum of the free energy differences between
intermediate states

(64)

where Δλi = λi+1 − λi. More generally, when the expression for the hybrid potential is not
linear in λ, Δλiu in Eq. (64) is replaced by U(λi+1) − U(λi).

Because it is based on the sum of well behaved terms, the FEP stratification formula, Eq.
(64), is much easier to convergence that the direct application of the FEP formula between
the unbound and bound states. The procedure entails performing multiple MD or MC
simulations to collect samples at each λ. The more intermediate states are employed, the
fewer samples are needed to converge each term but more terms need to be evaluated. A
number of techniques have been developed to optimize the λ schedule in FEP calculations
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and to assess the reliability if individual free energy estimates based, for example, on the
analysis of neighboring distributions.[13, 49]

The thermodynamic integration (TI) formula, which is sometime used in binding free energy
calculations,[51] can be considered the continuous limit of Eq. (64) for Δλi → 0

(65)

where the last equality follows from Eq. (62). The TI formula is formally derived from the
identity

(66)

Eq. (64) expresses each individual free energy difference in terms of an exponential average.
One limitation of the exponential average is that, as discussed above, it works well only if
conformations relevant for the target state are sampled in the reference state, or in other
words if the binding energy distribution in the reference state envelopes that of the target
state. The result is that often one perturbation direction gives different results than the other
(hysteresis), with the one going in the direction of decreasing entropy (for binding the one
starting from the unbound state) usually being more accurate.[50] In some cases however
neither direction may work well unless the λ spacing is made very small. In recent years
more efficient free energy estimators have been developed. The Bennet acceptance ratio
(BAR) formula[52, 26]

(67)

where f(x) = 1/[1+exp(x)] is the Fermi function and C is a constant determined iteratively,
has been shown to be an optimal free energy estimator with respect to the minimization of
the statistical variance. It is also symmetric with respect to the perturbation direction. The
BAR formula is based on the introduction of a fictitious intermediate state whose
distribution is enveloped by the distributions of both end states and peaks where they most
overlap. Consequently the BAR formula requires only that the two distributions overlap to
some extent, rather than requiring that one is enveloped in the other as for the exponential
averaging formula. The BAR formula has for the most part replaced the exponential
averaging formula in modern FEP binding free energy calculations.

A free energy perturbation approach can also be used to compute the binding free energy
using the binding potential of mean force approach [Eqs. (18) and (19)]. In this case
techniques to compute free energy changes along a thermodynamic path described by a
structural order parameter can be considered. For example, the distance measure d(λ) of the
ligand from the binding site. Samples are generated at a reference receptor-ligand distance
and the potential energy changes ΔU resulting from displacing the ligand distance from the
receptor by Δd = d(λi+1) − d(λi) are computed in the context of Eq. (64) or (67). More
commonly however the binding potential of mean force is expressed in terms of the
probability density p(d) of the receptor-ligand distance

(68)
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where d* is some reference large distance corresponding to the solvent bulk. Because it is
difficult to sample a large range of distances in one simulation, multiple simulations are
conducted each employing a different auxiliary confining potential designed to bias
sampling in one limited range of distances.[18] In this technique, generally known as
umbrella sampling, each simulation generates a biased distribution. The data from all of the
simulations is then combined and unbiased using reweighting techniques such as the
weighted histogram analysis method (WHAM).[53, 54, 55] The WHAM equations in this
case are expressed as

(69)

where, P(di) = p(di)di is the unbiased probability to find the system at distance bin i of size
Δdi centered at di, n(di) is the number of samples collected from all simulations in this bin.
The denominator is a sum over the simulations, each at a different value of λ. nλ is the total
number of samples collected at the simulation at λ, ωλ(di) is the value of the biasing
potential at λ corresponding to bin i, and, finally

(70)

is a normalization factor related to the free energy, kT ln fλ, of the system at λ relative to
the unbiased system. Eqs. (69) and (70) are solved iteratively until convergence. The
binding free energy is then computed by integrating the binding PMF over the binding site
region [Eq. (18)].

The usefulness of WHAM as a binding free energy estimator extends to alchemical methods
as well. As further described below, WHAM has been used to implement Eq. (23) by
choosing the binding energy u as thermodynamic path parameter and setting as biased
potential ωλ(u) = λu.[21] From Eq. (62), the unbiased system at λ = 0 is the unbound state
and λ = 1 corresponds to the bound system, and consequently Eq. (70) evaluated at λ = 1
yields the interaction component of the binding free energy:

(71)

More recently the multistate Bennett acceptance ratio (MBAR) method as been developed,
[56, 57] which, in a way, unifies the BAR and WHAM free energy estimators. Like WHAM
it combines in an statistically optimal way data from multiple values of λ to compute the
overall binding free energy [rather than from a sum of pairwise terms as in the FEP equation
(64)]. It also resembles WHAM in terms of formulation. In fact, it is equivalent to WHAM
in the limit that bin sizes are made so small so to contain only one sample, or none. On the
other hand, MBAR reduces to the BAR estimator when only two states are considered. The
MBAR free energy estimator is preferable to WHAM because it does not require the
definition of an histogram grid, and it’s preferable to BAR because it more efficiently
utilizes the samples generated at each λ so that all of them contribute to free energy
differences. Because in addition it combines the generality of both methods the MBAR is
expected to become a widely employed estimator in binding free energy calculations.

3.2 Double decoupling
The double-decoupling method[14, 11, 10] is an alchemical approach to the calculation of
standard binding free energies (often referred to as absolute binding free energies in the
literature). It implements Eq. (13), where the computations of the free energies of transfer,
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ΔG1 and ΔG2, of the ligand from the gas phase to, respectively, the solution and receptor
environments, form the core of the method. The name double-decoupling comes from
thinking of the two opposite processes of decoupling the ligand from the solution and
receptor environments. Eqs. (12) and (10) are implemented using either the TI [Eq. (65)] or
staged FEP/BAR [Eqs. (64) and (67)] free energy estimators.

Double decoupling has been used recently to compute the standard binding free energies of
a variety of protein-ligand complexes. The L99A and L99A/M102Q mutants of T4-
lysozyme[58, 59] have been the most studied systems; the small size of the ligands, the
relative simplicity of the binding sites, and the availability of high quality structural and
thermodynamic data,[60, 61] have made these systems particularly well suited for testing the
validity of various computational protocols.[62, 63, 37] A number of double decoupling
studies[64, 35] have also targeted a series of inhibitors of the FKBP12 receptor.[65]
Applications to the trypsin[66, 67] and the ribosomal peptidyl-transferase receptors[68] have
also been recently reported.

From a computational perspective the three main issues in double decoupling simulations
are: (i) the extent of conformational sampling (discussed in detail in Section 3.6), (ii) the
definition of the binding site volume by restraining potentials, and (iii) the use of soft-core
hybrid potentials.

As discussed above the definition of the complexed state and the concentration dependence
of the standard state is formally introduced by a binding site indicator function I(ζL). As
discussed,[14, 15] I(ζL) can be defined in terms of a continuous function which interpolates
from values near 1 within the binding site region to values near 0 outside it. A common
choice is to set

(72)

where Urestr is a suitable restraining potential that depends only on the external coordinates
of the ligand. This definition is computationally convenient because it is differentiable and,
as we can see by inserting Eq. (72) in Eq. (10) or Eq. (23), the indicator function can be
implemented by means of restraining potentials easily included in potential energy routines
of MD packages. Note that, because the restraining potential is present in both the unbound
states, it does not contribute to the binding energy [Eqs. (11) and (24)]. Also note that the
definition above makes the definition of the complexed state temperature dependent,
potentially affecting in unwanted ways the temperature dependence of binding free energies.
This dependence can be removed by adjusting the strength of Urestr according to the
simulation temperature.

