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Abstract
We investigate the influence of a soluble surfactant on the steady-state motion of a finger of air
through a compliant channel. This study provides a basic model from which to understand the
fluid–structure interactions and physicochemical hydrodynamics of pulmonary airway reopening.
Airway closure occurs in lung diseases such as respiratory distress syndrome and acute respiratory
distress syndrome as a result of fluid accumulation and surfactant insufficiency. This results in
‘compliant collapse’ with the airway walls buckled and held in apposition by a liquid occlusion
that blocks the passage of air. Airway reopening is essential to the recovery of adequate
ventilation, but has been associated with ventilator-induced lung injury because of the exposure of
airway epithelial cells to large interfacial flow-induced pressure gradients. Surfactant replacement
is helpful in modulating this deleterious mechanical stimulus, but is limited in its effectiveness
owing to slow surfactant adsorption. We investigate the effect of surfactant on micro-scale models
of reopening by computationally modelling the steady two-dimensional motion of a semi-infinite
bubble propagating through a liquid-filled compliant channel doped with soluble surfactant. Many
dimensionless parameters affect reopening, but we primarily investigate how the reopening
pressure pb depends upon the capillary number Ca (the ratio of viscous to surface tension forces),
the adsorption depth parameter λ (a bulk concentration parameter) and the bulk Péclet number Peb
(the ratio of bulk convection to diffusion). These studies demonstrate a dependence of pb on λ,
and suggest that a critical bulk concentration must be exceeded to operate as a low-surface-tension
system. Normal and tangential stress gradients remain largely unaffected by physicochemical
interactions – for this reason, further biological studies are suggested that will clarify the role of
wall flexibility and surfactant on the protection of the lung from atelectrauma.
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1. Introduction
The goal of this paper is to investigate the influence of soluble surfactant on the migration of
a semi-infinite finger of air through a compliant elastically supported channel filled with a
viscous fluid. This problem is of general interest because it demonstrates complex fluid–
structure and physicochemical hydrodynamic interactions that exist as the interface
propagates through, and opens, the channel. Furthermore, this system may advance our
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understanding of the interfacial flows that exist during the removal of liquid obstructions in
pulmonary airways, hereafter referred as airway reopening.

Pulmonary airways are flexible, interdependent, fluid-lined conduits that convey gas to and
from the alveoli, the site of gas exchange with blood. At birth, this network is liquid-filled,
and a semi-infinite bubble of air must navigate through the multiple generations of airways
(~20) in order to initiate gas exchange with blood at the alveolar level. In a full-term
neonate, this airway recruitment is facilitated by the existence of a sophisticated surfactant
system that dynamically reduces surface tension in the lining fluid (Notter 2000).

Unfortunately, a number of disease states may prevent pulmonary airways from opening
naturally or can result in liquid lining instabilities that can cause closure and collapse of
extended regions of sequential airways, which is termed ‘atelectasis’. For example, airway
closure is common in respiratory distress syndrome (RDS), which is related to prematurity
of the surfactant system and leads to a high surface tension of the air–liquid interface; in
acute respiratory distress syndrome (ARDS), which can be caused by sepsis or smoke
inhalation and results in increased vascular permeability that causes pulmonary oedema and
surfactant deactivation by plasma proteins; in cystic fibrosis, which results in abnormal
rheological properties; and in emphysema, which is due to a loss of stiffness of the
surrounding tissue. These diseases are clinically significant; for example, ARDS afflicts
approximately 200 000 individuals annually in the USA and has a mortality of
approximately 40 % (Rubenfeld et al. 2005). Recent papers on the phenomenon of airway
closure include Gaver, Halpern & Jensen (2005), Halpern et al. (2008) and Heil, Hazel &
Smith (2008).

Ventilation at low lung volumes may contribute to lung injury because of the repetitive
opening and closing of airways, and the generation of large pressures required to open
terminal airways. This phenomenon is known as atelectrauma (Gaver et al. 2006), and has
been related to large normal stress gradients sweeping across the epithelial cell surface as a
large region of a collapsed airway is reopened through a peeling motion that separates the
walls of the obstructed region as a finger of air penetrates the obstruction. Furthermore, the
airway topology may play a large role in the magnitude of these stresses (Jacob & Gaver
2005; Yalcin, Perry & Ghadiali 2007). While the rupture of menisci that occlude airways is
beneficial in removing obstructions, the associated mechanical stresses may damage
epithelial cells in the vicinity of the rupture (Huh et al. 2007).

Since fluid–structure interactions and physicochemical hydrodynamics are hypothesized to
contribute to atelectrauma, a number of theoretical studies have modelled this system to
investigate the macro- and micro-mechanical effects related to this system. These studies
commonly investigate the propagation of a semi-infinite bubble through a liquid-filled
compliant channel as a model of airway reopening. Benchtop studies identified macro-scale
fluid–structure interactions that may occur during airway reopening (Gaver, Samsel &
Solway 1990; Perun & Gaver 1995a,b). Theoretical models have considered the steady
motion of a surfactant-free system wherein a semi-infinite air bubble is driven by a bubble
pressure  through a liquid-filled two-dimensional channel that is supported by elastic
springs and is under constant longitudinal tension, as shown in figure 1 (Gaver et al. 1996;
Jensen et al. 2002; Halpern et al. 2005; Naire & Jensen 2005). These studies, which
incorporate a Stokes flow approximation, predict that, for the bubble to propagate at a steady
speed U*,  must exceed a critical value, pcrit*, associated with a velocity . Two
different types of motion were identified, as demonstrated by figure 2:

i. a slow ‘pushing branch’ for U* < , where U* decreases below  as 
increases above ; and
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ii. a fast ‘peeling motion branch’ for U* > , where U* increases above  as the
driving pressure  increases above .

Follow-up theoretical studies have shown that fluid inertia can have an influence on the
bubble and wall shapes, and for given speed U* the reopening pressure  is normally higher
than that obtained by Stokes flow models (Heil 2000), but the general behaviour is similar.
A three-dimensional model by Hazel & Heil (2003) incorporated a more realistic airway
model and allowed for buckling. This model continues to predict a two-branch behaviour.

Benchtop studies have not demonstrated the predicted two-branch behaviour (Gaver et al.
1990; Perun & Gaver 1995a,b; Juel & Heap 2007). Instead, as U* is reduced,  approaches

a finite value that is interpreted as a yield pressure for the system, . Analysis by
Halpern et al. (2005) predicted that the pushing branch is unstable: if the solution is given a
positive pressure perturbation, the system migrates from the pushing to the peeling branch;
and if a negative pressure perturbation is applied, the bubble slows down indefinitely.
Recent computational studies by Hazel & Heil (2008) suggest that even a small gravitational
effect can eliminate the low-pressure pushing branch due to the buoyant rise of the finger of
air. In highly flexible channels, these studies showed that  ~9λ/R, which is in good

agreement with experimental measurements of .