Some early absolute binding free energy calculations,[69] as well as more recent ones,[70]
did not account properly for the standard state definition. Moreover ligand restraints are
sometime described as a convenient computational device to enhance convergence by not
letting the ligand wander into the whole simulation volume when it is uncoupled from the
receptor.[11] But, as discussed above, they are in fact a necessary input of the method; they
implicitly provide a definition of the complexed state without which it is not possible to
define its free energy. Boresch et al.[15] have introduced a general framework to define the
six external degrees of freedom ζL of the ligand based on the positions (expressed in
spherical polar coordinates) of three reference atoms of the ligand relative to three reference
atoms of the receptor. This leads to three coordinates that specify the overall translation of
the ligand (one distance and two angles) and another set of three coordinates (three angles)
that determine the orientation of the ligand in the binding site. Restraining potentials can be
applied only on the translational coordinates or also on the orientational coordinates. For
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harmonic, or flat-bottom harmonic restraints the binding site volume VsiteΩsite in Eq. (7) can
be evaluated analytically. In other circumstances the integration of the indicator function can
be obtained numerically with high accuracy since it involves at most six coordinates. Some
early studies[71] employed multiple distance restraints between ligand atoms and receptor
atoms, which, as pointed out by Boresch et al.,[15] is incorrect based on this formalism,
since it would introduce couplings between the external ligand coordinates and internal
coordinates of the receptor and the ligand.

It has been observed that the a hybrid potential linear in λ as in Eq. (62) leads to instabilities
in the calculations of free energies near λ = 0,[72, 51] when the ligand and the receptor are
nearly uncoupled. Under these conditions conformations are generated in which receptor
and ligand atoms interpenetrate each other and yielding very large values of the binding
energies. These cause instabilities in Eq. (63) which are difficult to overcome unless the λ
spacing is very fine (small Δλ). These difficulties have led to the development of so-called
soft core hybrid potentials which avoid large perturbation energies near the end point of the
transformation. A popular class of soft core potential employ a λ-dependent modified
distance function in the evaluation of Lennard-Jones and Coulombic interactions. For
example

(73)

is a soft core version of the Lennard-Jones pair potential. Note that uLJ(r|λ) above is finite
for any non-zero value of λ allowing particles to interpenetrate each other. This functional
form also “grows” particles gradually, reducing the fluctuations of the free energy estimator
at small λ. Decomposing the decoupling steps such that electrostatic interactions are turned
off before Lennard-Jones has also been shown to improve convergence.

3.3 Binding energy distribution analysis method
The binding energy distribution analysis method (BEDAM)[21] is an absolute binding free
energy alchemical method based on an implicit description of the solvent. It computes the
binding free energy by means of Eq. (26) where the distribution of binding energies p0(u) is
computed numerically. The numerical difficulties application of Eq. (26) is illustrated in Fig.
2. Because low binding energies are very rarely sampled when the ligand is not guided by
the interactions with the receptor, the accurate calculation of the important low energy tail of
p0(u) can not be accomplished by brute-force collection of binding energy values from a
simulation of the complex in the uncoupled state. Instead, samples are collected from a
series of biased MD simulations of the complex with biasing potential λu. In going from λ
= 0 to λ = 1 the system progressively samples more and more favorable binding energies.
The replicas collectively sample a wide range of unfavorable, intermediate and favorable
binding energies which are unbiased and combined together by means of the weighted
histogram analysis method (WHAM) to yield the unbiased probability density p0(u),[55]
which is then used in Eq. (26) to compute the binding free energy. The ladder of λ values is
chosen so that uniform coverage of the range of binding energies important for binding is
achieved. In particular, the low binding energy tail of p0(u), although small in magnitude, is
reliably estimated because the relative precision of the binding energy distribution p0(u)
computed by WHAM depends mainly on the number of samples collected at binding energy
u, rather than the value of p0(u) itself.

Although, as discussed in Section 2.4.1, the binding energy distribution formalism on which
BEDAM is based is valid in general, in practice it is only applicable with implicit solvation.
This is because in BEDAM the effective binding energy is part of the potential energy of the
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system, requiring fast evaluation of u and its gradients for MD conformational sampling.
With explicit solvation however each evaluation of the effective binding energy would entail
a costly and impractical binding free energy calculation [see discussion near Eq. (24)].

In a recent study[21] using the OPLS force field with the AGBNP2[46] solvation model,
BEDAM was shown to accurately identify ligand binders from non-binders in a challenging
set of candidate ligands to T4 lysozyme receptors (Fig. 3) failed by docking programs. In
addition, the standard binding free energies of the binders were found to be in good
agreement with experimental measurements. In contrast, energy-only estimators, which do
not include entropic and energy reorganization effects, did not correctly reproduce the
experimental rankings. As with other full free energy models of binding, BEDAM implicitly
incorporates entropic and reorganization effects. In this study the reorganization free
energies were evaluated using Eq. (46) and shown to be large and in many cases the
discriminating factors between binders and non-binders. Analysis of the binding energy
distributions, as described in Section 2.6.3, allowed the decomposition of the binding free
energies into conformational contributions based on the orientation of the ligand within the
binding pocket. It was found that in many cases several binding modes contributed nearly
equally to the total binding free energy.

There are clear parallelisms between BEDAM and conventional binding free energy
methods such as double decoupling. They are both alchemical methods that utilize a hybrid
potential of the form in Eq. (62) to build a thermodynamic path between the unbound and
bound states. The binding energies collected in BEDAM can yield directly the binding free
energy by means of the f-factors [Eq. (70)] returned by WHAM or MBAR. One advantage
of BEDAM over double-decoupling is that BEDAM estimates the binding free energy from
a single perturbation leg rather than from the difference of two separate free energy
calculations with double decoupling. This feature is potentially advantageous for more rapid
convergence of the binding free energies of highly polar and charged ligands, which, in
double decoupling and endpoint approaches discussed below, are the result of a nearly
complete cancellation between the large free energies of the unbound and bound states.[11]

The challenges in BEDAM calculations are similar to those discussed above in the context
of double-decoupling. In addition, BEDAM relies on the quality of the implicit solvent
potential. To obtain accurate binding free energies care should be taken to achieve the
correct balance between direct interaction and hydration forces.[46] As discussed below to
further enhance the conformational sampling of ligand-receptor conformations BEDAM
employs a λ-hopping replica exchange algorithm. The problem of the convergence of free
energy differences near λ = 0 is evidenced by the long tail of the p0(u) distribution at large
energies which is difficult to estimate accurately. Recent versions of BEDAM employ a
soft-core hybrid potential of the form U(λ) = U0 + λf(u), with f(u) = umax tanh(u/umax),
where umax is some maximum ceiling for the binding energy, which has been shown to
improve convergence without appreciably affecting free energy estimates.

3.4 Potential of mean force approach
The binding potential of mean force (PMF) approach described in Section 2.3 is an example
of a non-alchemical transformation to the calculation of absolute binding free energies.
Numerical applications of the PMF formula have a long history in the study of dimerization
of simple solutes,[16, 73] and few applications have been reported for protein-ligand
binding free energy estimation.[18, 19, 11] The main advantage of PMF calculations is that
they can be conducted with explicit solvation, but, unlike double-decoupling methods, they
do not suffer from the large cancellation between the solvation and binding components
[ΔG1 and ΔG2 in Eqs. (12) and (10)]. PMF calculations are therefore easier to converge for
the binding between between charged ligands and receptors whose solvation free energies
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can be of the order of ~ 100 kcal/mol. The disadvantage of the PMF approach is that it relies
on the presence of a physical unobstructed path for the ligand to reach the binding site from
solution. This limitation basically prevents the application of the method to buried binding
sites.

Computationally it is impractical to obtain the PMF along all of the six external ligand
coordinates. Typically only one coordinate is used corresponding to a displacement distance
d along an approach path from the bulk solution to the binding site. The other coordinates
are either fixed[18] or averaged[19]. In the former case the work necessary to restrain the
angular position and orientation of the ligand relative to the receptor is computed separately.
[18] The PMF is computed along the approach coordinate by biased sampling and
reweighting, as discussed above. In the reported applications[18, 19] harmonic biasing
potentials were employed.

3.5 Relative binding free energies
Often in pharmaceutical applications[74] we are interested in the difference of binding free
energy between two related compounds to the same receptor. Computational methods
designed to compute directly relative binding free energies, rather than the corresponding
standard binding free energies, have been developed and resulted in some of the first
applications of free energy methods to protein-ligand binding.[75] Relative binding free
energy calculations [commonly referred to as free energy perturbation (FEP) calculations]
constitute the majority of protein-ligand binding calculations conducted in academic and
industrial settings, and a variety of techniques have been developed to improve their
efficiency and accuracy. This body of work has been thoroughly reviewed.[13, 76, 77, 78,
79, 51] In this section we sketch out the foundations of the method based on the statistical
mechanics theory presented above and point out connections between relative and absolute
binding free energy calculations.

The difference of standard binding free energies, , between two
ligands B and A is equivalently expressed as the ratio of the corresponding binding
constants [Eq. (2)]. Using Eq. (4), and assuming that both ligands bind to the same binding
site of the receptor R, we arrive at the following expression

(74)

Where ΔΔGR(BA) is the difference in free energy of complexes RB and RA and
ΔΔGslv(BA) is the difference in solvation free energies between ligands B and A. We see
that the relative free energy of binding is independent from the standard state concentration.
Also, the ratios of partition functions in Eq. (74) can be expressed as averages, similar to
those in Eq. (10) and (12),4 based on the difference in potential energy between the ligands
averaged over the ensembles of one of the ligands in the binding site and in solution, without
resorting to intermediate gas phase state for the ligands. Given a suitable λ-dependent
interpolation potential connecting the potential energies of the two ligands, these averages
can be computed with the alchemical free energy estimators discussed in Section 3.1. Two
main mutation techniques, single topology and dual topology,[51] exist to map the potential
energy of one ligand to the other.

4Note that these averages still contain the I(ζL) indicator functions (assumed to be the same for the two ligands). Like absolute
binding free energies, therefore, relative binding free energies are dependent on the definition of the complexed state. This aspect is
often overlooked in the literature.
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Relative binding free energy calculations are expected to be more efficient than computing
the difference of the corresponding absolute binding free energies when the two ligands are
similar to each other. Conversely it is difficult to set up an interpolation potential and
converge the relative binding free energy when the two ligands have very different chemical
structures. However, ligand similarity alone is not a sufficient condition for obtaining
reliable relative binding free energies. As in absolute binding free energy calculations one of
the main challenges is the extent of conformational sampling. It has been observed for
example[37, 21] that even slight ligand modifications can cause large changes in the main
ligand binding mode. In these cases the sampling of both binding modes is required to yield
reliable results, thereby reducing the computational advantage of relative binding free
energy calculations over absolute ones. Relative binding free energies calculations are also
considered less suitable than absolute ones to assess the reliability of algorithms and force
fields against experimental data.[80, 12]

3.6 Replica Exchange Conformational sampling
Conformational equilibria relevant for the binding process occur on time scales which are
unattainable with conventional MD even with the fastest supercomputers available. A
commonly employed strategy to enhance sampling involves the application of biasing
forces, and, as we discussed above, alchemical free energy methods employing hybrid
potentials and potential of mean force approaches employing umbrella potentials can be
considered as belonging to this general class of methods. It has been shown in many
contexts[81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 21, 94, 95, 96] that generalized
ensemble conformational sampling methods based on parallel replica exchange (RE)
algorithms[97] can speed up by orders of magnitude the convergence of biased simulations.
The key aspect of parallel RE algorithms as applied to alchemical calculations is that
simulations at different values of λ, which are executed in parallel, periodically exchange λ
values thereby allowing conformational transitions to occur at the value λ at which they are
more likely to do so and, by so doing, to achieve more efficient exploration of
conformational space. Some binding-induced conformational changes are more likely to
occur at large λ’s, when the interaction between the ligand and the receptor is stronger,
while others, such as reorientation of the ligand as a whole, are more likely to occur at small
λ’s when motion is less restricted. With RE both kinds of conformational changes occur
more easily in each individual replica causing a larger variety of conformations to appear at
each λ, as opposed to, for example, conventional MD at fixed λ = 1 which is likely to
explore only one or at most few conformations. Methods such as RETI,[81] FEP/REMD,
[92] and BEDAM[21] are examples of binding free energy methods that employ this λ-
hopping strategy.

3.7 Mining minima
Unlike the thermodynamic path methods discussed above, the mining minima (MM) binding
free energy method[98] is one of two examples of end point methods (the other being the
MM/PBSA method below) that will be discussed in this review. The MM free energy
estimator is unique in that it does not rely on MD/MC importance sampling of
conformations. Instead, the method estimates configurational integrals by unweighted
sampling of conformations around a set of selected low energy states of the molecular
system.[99] This feature constitute both the main advantage and main limitation of the
method. On one hand MM does not suffer from slow rates of conformational transitions
typical of importance sampling algorithms. On the other hand, this advantage is
counterbalanced by the challenge of performing a sufficiently complete enumeration of the
important stable minima of the system. Consequently the method has been applied with
implicit solvation and it has been most useful in the study of association equilibria, such as
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host guest systems,[98, 33, 100, 101] with manageable number of degrees of freedom.
Applications to protein-ligand binding equilibria have been also recently reported.[102]

MM seeks to compute the binding free energy in the implicit solvent representation by
explicitly computing each of the configurational integrals ZRL and ZR+L in Eq. (22) and
expressing the standard binding free energy in terms of the end point of the equilibrium as
the difference of the free energies of the binding partners:

(75)

where GRL is the free energy of the complex and the binding partners, where

(76)

and similarly for GR and GL. Given a set of minima j, located by conformational sampling,

[103] the configurational partition function, , of each state is approximated as the
sum of local configurational partition functions zj corresponding to each minimum defined
schematically as

(77)

where x represent the system coordinates and the integral is considered limited to the
macrostate in the vicinity of the minimum. Local integrals are then computed by normal
mode analysis assuming harmonic behavior augmented by numerical treatment of
anharmonic deviations.[104, 98] As mentioned above the validity of the MM approach has
been confirmed in several numerical applications.[98, 33, 100, 101, 102]

The MM method leads naturally to the study of the enthalpic and entropic components of the
binding affinity.[33, 30] As described in Section 2.6.1 the binding free energy in the implicit
solvent representation is decomposable into the change of average effective potential energy
ΔUeff and the change in configurational entropy ΔSconf [Eq. (45)]. These can be expressed
in terms of the average energies and entropies of the end point states computed as sums over
minima. For example,

(78)

where pj = zj/Z is the population of the macrostate corresponding to minimum j and  is
its average potential energy. Similarly, it can be shown from Eq. (44) that the
configurational entropy can be expressed as[30]

(79)

where Sj is the configurational entropy of macrostate j, which can be estimated from the
harmonic approximation discussed above. From Eq. (79) we see that contributions to the
configurational entropy of binding come from both narrowing of energy well (changes in Sj
upon binding) as well as redistribution of populations among the stable states [the second
term in r.h.s. of Eq. (79)], with both being important, and, often, determinant factors in
ligand binding.[33, 8]
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3.8 MM/PBSA and MM/GBSA approaches
The molecular mechanics-Poisson Boltzmann plus surface area (MM/PBSA) method,[105,
106, 107] and its generalized Born variant (MM/GBSA), are, like the MM method above, an
example of an end point approach to the calculation of binding free energies. Unlike the
MM method, however, it is based on MD to sample conformational space. MD, like any
other importance sampling-based method, is not suitable for computing directly
configurational integrals, as in the MM method. Instead MM-PBSA computes the binding
free energy from using the enthalpy/entropy decomposition approach [Eq. (45)] with
implicit solvation [the Poisson-Boltzmann (PB) model for MM/PBSA[108] and the
generalized Born (GB) model for MM/GBSA[43, 45]]. In principle a decomposition of this
kind also applies to explicit representations of the solvent [see for example Eqs (33) and
(36)], however given the challenge of converging entropy and enthalpy changes with
explicit solvation,[32] in practice the method is limited to implicit solvent representations.