Yap & Gaver (1998) extended the model of Gaver et al. (1996) by considering the effect of
surfactant, which modifies the surface tension at the air–liquid interface. Surfactant transport
is generally modelled as a two-step process wherein surfactant in the liquid phase (bulk
surfactant) is transported by convection and diffusion to a region near the interface
(subsurface) from which sorption with the interface occurs. In Yap & Gaver (1998), bulk
surfactant transport was assumed to be much faster than the adsorption process (the bulk
equilibrium limit), and therefore the bulk surfactant concentration was assumed to be
constant and equal to the influx concentration. That study demonstrated significant
physicochemical interactions that can lead to ‘rigidification’ of the interface, similar to that
described by Stebe & Bartes-Biesel (1995). Rigid-walled systems have been used to
investigate transport limitations that can exist under low bulk concentration conditions (as
may occur in RDS or as a result of surfactant dilution caused by liquid filling the airspaces
in ARDS), and demonstrated surfactant interactions and transport phenomena that may limit
the efficacy of surfactant delivery (Ghadiali & Gaver 2000, 2001, 2003). Computational
simulations that include multi-layer characteristics of an inactive surface-associated
contaminant (termed ‘surfinactant’) suggest that unsteady fluid flow and transport can be
used to increase the local concentrations of surfactant and thereby reduce the mechanical
stress associated with reopening (Zimmer, Williams & Gaver 2005). Experiments by Pillert
& Gaver (2009) demonstrated that these effects may reduce the pressure drop across the
interface. Recent studies have shown that, in the presence of surfactant, temporary flow
reversal can be useful in protecting cells from large-magnitude interfacial stresses
(Glindmeyer, Smith & Gaver 2012). These studies are particularly relevant to overcoming
transport limitations that would occur during competitive adsorption with plasma proteins,
as might exist in ARDS (see Zasadzinski et al. 2010). Based upon these studies, it has been
suggested that pulsatile reopening may create a ‘new paradigm’ for mechanical ventilation
that could reduce the incidence of ventilator-induced lung injury (VILI) (Amin & Suki
2012).

The work of Naire & Jensen (2005) was the first to explore surfactant transport in a flexible-
walled system that extends beyond the bulk equilibrium approximation. To do so, they
developed a one-dimensional asymptotic model of surfactant-mediated airway reopening in
a flexible axisymmetric tube model by exploiting the experimentally and theoretically

Halpern and Gaver Page 3

J Fluid Mech. Author manuscript; available in PMC 2012 September 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



derived surfactant properties and transport properties from rigid-walled experiments and
theory by Ghadiali & Gaver (2000, 2003). That study predicted that the integrated effects of
surface tension reduction and the relative increase of wall stiffness due to the presence of
surfactants could significantly reduce the reopening pressure. Furthermore, the wall stresses
were predicted to be large enough to cause cell damage, most likely through strain at the
cellular scale.

Herein we present a two-dimensional computational analysis of fluid flow and surfactant
transport as a finger of air propagates through a compliantly collapsed channel that is
obstructed with a surfactant-doped viscous fluid. This analysis extends beyond the work of
Yap & Gaver (1998) and Naire & Jensen (2005) by simulating the distributions of surfactant
in both the bulk and surface phases, allowing for the prediction of the coupling between
physicochemical hydrodynamics and fluid–structure interactions. Our goal is to present a
general description of this system, with a focus on the role of surfactant sorption rates,
diffusivity and bulk concentration on the surfactant distribution and flow fields and the
resulting driving pressure and mechanical stresses at the flexible-walled boundary. While
direct simulation of parameter values associated with the physiological problem was not
achievable, we use the trends associated with our analysis to provide insight into the
physiological problem of pulmonary airway reopening.

2. Model formulation
The reopening model considered here is similar to that described in Gaver et al. (1996), but
with the inclusion of surfactant transport. We investigate the steady two-dimensional motion
of a semi-infinite gas bubble that is forced at a constant bubble pressure, , through a
compliant channel that is liquid-filled with a fluid of viscosity μ*, as shown in figure 1. The
bubble interface is located at y* = ±f* (x*) and the channel walls at y* = ±h* (x*), where
(x* = 0, y* = 0) defines the location of the bubble tip. Sufficiently far ahead of the bubble,
the channel collapses to a uniform width of 2H*. Surfactant molecules are present in the
fluid with concentration C* (x* , y*) and along the air–liquid interface with concentration
Γ* (s*), where s* is the distance along the interface, with s* = 0 defining the location of the
bubble tip. Sufficiently far ahead of the bubble tip, the bulk surfactant concentration is

defined as . We seek steady-state solutions that exist in the bubble-tip frame of reference.

2.1. Transport equations
Here we present the dimensional surfactant transport equations, which were not featured in
the constant-surface-tension reopening model of Gaver et al. (1996). Under steady
conditions, the surfactant concentrations Γ*(s*) and C* (x*, y*) satisfy the following
transport equations (Ghadiali & Gaver 2003):

(2.1)

and

(2.2)

where  is the surface gradient,  is the tangential component of the velocity along the
interface,  is the tangential vector, u* = (u*, v*) is the two-dimensional fluid velocity, j* is
the flux of surfactant from the bulk to the interface, and  and  are the interfacial and
bulk molecular diffusivities. The flux j* is described by a two-step process: (i) diffusion
from the bulk to the subsurface; and (ii) adsorption/desorption from the subsurface to the
interface (Ghadiali & Gaver 2003). Thus,
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(2.3)

where  and  are the adsorption and desorption coefficients, respectively,  is the
subsurface bulk concentration,  is the maximum monolayer packing interfacial
concentration (Krueger & Gaver 2000 1) and  is the unit normal vector pointing out of the
liquid.

2.2. Surfactant equation of state
We use a linear equation of state that expresses the surface tension γ* in terms of the
interfacial surfactant concentration,

(2.4)

where  is the surface tension of the air–liquid interface when Γ* = Γ* and E* is the
surface elasticity number. This equatin is valid for Γ* <  and is a simplification over the
more complex equations of state that are coupled to transport process and multi-layer
formatio (Krueger & Gaver 2000; Ghadiali & Gaver 2003) and eliminates the singularity
that exists at Γ* = .

2.3. Dimensionless governing equations and boundary conditions
We introduce the dimensionless variables

(2.5)

which are used to non-dimensionalize the governing equations.

We neglect the effects of fluid inertia, and so the motion of the liquid lining is governed by
the Stokes and continuity equations,

(2.6)

where u = (u, v) is the dimensionless fluid velocity and p is the fluid pressure. The stress and
kinematic boundary conditions at the air–liquid interface, y = f (x), are

(2.7)

where σ = –pI + ∇ u + ∇uT is the stress tensor,  is the interfacial curvature,
 is the surface divergence vector and γ is the surface tension. The

constitutive linear equation for γ , equation (2.4), becomes

(2.8)

where  is an elasticity number.

At the flexible1wall, y = h(x), the stress and the kinematic boundary conditions are

(2.9)
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where  is the unit normal pointing out of the fluid,  is the wall

curvature,  is a dimensionless wall tension parameter,  denotes a wall

stiffness parameter, and  is the capillary number, which is a dimensionless
velocity that describes the ratio of viscous forces to surface tension forces.