In MM/PBSA the enthalpic term ΔUeff is computed as the difference between the average
total potential energies in the bound and unbound states, collected from MD trajectories of
the the free ligand, free receptor, and their complex, which can be obtained from either
explicit or implicit solvent MD simulations. The same approaches discussed above in the
context of the MM method are applicable to the calculation of configurational binding
entropies. So, while in principle MM/PBSA is a rigorous formulation of the free energy of
binding limited in principle only by the accuracy of the potential energy model, in practice
MM/PBSA applications have implemented the theory with varying degree of rigor.

Partly due to the limited extent of conformational sampling afforded by MD, the change in
configurational entropy is often estimated from one of few conformational macrostates[105,
109] possibly neglecting contributions to the entropy change resulting from changes in
populations of stable states [Eq. (79)]. The quasiharmonic approximation[110] has also been
employed to estimate the configurational entropy change, however its accuracy for systems
with multiple occupied energy wells has been questioned.[111, 19] In some MM/PBSA
applications the entropic terms have been neglected.[112]

Difficulties in converging potential energy differences due to noise originating from the bulk
of receptor-receptor interactions have led to single-trajectory approaches[19, 112] in which
the conformational ensembles for the free ligand and receptor are taken from the ensemble
of the bound complex. This effectively replaces ΔUeff in Eq. (40) with the average binding
energy  neglecting therefore reorganization energy contributions [Eq. (48)]. When, in
addition, entropic effects are neglected, the binding free energy is equated to the average
binding energy.[113] At this level of theory all entropic and reorganization effects are
neglected potentially leading to gross overestimation of binding affinities and lack of ability
to discriminate binders from non-binders.[21]

3.9 Studies of Ligand and Receptor reorganization
The binding free energy [Eq. (46)] is often the result of a large cancellation between the
favorable work, , of forming receptor-ligand interactions and the unfavorable work
ΔGreorg, to localize and reorganize the conformational ensembles of the ligand and receptor
to their bound conformational states. While drug design is often concerned with
strengthening receptor-ligand interactions, the reorganization component can play a
fundamental role in regulating binding specificity in cases where variations of binding
energies  are expected to be small. In such cases optimization of binding affinity can
proceed by strategies aimed at preorganizing the ligand for binding, that is by minimizing
ΔGreorg.
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For example, reorganization has been successfully used as the design principle for the
optimization of the presentation of HIV epitopes for vaccine development.[114] This
particular application was concerned with identifying modes of display of an HIV epitope on
the surface of a rhinovirus vaccine vehicle in such a way that it would bind strongly to a
known neutralizing antibody. Because the displayed epitope needs to necessarily reproduce
the interaction of the antibody with HIV target, the binding interface between the epitope
and the antibody is biologically restrained. In thermodynamic terms the binding energy can
be regarded as fixed and therefore preorganization of the epitope to the bound conformation
is the only viable route for optimizing the binding affinity. Based on these reorganization
concepts, molecular simulations were conducted which identified those presentation
constructs with the highest fraction of epitope conformations compatible with antibody
complexation.[115] Subsequent biochemical work confirmed the computational prediction
and, remarkably, yielded some of the most antigenic vaccine constructs of this kind to date.
[114]

In another recent example[116] optimization of a class of inhibitors was achieved by
chemical rigidification of the ligands into their bound conformations. In this case structural
analysis indicated that enhanced binding was indeed solely due to smaller reorganization
penalties rather than stronger receptor-ligand interactions. Interestingly, in this work it was
regarded as paradoxical the fact that enhanced binding was not due to a reduced entropic
penalty as expected, but rather to a more favorable enthalpic gain. However, this should not
be regarded as surprising considering that [see Eq. (47)] reorganization has both entropic as
well enthalpic signatures. Evidently, before rigidification the ligands had to surmount an
energetic penalty to form their bound conformations from their predominant solution
conformations. The rigidified ligands instead did not suffer this penalty to the same extent,
resulting in a more favorable binding enthalpy.

A number of recent studies have focused on ligand reorganization, which is simpler to
model than receptor reorganization. Both Yang et al.[117] and, on a more extensive set of
systems, Gao et al.,[118] observed better correlation with experimental affinities when
singletrajectory MM/GBSA scores were combined with ligand reorganization free energy
estimates. As discussed above, the single-trajectory MM/GBSA model approximates the
binding free energy with the ligand-receptor average binding energy, , which, although
easier to converge, omits sometimes critical reorganization free energy components [Eq.
(46)]. By introducing the ligand reorganization free energy, some of these effects are
recaptured without substantially compromising the quality of the convergence, since most of
the fluctuations in the MM/GBSA estimators come from the much more numerous degrees
of freedom of the receptor. The ligand reorganization is defined as the sum of the ligand
reorganization defined as [see Eq. (48)]

(80)

and the change of ligand configuration entropy −TΔSconf(L). The latter is evaluated using
the harmonic and quasi-harmonic approaches discussed above. Gao et al.,[118] adopted a
particularly rigorous entropic model incorporating both multiple minima [Eq. (79)] and
anharmonic corrections.[119, 98] It has been recently confirmed[120] that MD sampling
aided by temperature replica exchange can also be used to accurately compute ligand
reorganization free energies. Interestingly it is observed[117] that the ligand configurational
entropy does not always oppose binding. In a number of cases there is a gain of entropy
[positive ΔSconf(L)] counterbalanced by an unfavorable reorganization energy. The same
conclusion is suggested by the experimental work of DeLorbe et al.[116] discussed above.
This phenomenon might be quite general as it is known[121] that ligands tend to form more
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extended, and possibly more flexible, conformations when bound to the receptor[121] than
in solution, where hydrophobicity causes them to adopt more compact conformations.

Binding modeling studies explicitly incorporating receptor reorganization effects are also
beginning to appear. Major challenges exist due to the size of conformational space and the
rarity of conformational transitions. Some recent studies have focused on the role of protein
sidechain motion. Mobley et al.[34] have introduced a confine and release method to model
the free energy associated with the conformation variability of a selected set of sidechains in
the binding site region. The technique consists of evaluating the binding free energy with the
receptor sidechains placed in various rotamer states. These are then combined, based on Eq.
(51), with the free energy differences between rotamer states with and without the ligand
present to yield the total binding free energy. In a number of cases it was shown that
including these terms improved the accuracy of binding affinity predictions.[34, 63, 37]
Similarly, a two-dimensional Hamiltonian replica exchange free energy perturbation
approach has been proposed to soften sidechain torsional barriers.[93]

4 Conclusions
The accurate estimation of protein-ligand affinities remains one of the most difficult
problem in computational biophysics. Atomistic free energy models of binding are
progressively improving and will continue to represent important tools to further our
understanding of molecular recognition phenomena and contribute to pharmaceutical
research. Better potential models, more efficient computational algorithms, and faster
computers are driving this progress forward. As this is happening it is important that the
relationships between theory and calculations remain clear and well understood. We have
reviewed the statistical mechanics theory of binding, and we have shown how current
computational methods and applications relate to the fundamental theory. These models
have different features and limitations, and their ranges of applicability vary
correspondingly. Yet their origins can all be traced back to a single fundamental theory. It is
our hope that finding these commonalities will be useful to novices and experts alike to help
them navigate the expanding universe of binding free energy methodologies, and find novel
ways to use them to study complex molecular recognition problems.

Acknowledgments
This work has been supported in part by a research grant from the National Institute of Health (GM30580).

References
[1]. Jorgensen, William L. The many roles of computation in drug discovery. Science. Mar; 2004

303(5665):1813–1818. [PubMed: 15031495]

[2]. Guvench, Olgun; MacKerell, Alexander D. Computational evaluation of protein-small molecule
binding. Curr. Opin. Struct. Biol. Feb; 2009 19(1):56–61. [PubMed: 19162472]

[3]. Mobley, DL.; Shirts, MR.; Brown, SP. Structure Based Drug Discovery, chapter Free energy
calculations in structure-based drug design. Cambridge University Press; 2010.

[4]. Brooijmans, Natasja; Kuntz, Irwin D. Molecular recognition and docking algorith. Annu. Rev.
Biophys. Biomol. Struct. 2003; 32:335–373. [PubMed: 12574069]

[5]. McInnes, Campbell. Virtual screening strategies in drug discovery. Curr. Opin. Chem. Biol. Oct;
2007 11(5):494–502. [PubMed: 17936059]

[6]. Shoichet, Brian K. Virtual screening of chemical libraries. Nature. Dec; 2004 432(7019):862–865.
[PubMed: 15602552]

[7]. Zhou, Zhiyong; Felts, Anthony K.; Friesner, Richard A.; Levy, onald M. Comparative
performance of several flexible docking programs and scoring functions: enrichment studies for a

Gallicchio and Levy Page 29

Adv Protein Chem Struct Biol. Author manuscript; available in PMC 2012 September 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



diverse set of pharmaceutically relevant targets. J. Chem. Inf. Model. 2007; 47(4):1599–1608.
[PubMed: 17585856]

[8]. Gilson, Michael K.; Zhou, Huan-Xiang. Calculation of protein-ligand binding affinities. Annu.
Rev. Biophys. Biomol. Struct. 2007; 36:21–42. [PubMed: 17201676]

[9]. Shirts MR, Mobley DL, Chodera JD. Alchemical free energy calculations: ready for prime time?
Ann. Rep. Comput. Chem. 2007; 3:41–59.

[10]. Mobley, David L.; Dill, Ken A. Binding of small-molecule ligands to proteins: “what you see” is
not always “what you get”. Structure. Apr; 2009 17(4):489–498. [PubMed: 19368882]

[11]. Deng, Yuqing; Roux, Benoît. Computations of standard binding free energies with molecular
dynamics simulations. J. Phys. Chem. B. Feb; 2009 113(8):2234–2246. [PubMed: 19146384]

[12]. Chodera, John D.; Mobley, David L.; Shirts, Michael R.; Dixon, Richard W.; Branson, Kim;
Pande, Vijay S. Alchemical free energy methods for drug discovery: Progress and challenges.
Curr. Op. Struct. Biol. 2011 In press.

[13]. Chipot, Christophe; Pohorille, Andrew, editors. Theory and Applications in Chemistry and
Biology. Springer Series in Chemical Physics; Springer, Berlin Heidelberg, Berlin Heidelberg:
2007. Free Energy Calculations.

[14]. Gilson MK, Given JA, Bush BL, McCammon JA. The statistical-thermodynamic basis for
computation of binding affinities: A critical review. Biophys. J. 1997; 72:1047–1069. [PubMed:
9138555]

[15]. Boresch S, Tettinger F, Leitgeb M, Karplus M. Absolute binding free energies: A quantitative
approach for their calculation. J. Phys. Chem. B. 2003; 107(35):9535–9551.

[16]. Jorgensen, William L. Interactions between amides in solution and the thermodynamics of weak
binding. Journal of the American Chemical Society. May; 1989 111(10):3770–3771.

[17]. Luo, Hengbin; Sharp, Kim. On the calculation of absolute macromolecular binding free energies.
Proceedings of the National Academy of Sciences of the United States of America. 2002; 99(16):
10399–10404. [PubMed: 12149474]

[18]. Woo, Hyung-June; Roux, Benoît. Calculation of absolute protein-ligand binding free energy from
computer simulations. Proc. Natl. Acad. Sci. USA. May; 2005 102(19):6825–6830. [PubMed:
15867154]

[19]. Lee, Michael S.; Olson, Mark A. Calculation of absolute protein-ligand binding affinity using
path and endpoint approaches. Biophys. J. Feb; 2006 90(3):864–877. [PubMed: 16284269]

[20]. Roux B, Simonson T. Implicit solvent models. Biophys. Chem. 1999; 78:1–20. [PubMed:
17030302]

[21]. Gallicchio, Emilio; Lapelosa, Mauro; Levy, Ronald M. Binding energy distribution analysis
method (BEDAM) for estimation of protein-ligand binding affinities. J. Chem. Theory Comput.
Sep; 2010 6(9):2961–2977. [PubMed: 21116484]

[22]. Widom B. Potential-distribution theory and the statistical mechanics of fluids. J. Phys. Chem.
Mar; 1982 86(6):869–872.

[23]. Beck, Tom L.; Paulaitis, Michael E.; Pratt, Lawrence R. The Potential Distribution Theorem and
Models of Molecular Solutions. Cambridge University Press; New York: 2006.

[24]. Pohorille A, Pratt LR. Cavities in molecular liquids and the theory of hydrophobic solubilities. J.
Am. Chem. Soc. 1990; 112(13):5066–5074. [PubMed: 11540917]

[25]. Widom B. Some topics in the theory of fluids. J. Chem. Phys. Dec; 1963 39(11):2808–2812.

[26]. Lu, Nandou; Singh, Jayant K.; Kofke, David A. Appropriate methods to combine forward and
reverse free-energy perturbation averages. J. Chem. Phys. Feb; 2003 118(7):2977–2984.

[27]. Mihailescu, Mihail; Gilson, Michael K. On the theory of noncovalent binding. Biophys. J. Jul;
2004 87(1):23–36. [PubMed: 15240441]

[28]. Groot, Robert D. The association constant of a flexible molecule and a single atom: Theory and
simulation. J. Chem. Phys. Sep; 1992 97(5):3537–3549.

[29]. Barbieri, Christopher M.; Kaul, Malvika; Pilch, Daniel S. Use of 2-aminopurine as a fluorescent
tool for characterizing antibiotic recognition of the bacterial rrna a-site. Tetrahedron. Apr; 2007
63(17):3567–3574. [PubMed: 18431442]

Gallicchio and Levy Page 30

Adv Protein Chem Struct Biol. Author manuscript; available in PMC 2012 September 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



[30]. Zhou, Huan-Xiang; Gilson, Michael K. Theory of free energy and entropy in noncovalent
binding. Chem. Rev. Sep; 2009 109(9):4092–4107. [PubMed: 19588959]

[31]. Serdyuk, Igor N.; Zaccai, Nathan R.; Zaccai, Giuseppe. Methods in Molecular Biophysics:
Structure, Dynamics, Function. Cambridge University Press; Cambridge ; New York: 2007.

[32]. Levy RM, Gallicchio E. Computer simulations with explicit solvent: Recent progress in the
thermodynamic decomposition of free energies and in modeling electrostatic effects. Annu. Rev.
Phys. Chem. 1998; 49:531–67. [PubMed: 9933909]

[33]. Chang, Chia-en A.; Chen, Wei; Gilson, Michael K. Ligand configurational entropy and protein
binding. Proc. Natl. Acad. Sci. USA. Jan; 2007 104(5):1534–1539. [PubMed: 17242351]

[34]. Mobley, David L.; Chodera, John D.; Dill, Ken A. The confine-and-release method: Obtaining
correct binding free energies in the presence of protein conformational change. J. Chem. Theory
Comput. 2007; 3(4):1231–1235. [PubMed: 18843379]

[35]. Jayachandran, Guha; Shirts, Michael R.; Park, Sanghyun; Pande, Vijay S. Parallelized-over-parts
computation of absolute binding free energy with docking and molecular dynamics. J. Chem.
Phys. Aug.2006 125(8):084901. [PubMed: 16965051]

[36]. Mobley, David L.; Chodera, John D.; Dill, Ken A. On the use of orientational restraints and
symmetry corrections in alchemical free energy calculations. J. Chem. Phys. Aug.2006 125(8):
084902. [PubMed: 16965052]

[37]. Boyce, Sarah E.; Mobley, David L.; Rocklin, Gabriel J.; Graves, Alan P.; Dill, Ken A.; Shoichet,
Brian K. Predicting ligand binding affinity with alchemical free energy methods in a polar model
binding site. J. Mol. Biol. Dec; 2009 394(4):747–763. [PubMed: 19782087]

[38]. Cornell, Wendy D.; Cieplak, Piotr; Bayly, Christopher I.; Gould, Ian R.; Merz, Kenneth M.;
Ferguson, David M.; Spellmeyer, David C.; Fox, Thomas; Caldwell, James W.; Kollman, Peter
A. A second generation force field for the simulation of proteins, nucleic acids, and organic
molecules. Journal of the American Chemical Society. May; 1995 117(19):5179–5197.