Along the line of symmetry, y = 0, ahead of the bubble tip:

(2.10)

Sufficiently far ahead of the bubble, the film thickness tends to the collapsed channel width,
and, since the normal to the wall is vertical, the velocity is solely in the horizontal direction
and equal to –Ca:

(2.11)

Far upstream, in the inflated region, the boundary conditions are

(2.12)

The dimensionless interfacial surfactant transport equation (2.1) becomes

(2.13)

where  is the surface Péclet number, representing the ratio of a diffusive

time scale  to a convective time scale . From (2.3), the scaled
(Langmuir) flux, j, becomes

(2.14)

where  and  are adsorption and desorption Stanton

numbers, respectively, and Stλ=Sta/λ, where  is the dimensionless
adsorption depth parameter. Note that we have elected to represent the adsorption process by
the product of two dimensionless parameters: Sta represents the concentration-independent
adsorption properties, and is therefore a fundamental property of the surfactant, and λ
(described below) represents the concentration dependence.

The adsorption depth  represents the depth into a fluid layer that would contain
sufficient surfactant molecules that, if brought to the surface, would saturate the interface to

the maximum equilibrium surface concentration . This depth  is derived by applying
conservation of mass to a rectangular region with an interfacial cross-sectional area A* and

depth . Then  is found by relating the mass of surfactant in the bulk phase 
to the mass of surfactant that can exist at the interface purely due to adsorption  (Ferri

& Stebe 2000). The dimensionless adsorption depth  ranges from 0 to ∞,

corresponding to  for λ → 0 and  for λ → ∞. Thus, as λ increases to an
O(1) quantity, we expect that surfactant from the upstream thin-film region will be
significantly depleted by transfer from the bulk to the surface phase. We will use this
concept to determine the existence of a critical surfactant concentration that is necessary to
retain the system in a low-surface-tension state.
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The boundary conditions on Γ are: (i) a symmetry condition at the bubble tip; and (ii) a zero
flux at the upstream end:

(2.15)

In the bulk phase, the surfactant concentration, C(x,y), satisfies the following dimensionless
convection–diffusion equation:

(2.16)

Here  is the bulk Péclet number. The boundary conditions for C(x, y) are:
(i) the concentration is set to unity at the downstream end; (ii) no streamwise variation in the
upstream film region; (iii) a zero-flux condition along the channel wall; (iv) a symmetry
condition along the centreline; and (v) a flux condition between the air–liquid interface and
the bulk. Thus,

(2.17)

2.4. Macroscopic mass balance analysis
In order to confirm the numerical accuracy of the computations, we conduct a macroscopic
mass balance that yields analytical expressions for the relationship between the bulk and
surface surfactant concentrations in the upstream film region as functions of the adsorption
and desorption parameters. Sufficiently far behind the tip, as x → –∞, Γ → Γf and C → Cf.
In addition, in this region the bulk and interfacial surfactants are in equilibrium, so that j = 0.
Hence

(2.18)

Furthermore, global mass conservation requires that

(2.19)

Alternatively, in dimensionless form, this conservation equation produces a second equation
involving Γf and Cf:

(2.20)

From (2.20) and (2.18), an expression for Cf is obtained in terms of the adsorption depth
parameter λ and the ratio of Stanton numbers, Str = Sta/Std,

(2.21)
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Note that, in the bulk equilibrium case, the appropriate limits are recovered, namely,
limλ→0Cf = 1 and limλ→0Γf = 1. The expressions for Γf and Cf will be used to confirm the
accuracy of our simulations.

3. Numerical scheme
In this section we briefly describe the iterative algorithm used to determine the bubble and
wall shapes, the surfactant concentrations and the bubble pressure for a prescribed capillary
number Ca, wall parameters η and ϕ and surfactant parameters Pes, Peb, Sta, Std, λ and El. A
description of the boundary element method (BEM) used to solve the equations for fluid
motion can be found, for example, in Halpern & Gaver (1994), Gaver et al. (1996) and
Halpern et al. (2005). Appendices A and B provide details of the finite volume method that
is used to solve the surfactant transport equations.

Our algorithm consists of the following six main steps.

1. Specify the value of Ca and commence with an initial estimate for the bubble
pressure pb, the air-finger half-width f(x), the channel half-width h(x), the
interfacial surfactant concentration Γ(s) and the bulk concentration C(x, y).

2. Compute the stress at the air–liquid interface by using (2.7) and the kinematic
boundary condition along the wall by using (2.9) for use in the BEM boundary
conditions.

3. Solve the BEM equations, keeping Γ(s) and C(x, y) fixed, and determine the
unknown velocities on the air–liquid interface and the stress on the wall.

4. Iterate using a Newton’s method to update pb, f (x) and h(x) until the kinematic
boundary condition at the air–liquid interface, (2.7), and the normal stress condition
on the wall, (2.9), are satisfied to an accuracy of 10−6.

5. Use BEM to compute the internal fluid velocity field.

6. Update Γ(s) and C(x,y) by solving (A 2) and (B 3) using the finite volume method
described in appendices A and B.

The above process is used to update pb, f (x), h(x), Γ(s) and C(x, y), and is
repeated. We monitor the following quantities between successive iterations:

i. the maximum residual from the Newton’s method solution of h, f and pb;

ii. the maximum relative difference in Γ ; and

iii. the maximum relative difference in C(x, y).

Convergence is achieved once Max((i), (ii), (iii)) < 10−6. In this process, under-
relaxation is used in updating all unknowns after each iteration.

4. Results and analysis of the idealized system
4.1. Parameter values

We investigate the system around the following baseline parameter values:

(4.1)

We explore solutions near this base parameter set to determine the relationship between
physicochemical hydrodynamics and fluid–structure interactions. Using the base value of El
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= 1 is equivalent to selecting ; therefore, the surface tension for the surfactant-
free system is twice the surface tension of the bulk equilibrium system.

4.2. Effect of the dimensionless velocity, Ca
Figure 2 presents the macro-scale response of the system with the bubble pressure versus
bubble speed relationship for different values of the adsorption depth parameter λ. The λ →
∞ curve corresponds to a surfactant-free system, and λ 0 corresponds to the bulk
equilibrium condition.

As in Gaver et al. (1996), two solution branches exist: a ‘peeling’ branch for Ca > Cacrit,
where pb increases with Ca; and a ‘pushing’ branch for Ca < Cacrit, where pb increases with
decreasing Ca (points defined on the λ → ∞ curve). Analysis of these branches is provided
by Gaver et al. (1996), Hazel & Heill (2003) and Halpern et al. (2005). In general, for fixed

Ca, pb increases with increasing λ (corresponding to a decrease in ). For each λ, there is a
critical value of bubble pressure, pcrit, below which there are no steady-state solutions, and

pcrit increases with λ. As in Naire & Jensen (2005), we find that an increase in (λ ↓)
reduces the reopening pressure for fixed Ca; however, the change in pb over 0 ≤ λ≤ ∞ is
much less pronounced than that predicted by their one-dimensional analysis. The difference
between their model and ours is discussed in detail in § 5.4. We also show an increase in the
range of stable reopening bubble pressures and speeds. The micro-scale influence of λ is
discussed in greater detail below.