[39]. Jorgensen WL, Maxwell DS, Tirado-Rives J. Developement and testing of the opls all-atom force
field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 1996;
118:11225–11236.

[40]. MacKerell AD, Bashford D, Bellott, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J,
Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo
T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J,
Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M. All-atom empirical potential for
molecular modeling and dynamics studies of proteins. The Journal of Physical Chemistry B. Apr;
1998 102(18):3586–3616.

[41]. Schuler, Lukas D.; Daura, Xavier; van Gunsteren, Wilfred F. An improved gromos96 force field
for aliphatic hydrocarbons in the condensed phase. J. Comput. Chem. 2001; 22(11):1205–1218.

[42]. Lazaridis T, Karplus M. Ėective energy function for protein in solution. Proteins. 1999; 35:133–
152. [PubMed: 10223287]

[43]. Bashford D, Case DA. Generalized born models of macromolecular solvation effects. Annu. Rev.
Phys. Chem. 2000; 51:129–152. [PubMed: 11031278]

[44]. Wagoner J, Baker NA. Assessing implicit models for nonpolar mean solvation forces: The
importance of dispersion and volume terms. Proc. Natl. Acad. Sci. 2006; 103:8331–8336.
[PubMed: 16709675]

[45]. Chen J, Brooks CL III, Khandogin J. Recent advances in implicit solvent based methods for
biomolecular simulations. Curr. Opin. Struct. Biol. 2008; 18:140–148. [PubMed: 18304802]

[46]. Gallicchio, Emilio; Paris, Kristina; Levy, Ronald M. The agbnp2 implicit solvation model. J.
Chem. Theory Comput. Sep; 2009 5(9):2544–2564. [PubMed: 20419084]

[47]. Swanson, Jessica M J.; Henchman, Richard H.; Andrew McCammon, J. Revisiting free energy
calculations: a theoretical connection to mm/pbsa and direct calculation of the association free
energy. Biophys J. Jan; 2004 86(1 Pt 1):67–74. [PubMed: 14695250]

[48]. Zwanzig, Robert W. High-temperature equation of state by a perturbation method. i. nonpolar
gases. J. Chem. Phys. Aug; 1954 22(8):1420–1426.

[49]. Pohorille, Andrew; Jarzynski, Christopher; Chipot, Christophe. Good practices in free-energy
calculations. J Phys Chem B. Aug; 2010 114(32):10235–10253. [PubMed: 20701361]

Gallicchio and Levy Page 31

Adv Protein Chem Struct Biol. Author manuscript; available in PMC 2012 September 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



[50]. Lu, Nandou; Kofke, David A. Accuracy of free-energy perturbation calculations in molecular
simulation. i. modeling. J. Chem. Phys. May; 2001 114(17):7303–7311.

[51]. Michel, Julien; Essex, Jonathan W. Prediction of protein-ligand binding affinity by free energy
simulations: assumptions, pitfalls and expectations. J Comput Aided Mol Des. Aug; 2010 24(8):
639–658. [PubMed: 20509041]

[52]. Bennett, Charles H. Efficient estimation of free energy differences from monte carlo data. Journal
of Computational Physics. Oct; 1976 22(2):245–268.

[53]. Ferrenberg AM, Swendsen RH. Optimized monte carlo data analysis. Phys. Rev. Lett. 1989;
63:1195–1198. [PubMed: 10040500]

[54]. Kumar S, Bouzida D, Swendsen RH, Kollman PA, Rosenberg JM. The weighted histogram
analysis method for free-energy calculations on biomolecules. i. the method. J. Comp. Chem.
1992; 13:1011–1021.

[55]. Gallicchio E, Andrec M, Felts AK, Levy RM. Temperature weighted histogram analysis method,
replica exchange, and transition paths. J. Phys. Chem. B. 2005; 109:6722–6731. [PubMed:
16851756]

[56]. Tan, Zhiqiang. On a likelihood approach for monte carlo integration. Journal of the American
Statistical Association. 2004; 99(468):1027–1036.

[57]. Shirts, Michael R.; Chodera, John D. Statistically optimal analysis of samples from multiple
equilibrium states. J. Chem. Phys. Sep.2008 129(12):124105. [PubMed: 19045004]

[58]. Eriksson AE, Baase WA, Wozniak JA, Matthews BW. A cavity-containing mutant of t4
lysozyme is stabilized by buried benzene. Nature. Jan; 1992 355(6358):371–373. [PubMed:
1731252]

[59]. Graves, Alan P.; Brenk, Ruth; Shoichet, Brian K. Decoys for docking. J. Med. Chem. Jun; 2005
48(11):3714–3728. [PubMed: 15916423]

[60]. Morton A, Baase WA, Matthews BW. Energetic origins of specificity of ligand binding in an
interior nonpolar cavity of t4 lysozyme. Biochemistry. Jul; 1995 34(27):8564–8575. [PubMed:
7612598]

[61]. Wei, Binqing Q.; Baase, Walter A.; Weaver, Larry H.; Matthews, Brian W.; Shoichet, Brian K. A
model binding site for testing scoring functions in molecular docking. J. Mol. Biol. Sep; 2002
322(2):339–355. [PubMed: 12217695]

[62]. Deng, Yuqing; Roux, Benoît. Calculation of standard binding free energies: Aromatic molecules
in the t4 lysozyme l99a mutant. J. Chem. Theory Comput. Sep; 2006 2(5):1255–1273.

[63]. Mobley, David L.; Graves, Alan P.; Chodera, John D.; McReynolds, Andrea C.; Shoichet, Brian
K.; Dill, Ken A. Predicting absolute ligand binding free energies to a simple model site. J. Mol.
Biol. Aug; 2007 371(4):1118–1134. [PubMed: 17599350]

[64]. Wang, Jiyao; Deng, Yuqing; Roux, Benoît. Absolute binding free energy calculations using
molecular dynamics simulations with restraining potentials. Biophys. J. Oct; 2006 91(8):2798–
2814. [PubMed: 16844742]

[65]. Holt, Dennis A.; Luengo, Juan I.; Yamashita, Dennis S.; Ja Oh, Hye; Konialian, Arda L.; Kwo
Yen, Hwa; Rozamus, Leonard W.; Brandt, Martin; Bossard, Mary J. Design, synthesis, and
kinetic evaluation of high-affinity fkbp ligands and the x-ray crystal structures of their complexes
with fkbp12. Journal of the American Chemical Society. Nov; 1993 115(22):9925–9938.

[66]. Jiao, Dian; Golubkov, Pavel A.; Darden, Thomas A.; Ren, Pengyu. Calculation of protein-ligand
binding free energy by using a polarizable potential. Proc Natl Acad Sci U S A. Apr; 2008
105(17):6290–6295. [PubMed: 18427113]

[67]. Jiao, Dian; Zhang, Jiajing; Duke, Robert E.; Li, Guohui; Schnieders, Michael J.; Ren, Pengyu.
Trypsin-ligand binding free energies from explicit and implicit solvent simulations with
polarizable potential. J. Comput. Chem. 2009; 30(11):1701–1711. [PubMed: 19399779]

[68]. Ge, Xiaoxia; Roux, Benoit. Absolute binding free energy calculations of sparsomycin analogs to
the bacterial ribosome. J Phys Chem B. Jul; 2010 114(29):9525–9539. [PubMed: 20608691]

[69]. Jorgensen WL, Buckner JK, Boudon S, Tirado-Rives J. Efficient computation of absolute free
energies of binding by computer simulations. application to the methane dimer in water. J. Chem.
Phys. 1988; 89(6):3742.

Gallicchio and Levy Page 32

Adv Protein Chem Struct Biol. Author manuscript; available in PMC 2012 September 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



[70]. Fujitani, Hideaki; Tanida, Yoshiaki; Ito, Masakatsu; Jayachandran, Guha; Snow, Christopher D.;
Shirts, Michael R.; Sorin, Eric J.; Pande, Vijay S. Direct calculation of the binding free energies
of fkbp ligands. J Chem Phys. Aug.2005 123(8):084108. [PubMed: 16164283]

[71]. Miyamoto S, Kollman PA. Absolute and relative binding free energy calculations of the
interaction of biotin and its analogs with streptavidin using molecular dynamics/free energy
perturbation approaches. Proteins. Jul; 1993 16(3):226–245. [PubMed: 8346190]

[72]. Steinbrecher, Thomas; Mobley, David L.; Case, David A. Nonlinear scaling schemes for lennard-
jones interactions in free energy calculations. J Chem Phys. Dec.2007 127(21):214108.
[PubMed: 18067350]

[73]. Payne VA, Matubayasi N, Reed Murphy L, Levy RM. Monte carlo study of the effect of pressure
on hydrophobic association. J. Phys. Chem. B. 1997; 101:2054–2060.

[74]. Reddy, MR.; Erion, MD., editors. Free Energy Calculations in Rational Drug Design. Springer-
Verlag; 2001.

[75]. Tembe BL, McCammon JA. Ligand-receptor interactions. Computers & Chemistry. 1984; 8(4):
281.

[76]. Oostenbrink, Chris; van Gunsteren, Wilfred F. Free energies of ligand binding for structurally
diverse compounds. Proc Natl Acad Sci U S A. May; 2005 102(19):6750–6754. [PubMed:
15767587]

[77]. Jorgensen, William L.; Thomas, Laura L. Perspective on free-energy perturbation calculations for
chemical equilibria. J. Chem. Theory Comput. Jun; 2008 4(6):869–876. [PubMed: 19936324]

[78]. Jorgensen, William L. Efficient drug lead discovery and optimization. Acc Chem Res. Jun; 2009
42(6):724–733. [PubMed: 19317443]

[79]. Knight, Jennifer L.; Brooks, Charles L. Lambda-dynamics free energy simulation methods. J
Comput Chem. Aug; 2009 30(11):1692–1700. [PubMed: 19421993]

[80]. Shirts, Michael R.; Mobley, David L.; Brown, Scott P. Free-energy calculations in structure-
based drug design. Cambridge University Press; 2010. Drug Design - Structure- and Ligand-
Based Approaches; p. 61-86.

[81]. Woods, Christopher J.; Essex, Jonathan W.; King, Michael A. The development of replica-
exchange-based free-energy methods. J. Phys. Chem. B. Dec; 2003 107(49):13703–13710.

[82]. Woods, Christopher J.; Essex, Jonathan W.; King, Michael A. Enhanced configurational
sampling in binding free-energy calculations. J. Phys. Chem. B. Dec; 2003 107(49):13711–
13718.

[83]. Murata, Katsumi; Sugita, Yuji; Okamoto, Yuko. Free energy calculations for dna base stacking
by replica-exchange umbrella sampling. Chemical Physics Letters. Feb; 2004 385(1-2):1–7.

[84]. Liu P, Kim B, Friesner RA, Berne BJ. Replica exchange with solute tempering: A method for
sampling biological systems in explicit solvent. Proc. Natl. Acad. Sci. USA. 2005; 102:13749–
13754. [PubMed: 16172406]

[85]. Bussi, Giovanni; Luigi Gervasio, Francesco; Laio, Alessandro; Parrinello, Michele. Free-energy
landscape for β hairpin folding from combined parallel tempering and metadynamics. Journal of
the American Chemical Society. Oct; 2006 128(41):13435–13441. [PubMed: 17031956]

[86]. Liu, Pu; Huang, Xuhui; Zhou, Ruhong; Berne, BJ. Hydrophobic aided replica exchange: an
efficient algorithm for protein folding in explicit solvent. J Phys Chem B. Sep; 2006 110(38):
19018–19022. [PubMed: 16986898]

[87]. Piana, Stefano; Laio, Alessandro. A bias-exchange approach to protein folding. The Journal of
Physical Chemistry B. May; 2007 111(17):4553–4559. [PubMed: 17419610]

[88]. Roitberg, Adrian E.; Okur, Asim; Simmerling, Carlos. Coupling of replica exchange simulations
to a non-boltzmann structure reservoir. J Phys Chem B. Mar; 2007 111(10):2415–2418.
[PubMed: 17300191]

[89]. Hritz, Jozef; Oostenbrink, Chris. Hamiltonian replica exchange molecular dynamics using soft-
core interactions. J. Chem. Phys. Apr.2008 128(14):144121. [PubMed: 18412437]

[90]. Neale, Chris; Rodinger, Tomas; Pomès, Régis. Equilibrium exchange enhances the convergence
rate of umbrella sampling. Chemical Physics Letters. Jul; 2008 460(1-3):375–381.

Gallicchio and Levy Page 33

Adv Protein Chem Struct Biol. Author manuscript; available in PMC 2012 September 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



[91]. Yeh, In-Chul; Olson, Mark A.; Lee, Michael S.; Wallqvist, Anders. Free-energy profiles of
membrane insertion of the m2 transmembrane peptide from influenza a virus. Biophysical
Journal. Dec; 2008 95(11):5021–5029. [PubMed: 18676651]

[92]. Jiang, Wei; Hodoscek, Milan; Roux, Benoît. Computation of absolute hydration and binding free
energy with free energy perturbation distributed replica-exchange molecular dynamics. J. Chem.
Theory Comput. Oct; 2009 5(10):2583–2588. [PubMed: 21857812]

[93]. Jiang, Wei; Roux, Benoît. Free energy perturbation hamiltonian replica-exchange molecular
dynamics (FEP/H-REMD) for absolute ligand binding free energy calculations. J. Chem. Theory
Comput. Jul.2010 6:2559–2565. [PubMed: 21857813]

[94]. Mitsutake, Ayori; Mori, Yoshiharu; Okamoto, Yuko. Multi-dimensional multicanonical
algorithm, simulated tempering, replica-exchange method, and all that. Physics Procedia. 2010;
4:89–105.

[95]. Khavrutskii, Ilja V.; Wallqvist, Anders. Computing relative free energies of solvation using
single reference thermodynamic integration augmented with hamiltonian replica exchange.
Journal of Chemical Theory and Computation. Nov; 2010 6(11):3427–3441. [PubMed:
21151738]

[96]. Meng, Yilin; Roitberg, Adrian E. Constant ph replica exchange molecular dynamics in
biomolecules using a discrete protonation model. J Chem Theory Comput. Apr; 2010 6(4):1401–
1412. [PubMed: 20514364]

[97]. Sugita Y, Okamoto Y. Replica-exchange molecular dynamics method for protein folding. Chem.
Phys. Lett. 1999; 314:141–151.

[98]. Chang, Chia-En; Gilson, Michael K. Free energy, entropy, and induced fit in host-guest
recognition: calculations with the second-generation mining minima algorithm. J. Am. Chem.
Soc. Oct; 2004 126(40):13156–13164. [PubMed: 15469315]

[99]. Head, Martha S.; Given, James A.; Gilson, Michael K. Mining minima: Direct computation of
conformational free energy. The Journal of Physical Chemistry A. Feb; 1997 101(8):1609–1618.