In figure 3, the surface velocity us, Γ and the subsurface concentration Cs are plotted as
functions of the arclength s for different values of Ca. Here s = 0 defines the location of the
bubble tip. Because the frame of reference is fixed to the bubble tip, us = 0 at s = 0, and us
→ Ca as s → ∞. In the tip region, us > 0, which indicates that recirculation exists at the
bubble tip. This is due to Marangoni convection, which is caused by a large surfactant
gradient dΓ/ds that rigidifies the interface in the tip region. Furthermore, surfactant is swept
away from the bubble-tip region as Ca increases owing to increased surface convection.
Arrows indicating the direction of the Marangoni stress τM are shown in figure 3(b). Unlike
the rigid-walled model of Ghadiali & Gaver (2003), the concentrations in the film region, Γf
and Cf, which are given by (2.20) and (2.21), are independent of Ca because the deposited
film thickness is independent of Ca.

The pressure drop across the bubble tip, Δptip, depends on a surface tension component and
a viscous component:

(4.2)

Figure 4 presents the relationship between (a) the interfacial pressure drop and (b) the
viscous contribution to the pressure drop as a function of Ca. Clearly, from figure 4(a,b), the
surface tension contribution γtipktip dominates the local viscous effects at the tip.

We also compute the fractional film thickness H*/L*, where 2L* is the distance between the
two channel walls at the upstream end (x* → –∞). Applying (2.9) far upstream where the
wall is flat, pb = ϕ(L*/H* – 1) or H*/L* = 1/L = (pb/ϕ + 1)−1. Since H* is constant (by
conservation of mass) and L* is determined by , the fractional film thickness can be
interpreted as the inverse channel width. Figure 4(c) shows that H*/L* decreases with
increasing Ca for Ca > 0.25. This trend is in contrast to the increase in the film thickness
with Ca that is observed in rigid-walled systems, further demonstrating the importance of
fluid–structure interactions.
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Figure 5 shows the streamlines and bulk concentration contours for a range of Ca. It is
evident that, with an increase in Ca, the concentration boundary layer near the interface
becomes more fully developed. Furthermore, a recirculation region is observed ahead of the
bubble tip, whose size increases with decreasing Ca. This feature is similar to that
encountered for the surfactant-free case (Gaver et al. 1996), with the exception that the
recirculation region is not attached to the bubble tip. For Ca > 0.3, a saddle point (denoted
SP) emerges along the axis of symmetry and moves away from the bubble tip, indicating the
presence of a dividing streamline that separates the recirculation region from the rest of the
flow. Eventually, for sufficiently large Ca, both the saddle point and the vortex disappear. In
all cases shown in figure 5, the recirculation region is displaced ahead of the bubble tip,
which was not evident when El = 0. Therefore, it is likely that this relocation is a result of
Marangoni stresses that rigidify the interface, as previously explained.

4.3. Effect of the bulk Péclet number, Peb

The influence of the bulk Péclet number on us, Γ and Cs is shown in figure 6. Since all other
parameters are held constant, the change in Peb is equivalent to changing the bulk
diffusivity. This figure demonstrates a significant decrease in Cs near the bubble tip as Peb
increases, while the concentration in the film region is independent of Peb. The subsurface
concentration does not vary significantly with arclength at large Peb, and in the
neighbourhood of the bubble tip Cs is lower than the film concentration Cf, which indicates
that bulk diffusion is too slow to replenish the subsurface.

Figure 7 presents (a) the bubble pressure, (b) the interfacial pressure drop, (c) the viscous
contribution of the interfacial pressure drop and (d) the proportional film thickness as
functions of Peb. Each panel demonstrates that a low-Peb behaviour occurs for Peb < 10. For
larger Peb, diffusion limitation induces an increase in the bubble pressure and interfacial
pressure drop due to a reduction of Γ (and commensurate increase in γ). Furthermore, the
fractional film thickness decreases with increasing Peb. While these trends continue, they are
modulated with increasing Peb.

Figure 8 displays the streamlines and bulk concentration contours near the bubble for several
values of Peb corresponding to figure 6. At small values of Peb (Peb = 1), the concentration
gradients near the bubble surface are small according to (2.17), and consequently the bulk
concentration is essentially a function of x, which creates a striped pattern. With increasing
Peb (reduced bulk diffusion), the adsorption flux dominates, and a concentration boundary
layer is formed along the interface. In the limit Peb → ∞, the outer solution to the bulk
transport equation is C = constant along streamlines, with C = 1 to match the downstream
bulk concentration. However, this outer solution does not satisfy the interfacial flux
condition. Therefore, a thin diffusion boundary layer of thickness LD exists where the
concentration varies rapidly in the direction normal to the bubble surface . A
balance of the dominant diffusion term in the direction normal to the interface and the
dominant streamwise convective term yields the length scale for this diffusion boundary

layer as . For this reason, Cs decreases with increasing Peb (see figure 6);
however, the downstream vortex drives surfactant towards the bubble tip, which results in a
local maximum in Γ near s = 0, despite the fact that Marangoni stresses eliminate the
converging stagnation point at the bubble tip.

4.4. Effect of the dimensionless adsorption depth, λ
Figures 9 and 10 document the influence of the influx concentration C0, which is
investigated by varying λ. Recall that λ ≪ 1 implies that the bulk concentration is very
large, and hence the depletion of surfactant from the bulk by the interface will not be
significant. This behaviour is seen in figure 9(b,c), where for λ = 0.01, Cs ~ 1 and Γ ~ 1. For
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this particular case, the surfactant concentration at the interface is nearly uniform, and so the
interface does not maintain a tangential (Marangoni) stress and is mobile. The downstream
recirculation region is attached to the interface, which is evident by us < 0 in the tip region
(see inset of figure 9a). Figure 10(a) corroborates this behaviour by demonstrating a nearly
uniform bulk concentration for λ 0.1, and is consistent with the high-concentration
interfacial remobilization predictions and observations (Stebe, Lin & Maldarelli 1991; Stebe
& Maldarelli 1994; Stebe & Bartes-Biesel 1995).

As λ increases, a saddle point moves along the axis of symmetry, the vortex moves away
from the tip, and us > 0 for all s. Thus the interfacial flow at the tip opposes the downstream
vortex, rigidifying the interface. However, direct convection along the interface does not
drive surfactant to the tip; instead, the downstream vortex provides an influx of bulk
surfactant to the tip region that induces a local maximum concentration at the tip. This
behaviour is evident in figures 9(b,c) and 10(b). In addition, as λ increases, the total amount
of surfactant present in the film layer decreases. For this reason, less surfactant is adsorbed
to the interface, and the subsurface concentration Cs approaches an s-independent value in
the thin film.

In figure 11 we explore the dependence of the thin-film concentrations on λ for three
different ratios of Stanton numbers, Str = Sta/Std 1, 10 and 100, using (2.20) and (2.21),
which were derived from the control-volume analysis given in § 2.4. The bulk equilibrium
limit is obtained as λ → 0, corresponding to an infinite amount of bulk surfactant present in
the system (C0 → ∞); in this limit, both Cf → 1 and Γf → 1. Increasing Str induces a more
rapid adsorption from the bulk, and for a given value of λ this increases (decreases) the
concentration in the thin film (bulk). The rate at which this limit is reached is reduced with
decreasing Str because of slower adsorption. Both Cf and Γf decrease with increasing λ,
with a transition to the large-λ limit occurring when λ ~ O(1), that is, when the adsorption
depth and film thickness are of comparable magnitude. In contrast, as λ → ∞, Γf → Str/
(λ(1 + Str)) and Cf → (1 + Str)−1, which is a constant value (figure 11). However, it should

be noted that, if λ → ∞ through a reduction in , the dimensional thin-film concentration

approaches zero, since .

Although it has already been revealed in figure 2 that pb increases with increasing λ, this
variation is more clearly shown for Ca = 0.4 in figure 12. This figure shows that pb increases
sigmoidally with increasing λ, with the most significant increase occurring when λ = O(1).
For λ → ∞ the system operates at a constant surface tension, with . Therefore,
calculations were conducted with a constant surface tension at Ca = μUtip/γ* = 0.2, ϕ =
KH2/γ* = 0.25 and η T/γ* = 50. This simulation is consistent with the solutions found by
Gaver et al. (1996) and the analytical prediction by Jensen et al. (2002). For λ → 0 (the bulk
equilibrium limit), pb ~ 2.08, the same value as in Yap & Gaver (1998); while, as λ → ∞
(the surfactant-free limit), pb → 2.52. Therefore, for this value of Ca, the surfactant-free
driving pressure is only 20 % larger than in the bulk equilibrium case despite the fact that
the surface tension has increased by 100 %. Since this prediction occurs for the bulk
equilibrium limit, diffusive transport limitations can only reduce this effect further.

Figure 13 demonstrates how the adsorption depth affects the interfacial pressure drop (Δp)
and the fractional film thickness deposited on the upstream channel wall. These
demonstrate, once again, the transition from high-concentration to low-concentration
behaviour that occurs with λ ~ O(1). In contrast to the pb shown in figure 12, Δp has a local
minimum near λ = 0.2, and a local maximum of the viscous contribution near λ = 0.5. As λ
decreases (through an increase in C0, for example), the fractional film thickness (H*/L* )
increases substantially, which is a reflection of the reduced pb that leads to a decrease in the
upstream channel width, L*.
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4.5. Effect of the dimensionless adsorption rate, Sta
Figures 14 and 15 demonstrate the influence of the adsorption Stanton number, Sta, on the
flow field and surfactant distribution. In general, an increase in Sta reduces the surfactant
concentration in the bulk, as it increases the concentration along the interface. The more
rapid depletion of surfactant from the bulk increases the magnitude of the concentration
boundary layer, as shown in figure 15. In the parameter range of this study, the interfacial
velocity is weakly influenced by changes in Sta (figure 14a).

4.6. Analysis of the bubble pressure, pb

From a macroscopic momentum balance following Gaver et al. (1996, § 2.4),

(4.3)

where L is the upstream channel width; in the linear wall model used in the idealized
system, L = pb/ϕ + 1 ~ pb/ϕ. The term γf/L represents the far-upstream contribution from
interfacial tension, and, in a system with nearly parallel walls in the upstream region (as
occurs in the pushing branch), this term is approximately equal to Δptip. The term (1/L)

 ds represents the contribution from the x-component of the wall stress, which
depends on the airway wall geometry and the flow field.

Asymptotic analysis shows that, to leading order,

(4.4)

In the pushing branch, the primary contribution comes from the viscous stress in the very

long ‘inflated channel’ region downstream of the bubble tip, and so (1/L)  ds ≫
Δptip on this branch. In dimensional form,

(4.5)

where β is a weak function of Ca when Ca ≫ 1 (Jensen et al. 2002). The analysis described
by (4.3)–(4.5) provides insight into why the simulations presented in figure 12 predict only a
20 % increase in pb with a doubling of the surface tension that occurs from λ = 0 to λ →
∞. In the pushing branch, (4.5) suggests that the doubling of surface tension could result in
an increase of pb by 60 % as a result of modified downstream viscous stresses. The peeling
branch pb is only weakly dependent on surface tension because λ ≈ 1 + h.o.t. where ‘h.o.t.’
are higher-order terms in Ca for Ca ≫ 1. Since Ca = 0.4 lies between the peeling and
pushing branches, neither of these limits are entirely appropriate, but the analysis suggests
that the modest increase in pb results from fluid–structure interactions that modulate the
increase in pressure due to pressure-dependent widening of the upstream (open) end of the
channel (increasing L), which (a) magnifies the force that is applied to the bubble, and (b)
reduces the Young–Laplace pressure drop across the air–liquid interface. In § 5 we will
investigate whether this is a result of the idealized linear wall model, (2.9).

The leading-order analysis of (4.5) neglects the effects of the bubble-tip pressure drop;
however, by comparing the Δptip (figure 4) to pb (figure 2) at the transition between the
pushing and peeling branches (Ca = 0.2), it is evident that Δptip provides a meaningful
contribution to the total bubble pressure, since Δptip ~ pb/4. The viscous contribution to
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Δptip is minuscule (figure 4); therefore, ptip ~ λktip. Along the peeling branch (Ca = 1),
Δptip ~ pb/2; since the viscous contribution remains inconsequential (figure 4), the enhanced
influence of Δptip over that of the pushing branch occurs because of an increased ktip from a
narrowing of the bubble tip as the wall shape becomes wedge-shaped near the meniscus
front. This is described as ‘region 2’ by Jensen et al. (2002), which acts as a valve that
determines the flow rate of the system. The relationship between γf and pb is clear from
(4.3). From (2.20) and (2.21) and figure 11 it is evident that γf depends only upon λ and Str,
and that a significant change in γf occurs when λ ~ O(1). This behaviour is also reflected by
the data presented in figure 12, and leads to the prediction of a critical surfactant
concentration, which is described below in § 5.2.

5. Analysis in the context of pulmonary airway reopening
The results presented above provide a detailed description of the interactions between
surfactant transport, physicochemical hydrodynamics and fluid–structure interactions that
exist in an idealized model of the propagation of a semi-infinite bubble through a compliant
channel that is obstructed by a surfactant-doped liquid occlusion. Here we put this
information in context as it relates to the physiological process of opening a pulmonary
airway. We explore the validity of the simplified model and investigate model
improvements that may enhance the applicability of these models to simulate segments of
the pulmonary system. Our goal is to identify mechanisms that may be used to protect
sensitive tissues in the lung.

5.1. Model assumptions and limitations
We selected the parameters for our base state (§ 4.1) to provide a fundamental understanding
of physicochemical interactions that exist as a semi-infinite bubble progresses through a
flexible-walled channel. In the present section we use this analysis to guide our
understanding of the behaviour of a two-dimensional representation of a collapsed bronchial
airway; however, several assumptions have been incorporated that may limit the direct
applicability to the physiological system.