[100]. Rekharsky, Mikhail V.; Mori, Tadashi; Yang, Cheng; Ho Ko, Young; Selvapalam, N.; Kim,
Hyunuk; Sobransingh, David; Kaifer, Angel E.; Liu, Simin; Isaacs, Lyle; Chen, Wei;
Moghaddam, Sarvin; Gilson, Michael K.; Kim, Kimoon; Inoue, Yoshihisa. A synthetic host-
guest system achieves avidin-biotin affinity by overcoming enthalpy-entropy compensation. Proc
Natl Acad Sci U S A. Dec; 2007 104(52):20737–20742. [PubMed: 18093926]

[101]. Moghaddam, Sarvin; Inoue, Yoshihisa; Gilson, Michael K. Host-guest complexes with protein-
ligand-like affinities: computational analysis and design. J Am Chem Soc. Mar; 2009 131(11):
4012–4021. [PubMed: 19133781]

[102]. Chen, I-Jen; Foloppe, Nicolas. Drug-like bioactive structures and conformational coverage with
the ligprep/confgen suite: comparison to programs moe and catalyst. J Chem Inf Model. May;
2010 50(5):822–839. [PubMed: 20423098]

[103]. Chang, Chia-En; Gilson, Michael K. Tork: Conformational analysis method for molecules and
complexes. J Comput Chem. Dec; 2003 24(16):1987–1998. [PubMed: 14531053]

[104]. Chang, Chia-En; Potter, Michael J.; Gilson, Michael K. Calculation of molecular configuration
integrals. The Journal of Physical Chemistry B. Jan; 2003 107(4):1048–1055.

[105]. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W,
Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE. Calculating structures and free
energies of complex molecules: combining molecular mechanics and continuum models. Acc.
Chem. Res. Dec; 2000 33(12):889–897. [PubMed: 11123888]

[106]. Gouda, Hiroaki; Kuntz, Irwin D.; Case, David A.; Kollman, Peter A. Free energy calculations
for theophylline binding to an rna aptamer: Comparison of mm-pbsa and thermodynamic
integration methods. Biopolymers. Jan; 2003 68(1):16–34. [PubMed: 12579577]

[107]. Chong, Lillian T.; Pitera, Jed W.; Swope, William C.; Pande, Vijay S. Comparison of
computational approaches for predicting the effects of missense mutations on p53 function. J.
Mol. Graph. Model. 2009; 27(8):978–982. [PubMed: 19168381]

[108]. Baker NA. Improving implicit solvent simulations: a poisson-centric view. Curr. Opin. Struct.
Biol. 2005; 15:137–143. [PubMed: 15837170]

Gallicchio and Levy Page 34

Adv Protein Chem Struct Biol. Author manuscript; available in PMC 2012 September 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



[109]. Foloppe N, Hubbard R. Towards predictive ligand design with free-energy based computational
methods? Curr Med Chem. 2006; 13(29):3583–3608. [PubMed: 17168725]

[110]. Levy, Ronald M.; Karplus, Martin; Kushick, Joseph; Perahia, David. Evaluation of the
configurational entropy for proteins: Application to molecular dynamics simulations of an α-
helix. Macromolecules. 1984; 17:1370–1374.

[111]. Chang, Chia-En; Chen, Wei; Gilson, Michael K. Evaluating the accuracy of the quasiharmonic
approximation. Journal of Chemical Theory and Computation. Sep; 2005 1(5):1017–1028.

[112]. Brown, Scott P.; Muchmore, Steven W. Rapid estimation of relative protein-ligand binding
affinities using a high-throughput version of mm-pbsa. J. Chem. Inf. Model. 2007; 47(4):1493–
1503. [PubMed: 17518461]

[113]. Brown, Scott P.; Muchmore, Steven W. High-throughput calculation of protein-ligand binding
affinities: modification and adaptation of the mm-pbsa protocol to enterprise grid computing. J
Chem Inf Model. 2006; 46(3):999–1005. [PubMed: 16711718]

[114]. Lapelosa, Mauro; Ferstandig Arnold, Gail; Gallicchio, Emilio; Arnold, Eddy; Levy, Ronald M.
Antigenic characteristics of rhinovirus chimeras designed in silico for enhanced presentation of
HIV-1 gp41 epitopes. J Mol Biol. Apr; 2010 397(3):752–766. [PubMed: 20138057]

[115]. Lapelosa, Mauro; Gallicchio, Emilio; Ferstandig Arnold, Gail; Arnold, Eddy; Levy, Ronald M.
In silico vaccine design based on molecular simulations of rhinovirus chimeras presenting hiv-1
gp41 epitopes. J Mol Biol. Jan; 2009 385(2):675–691. [PubMed: 19026659]

[116]. DeLorbe, John E.; Clements, John H.; Teresk, Martin G.; Benfield, Aaron P.; Plake, Hilary R.;
Millspaugh, Laura E.; Martin, Stephen F. Thermodynamic and structural effects of
conformational constraints in protein-ligand interactions. entropic paradoxy associated with
ligand preorganization. J. Am. Chem. Soc. Nov; 2009 131(46):16758–16770. [PubMed:
19886660]

[117]. Yang, Chao-Yie; Sun, Haiying; Chen, Jianyong; Nikolovska-Coleska, Zaneta; Wang,
Shaomeng. Importance of ligand reorganization free energy in protein-ligand binding-affinity
prediction. J. Am. Chem. Soc. Sep; 2009 131(38):13709–13721. [PubMed: 19736924]

[118]. Gao, Cen; Park, Min-Sun; Stern, Harry A. Accounting for ligand conformational restriction in
calculations of protein-ligand binding affinities. Biophys J. Mar; 2010 98(5):901–910. [PubMed:
20197044]

[119]. Kolossvary, Istvan. Evaluation of the molecular configuration integral in all degrees of freedom
for the direct calculation of conformational free energies: Prediction of the anomeric free energy
of monosaccharides. The Journal of Physical Chemistry A. Dec; 1997 101(51):9900–9905.

[120]. Okumura, Hisashi; Gallicchio, Emilio; Levy, Ronald M. Conformational populations of ligand-
sized molecules by replica exchange molecular dynamics and temperature reweighting. J.
Comput. Chem. 2010; 31:1357–1367. [PubMed: 19882731]

[121]. Perola, Emanuele; Charifson, Paul S. Conformational analysis of drug-like molecules bound to
proteins: an extensive study of ligand reorganization upon binding. J Med Chem. May; 2004
47(10):2499–2510. [PubMed: 15115393]

Gallicchio and Levy Page 35

Adv Protein Chem Struct Biol. Author manuscript; available in PMC 2012 September 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Thermodynamic cycle illustrating the decomposition of the standard binding free energy
[Eq. (13)]. Rsolv is the solvated receptor, Lsolv,C○ (upper left) is the ligand in solution at
concentration C○, Lsolv,site (lower left) is the ligand solvated sequestered in the binding site,
Lgas,site (lower right) is the ligand in the gas phase in a volume equal to the binding site
volume, and RLsolv is the solvated complex.
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Figure 2.
Example of a calculated binding energy distribution p0(u) from reference [21]. The curves to
the left correspond to the exp(−βu) and k(u) ∝ exp(−βu)p0(u) functions (rescaled to fit
within the plotting area). The integral of the latter is proportional to the binding constant
[Eq. (26)].
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Figure 3.
The complex between phenol and the L99A/M102Q T4 lysozyme (PDB id 1LI2, left). The
ligand is highlighted in green. The surface surrounding the ligand represents the binding site
which is buried and completely surrounded by protein atoms. The computed binding
constant for this complex as a function of the size of the binding site volume (left), using Eq.
(22) with (full line) and without (dashed line) the inclusion of the Vsite/V○ term (in this
calculation Ωsite/8π2 = 1). The binding constant (full line) is fairly constant around Kb = 6 ×
109 for Vsite > 500 Å3, whereas exp[−βΔGI] (dashed line) decreases linearly in this region.
The two curves meet fortuitously at Vsite = 1668 Å3 where Vsite/V○ = 1. These calculations
were conducted with a distance-dependent model,[21] which underestimates desolvation
effects and overestimates affinity. The dependence on Vsite is however representative of
systems of this kind.
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Figure 4.
Thermodynamic cycle illustrating the restrain-and-release decomposition of the interaction
free energy [Eq. (51)]. Although not indicated, the ligand here is assumed to be always
sequestered in the binding site. R and L represent the free receptor and ligand, R* and L*
represent the receptor and ligand restrained within a conformational macrostate, (RL)*
represents the complex in which receptor and ligand are restrained within their macrostates,
and RL represents the free complex.
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