In the lung, the liquid lining properties are assumed to be ρ* = 1 g cm−3, μ* = 0.05 g (cm

s)−1,  = 25 dyn cm −1,  = 0.5 cm3 mg−1 s−1,  = 1 mg ml−1 and D* ≈ 10−6 cm2 s−1

following Ghadiali & Gaver (2000). Assuming a reopening velocity of  = 1 cm s−1, we

find . However, Ca ≪ 1 is not tractable computationally, and
furthermore results in flow in the ‘pushing’ branch that is unstable (Halpern et al. 2005) and
unlikely to exist owing to gravity (Hazel & Heil 2008). Instead, we have investigated Ca ~
O(1) in order to replicate conditions appropriate to the peeling branch, which better
represents the physiological state.

Since the convection rate was increased, the transport parameters were adjusted accordingly,
so that Stλ/Ca ~ 10−1, thus assuring that the surfactant adsorption rate is slower than the rate
of interfacial creation. Also, Std/Stλ ≪ 1 to ensure that desorption was slower than
adsorption (Zimmer et al. 2005).

The relationship between convection and diffusion in the fluid phase is described by a Péclet

number based upon the convective velocity, , where 2L* is the total
upstream channel width. since L* = (pb/ϕ + 1)H*, we estimate Peb|conv ~ 104. Therefore, the
value of the Péclet number based upon the relaxation velocity scale is
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which provides an estimate of Peb ~ 103. While simulations of Peb of this large magnitude
are untenable because of concentration boundary layer effects that require extraordinary
accuracy of the velocity field near the air–liquid interface, responses have been
demonstrated for Peb ~ 102 and also for limiting behaviour as Peb → ∞, which provides
insight into the transport behaviour when convection dominates diffusion, and allows the
exploration of the important transport limitations associated with this system for even higher
Peb.

The analysis of this problem neglects start-up effects, which are likely to affect the
behaviour of the interface near airway bifurcations. In addition, the analysis does not include
an evaluation of unsteadiness that may influence transport owing to the cyclic expansion and
compression of airways that can affect the local velocity fields (Zimmer et al. 2005; Smith
& Gaver 2008; Smith et al. 2012). Finally, the relationship between inertia and viscous
effects is represented by Re = ρUtipW/μ ~ 0.5. Based upon the analysis of Heil (2000), the
Stokes flow representation of this problem provides a suitable demonstration of the flow
properties.

5.2. Critical surfactant concentration
The influence of λ, as described by figure 12, indicates that the reopening pressure depends
on the value of the dimensionless adsorption length. The minimum reopening pressure pb
occurs at large concentrations, λ → 0. However, over the range 10−1 < λ < 1, a transition to

a higher pb exists. Since , this result suggests that a critical surfactant

concentration, , must be exceeded in order to make the transition to lower reopening

pressures, and that this critical concentration is in the range .

To estimate consider the reopening of a 1 mm one-dimensional airway with H = 2.5 μ 10−3

cm (5 % film thickness) and Γ∞ = 4.>0 × 10−10 mol cm−2 (Krueger & Gaver 2000). The
critical bulk concentration is then estimated to be

(5.1)

Despite the many approximations involved in this analysis, this result coincides with the
experimental results obtained by Bilek, Dee & Gaver (2003), who showed that a bulk
concentration of 1 mg ml−1 of Infasurf (ONY, Inc.), a pulmonary surfactant used for
surfactant replacement therapy, was sufficient to protect airway epithelial cells from damage
in an experimental model of airway reopening. In addition, pulsatile motion of a bubble in a
surfactant-doped solution with C = 0.1 mg ml−1 within a cylindrical tube demonstrates
enhanced surfactant transport, indicating that a concentration at this level is sufficient to
develop surfactant enrichment through physicochemical interactions (Pillert & Gaver 2009).
Recent experiments demonstrate the protective effects of C = 0.1 mg ml−1, and these effects
are significantly enhanced with C = 1.0 mg ml−1 (Glindmeyer et al. 2012).

5.3. Micro-scale stress field
In vitro experimental studies of airway reopening have investigated the role of micro-
mechanical stresses on damage to epithelial cells that line airways. These studies have
correlated the normal stress gradient with cell membrane disruption that is observed to
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damage the cell layer in rigid-walled experiments of airway reopening (Bilek et al. 2003;
Kay et al. 2004; Yalcin et al. 2007). The observed epithelial cell damage is hypothesized to
be caused by the normal stress gradient migrating across the epithelial surface, which acts as
a travelling wave that squeezes the cell in a fore–aft direction (similar to a rolling pin) and
creates a large time-dependent transmembrane pressure that ruptures the cell membrane.

In order to examine the potential protective mechanism of surfactant in a flexible-walled
model of airway reopening, in figure 16 we present (a) the normal stress (τn) and (b) the
tangential stress (τt) as functions of distance along the wall, with s = 0 denoting the location
of the tip, at Ca = 0.4 (peeling branch) and Ca = 0.2 (pushing branch), for λ = 0 and ∞. This
figure shows that the normal stress decreases for s > 0 because of the pressure drop at the
bubble tip due to surface tension. Ahead of the bubble tip, τn < 0 due to inward wall
deflection below the wall equilibrium position. In addition, τt ≪ τn, and this figure
demonstrates a downstream-directed stress in the vicinity of the tip, with an upstream-
directed shear stress in the collapsed region.

Surprisingly, for Ca = 0.4, figure 16 shows very little difference in the stress fields as a
function of λ. The maximum stress gradients are not markedly modified by the existence of
surfactant, and the only major difference that exists is the overall magnitude of the normal
stress difference between the upstream gas phase and the downstream collapsed region,
which is consistent with the pb versus Ca relationship shown in figure 2. The very small
change in pb is also consistent with the surface-tension-independent behaviour that is
predicted for the peeling branch by Jensen et al. (2002), as discussed above.

To illustrate the difference between large Ca peeling solutions and small Ca pushing
solutions, figure 16 also shows the wall stresses for Ca = 0.2. Here we see that the difference
in upstream-to-downstream pressure drop is magnified over the peeling case. In addition, the
magnitude of the tangential stress is not affected, but both tangential and normal stresses are
exerted over a slightly larger distance. However, the pressure gradient is not significantly
influenced by a change in λ.

5.4. Wall model effects
In the investigation of the idealized model, it was found that there was only an
approximately 20 % increase in  with a 100 % increase of λ* (§ 4.4). In contrast, Naire &
Jensen (2005) investigated the dependence of  on the bulk concentration (their figure 4b)
similar to that shown in figure 12 for three values of Ca. Along the pushing branch (Ca ~
0.02), they found that a 150 % increase in λ* results in approximately a 400 % increase in

, while the peeling branch (Ca ~ 0.18) results in approximately a 250 % increase in .
Therefore, the predicted pressure differences were far in excess of the fractional increase in
surface tension, and thus are much greater than those predicted by our two-dimensional
planar analysis. We hypothesize that this effect may be due to the relative stiffening of the
tube in comparison to surface tension forces, which diminishes the pressure-induced
increase in L, thereby reducing the incremental increase in λ* (§ 4.6). In this section we will
attempt to resolve this discrepancy by exploring the relationship between the channel
compliance (‘tube law’) and the driving pressure in the system.

In addition to the relative insensitivity of  on , from figure 16 it is evident that the
predicted magnitude of the normal stress gradient is unaffected by the surfactant
concentration – and yet, experiments in rigid-geometry channels suggest that surfactant is
protective because of its reduction of the normal stress gradient that sweeps across cells. We
observe that the major difference between the pushing and peeling branches relates to the
wall shape that exists downstream of the bubble tip (Gaver et al. 1996), and that between
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these two situations the gradients are significantly different. We therefore hypothesize that
the linear wall equation (2.9) may be responsible for masking differences in normal stress
gradients that otherwise would exist in a more physiologically relevant model of airway
reopening that is based upon a nonlinear tube law.

In order to investigate the airway tube law hypothesis, we replace the linear wall model
equation (2.9) with a nonlinear wall equation that is based on the tube law model developed
by Lambert et al. (1982), which was adapted by Overby (1997). At the flexible wall, y =
h(x), the stress condition is

(5.2)

where Ptr, the transmural pressure, is given by

(5.3)

The value of λ0 is tabulated by Lambert et al. (1982), with λ0 = 0.075 for generation 13;
however, the original Lambert formulation was not suitable because it introduces
discontinuities in curvature at Ptr = 0. For this reason, Overby (1997) used a nonlinear least-
squares regression algorithm to identify the remaining constants as A = –10.2, B = –0.012, C
= 10.2, m1 0.63 m2 = 6.49.

Figure 17 demonstrates this tube law and the effective tube stiffness, ϕeff = dPtr/dh, which
shows that the uninflated region of the channel is flaccid, but becomes increasingly stiff as
the airway inflates and reaches a maximum displacement at h0 = λ0

−1/2. The minimum
value of ϕeff from the nonlinear model (ϕeff ~ 0.3 at h = 1) is reduced from the value ϕ = 0.5
that was investigated in the linear and so this results in greater compliance near h = 1.
However, the walls stiffen (ϕeff increases) with increasing wall displacement, especially for
h > 2.5. As shown below, the average wall stiffness over the entire displacement is greater
than that of the linear case – this leads to a net increase in the driving pressure over that
predicted for the linear wall model.

In this nonlinear model, the transition between the pushing and peeling branches occurs at a
higher Ca, and the effect of wall nonlinearity is shown in figure 18 for Ca = 0.8 for λ = 0
(bulk equilibrium) and λ → ∞ (surfactant-free). This value of Ca is in the transition region
between the pushing and peeling branches. It is quite clear that the inclusion of surfactant to
the bulk equilibrium limit decreases the reopening pressure by approximately 50 %. Unlike
the idealized linear model results, this decrease in pb corresponds to the 50 % decrease in
surface tension that would occur if λ = λ∞. So, since the airway wall becomes increasingly
stiff at high pressures, the physiological tube law decouples the upstream fluid–structure
interactions by limiting the extent of the lateral deformation. This, in turn, sets the reopening
pressure to be nearly proportional to the surface tension, as one would expect if the tip
curvature was not modified by the surface tension. Nevertheless, the stress gradients remain
insensitive to λ. These results are consistent with the predictions from the one-dimensional
model by Naire & Jensen (2005), although that study demonstrated a greater change in pb.
As Ca is increased further into the peeling branch, the pressure difference between the λ = 0
and λ → ∞ cases is diminished, and both the stress-field magnitudes and gradients show
little sensitivity to the surfactant concentration. The insensitivity of the stress-field
magnitude is in contrast to the model results of Naire & Jensen (2005), who found a strong
correlation existing in this range.
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This investigation shows that, even with the nonlinear tube law, the stress gradients remain
nearly independent of the surfactant concentration, and therefore the magnitude of the
normal stress gradient is largely determined by the wall deformation (see also Naire &
Jensen 2005). So, as can be seen in figure 18, when the magnitude of pb increases with
increasing surface tension, the length of the travelling wave extends commmensurately.
Since the length of the travelling wave is far greater than the length of a cell, the pressure
gradient presented to the surface of the cell would be independent of the surface tension (i.e.
surfactant concentration) and would only depend on the reopening velocity.

5.5. The relationship between model results and experimental observations
These studies bring up an interesting conundrum concerning the mechanisms responsible for
surfactant protection that cannot be resolved without additional biologically based
experiments that would use flexible-walled models. This issue relates to differences in the
mechanical stress fields that exist in rigid and flexible-walled systems, as described below.

Rigid-walled—In rigid-walled systems (as investigated by Bilek et al. 2003; Kay et al.
2004; Yalcin et al. 2007), an increase in Ca is associated with:

a. a slight increase in the total pressure drop across the bubble tip (ΔP);

b. (b) an increase in the maximum shear stress, τs|max; and

c. (c) a large decrease in the maximum pressure gradient, dP/dx|max.

Since experiments have shown that an increase of Ca, through either an increase of velocity
or an increase in viscosity, reduces the damage to the cell layer, it has been concluded that
the magnitude of dP/dx|max is likely to be the damaging mechanical stimulus. Furthermore,
decreasing λ is associated with a decrease in damage, and this is consistent with a decrease
in dP/dx|max. These studies have disassociated the increase in damage with reduced velocity
as being a function of the exposure time.

Flexible-walled—Our simulations of flexible-walled systems presented in this paper
demonstrate the following features of the macro- and micro-scale stress fields that are

associated with an increase in surfactant concentration  (decrease in λ and γ ) at fixed Ca
(equivalent to fixed velocity, U):

a. a decrease in pb;

b. a small change in dP/dx|max; and

c. (c) a reduction in the exposure time (Δtexp ~ L/U), where L is the length of the
travelling wave (see figure 18).

Unfortunately, carefully controlled reopening experiments have not been conducted
in flexible-walled biomimetic airways, and so it is not possible to draw conclusions
on damage mechanisms solely from the available information. However, three
possible scenarios exist.

i. Our simulations suggest that, if the magnitude of dP/dx|max is the
damaging stimulus (as predicted from rigid models), in flexible model
experiments at steady state we would expect that flexibility itself would be
protective, and we would not expect to see enhanced airway protection
when surfactant concentrations are increased. If this response is observed
in biological studies, then enhancing wall flexibility could be instrumental
in protecting an airway. Since highly oedematous airways are liquid-filled
to nearly a maximum state of expansion (Hubmayr 2002), these airways
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are likely to behave similarly to rigid tubes. Rather than attempting to
deliver surfactant to these regions, it may be more effective to reduce the
level of oedema so that a flexible-walled state is developed. Clinically,
this would imply that a state of ‘watchful waiting’ or ‘medical
observation’ could be appropriate. In this approach, repeated testing may
be performed without medical intervention until oedema is resolved. This
means that airway pressures would be maintained at a low level during a
period of active surveillance that could assess the liquid volume in the
lung. After oedema is resolved, airway reopening would commence
through increased airway pressures.

ii. In contrast, if an increase in surfactant concentration is observed to reduce
the damage to epithelial cells (as in rigid-walled configurations), this
suggests that the magnitude of pb or the exposure duration (or both) are
responsible for cell damage in flexible airways. This result would
contradict our present understanding of damage mechanisms that have
been gleaned from biological studies using rigid-walled models. In this
case, it is likely that cell damage is caused by stretch-induced strains, as
hypothesized by Naire & Jensen (2005). This damage mechanism would
be similar to that occurring in volutrauma, but would exist only in the
airways that are reopened by removal of a viscous occlusion.

iii. Alternatively, surfactant-induced reduction of damage could be a transient
(albeit long-lasting) response that occurs as the system evolves to a steady
state. If this is the case, the tube would fill with fluid downstream of the
interface and function as a rigid tube. In this evolution, the upstream film
thickness will not be fixed, and must in general be less than H in order for
the downstream region to accumulate fluid. Such a decoupling of the
upstream film thickness from the downstream channel width is similar to
that which exists in rigid-walled reopening, and may cause dP/dx|max to
depend on the surface tension (and hence the surfactant concentration) in
the system. In this situation, the transient behaviour would be consistent
with the mechanistic hypotheses that have been based upon rigid-walled
models.

In summary, the present analysis of fluid–structure interactions and coupled
physicochemical hydrodynamics in flexible-walled airway reopening does not completely
resolve issues of the protective mechanisms that may be used to reduce the incidence of
pulmonary atelectrauma. As such, it is clear that more experimental evidence is necessary to
establish the role of interfacial flows in atelectrauma. Nevertheless, in concert with data
from the biological system, the computational simulations investigated in this paper may be
used to identify the structure and magnitude of the mechanical stimuli that must be
ameliorated in order to reduce the incidence of atelectrauma-based ventilator-induced lung
injury.

6. Conclusions
In this study we have computationally modelled the physicochemical influence of surfactant
on the reopening of a pulmonary airway by considering the steady two-dimensional motion
of a semi-infinite bubble propagating through a liquid-filled compliant channel doped with
surfactant. While a large number of dimensionless parameters influence the dynamics of the
system, we specifically investigate the importance of the capillary number Ca (a
dimensionless velocity) and the adsorption depth parameter λ (inversely related to the bulk
concentration).
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We find that a modification of Ca significantly impacts the concentration distribution in the
tip region of the propagating bubble through a macro-scale modification of the flow
structure. The dimensionless adsorption depth λ is a critical parameter in this system
because it provides a description of the quantity of surfactant that must exist in the bulk in
order to dynamically populate the ever-lengthening interface. In these studies we find that
the system can only respond as a low-surface-tension interface if λ < λcrit, where 0.1 < λcrit
< 1.

These studies demonstrated a surprising result that, aside from the macro-scale pressure drop
in the system, the stress field was relatively insensitive to surfactant transport parameters.
This result implies that the wall equation determines the nature of the stress field through
fluid–structure interactions. Therefore, this study does not resolve the question of the
physicochemical properties that are necessary to protect the lung from atelectrauma. As
such, we propose that further biological studies are necessary to elucidate the relationship
between airway wall flexibility and mechanical stress-induced damage in models of
pulmonary airway reopening.
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Appendix A: Interfacial surfactant concentration
The interfacial surfactant concentration is solved on a non-uniform grid with a higher
density of node points near the bubble tip. Equation (2.13) is integrated over a control
volume between grid points e and w, as shown in figure 19:

(A 1)

where ΓP is the surfactant concentration at point P, JP is the flux at P given by (2.14), and D
= 1/(Pesδs) is a diffusivity parameter.

The convective terms on the left-hand side of (A 1) are approximated using Patankar’s
hybrid power-law scheme (Patankar 1980). Equation (A 1) then becomes

(A 2)

where ap = ae + aw + use − usw and

(A 3a)

(A 3b)

and

(A 4)
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Equation (A 2) is applied at each node point along the interface, giving rise to a tridiagonal
system of linear equations that is solved using the Thomas algorithm. The boundary
conditions are given by (2.15).

Appendix B: Bulk surfactant concentration
Boundary-fitted coordinates (ξ, η), where ξ = ξ(x, y) and η = η(x, y), are used to describe
the grid of our domain since its boundaries do not easily line up with the usual Cartesian (x,
y) coordinate system. The (ξ, η) transformations between the physical and computational
domains are obtained by solving a system of Poisson equations (see e.g. Fletcher & Srinivas
1991; Thompson, Soni & Weatherill 1999).

In the (ξ, η) coordinate system, the bulk concentration equation becomes

(B 1)

where B = AAT is a 2 × 2 matrix, J = det(A), F = (Fξ, Fη) = Au and

(B 2)

Equation (B 1) is integrated over the central cell shown in figure 20, to yield an
approximation equation for the concentration at the centre, CP:

(B 3)

where ap = ae + aw + an + as and

(B 4a)

(B 4b)

(B 4c)

(B 4d)

and

(B 5)

A similar power-law scheme is used for the convective terms of the bulk concentration
equation. Sc is the integral of the source term in (B 1):
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(B 6)

where

(B 7a)

(B 7b)

(B 7c)

(B 7d)

The derivative boundary conditions given in (2.17) are written in the form

(B 8)

where the flux jn is zero at the upstream end, the wall and the centreline, and is equal to j
along the air–liquid interface. In the transformed coordinate system this becomes

(B 9)

Equations (B 9) and (B 6) are then substituted into (B 3). Because (B 3) consists of a large
system of sparse equations, it is solved iteratively.
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FIGURE 1.
Schematic of model showing a semi-infinite bubble moving steadily from left to right due to
an imposed pressure drop  inflating a liquid-filled compliant channel. In this analysis, the
frame of reference is fixed to the bubble tip, which provides a steady-state solution.
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FIGURE 2.
Bubble pressure  versus the dimensionless bubble speed Ca for different values
of the adsorption 1 depth parameter λ. Note that λ → ∞ corresponds to the surfactant-free
case and λ = 0 to the bulk equilibrium limit. The values of the other parameters are η = 100,
ϕ = 0.5, Pes = 103, Peb = 50, Sta = 0.3, Std = 0.03 and El = 1.
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FIGURE 3.
The effect of capillary number Ca on (a) the surface velocity us in a frame of reference fixed
to the bubble tip, (b) the surface concentration Γ and (c) the subsurface concentration Cs.
The arclength s is measured along the interface, with s = 0 defining the bubble-tip location.
The other parameter values are η = 100, ϕ = 0.5, Pes = 103, Peb = 50, Sta = 0.3, Std = 0.03, λ
= 1 and El = 1.
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FIGURE 4.
The effect of capillary number Ca on (a) the dimensionless interfacial pressure drop at the
bubble tip, (b) the viscous contribution to the bubble-tip pressure drop and (c) the
dimensionless fractional film thickness that is deposited on the channel wall. The other
parameter values are identical to those in figure 3.
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FIGURE 5.
Streamlines and bulk concentration contours surrounding the bubble tip for (a) Ca = 0.25,
(b) Ca = 0.3, (c) Ca = 0.4 and (d) Ca = 0.5. The other parameters are the same as those in
figures 3 and 4. Here SP denotes the location of the saddle point along the axis of symmetry.
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FIGURE 6.
The influence of the bulk Péclet number Peb on (a) the surface velocity us, (b) the surface
concentration Γ and (c) the subsurface concentration Cs. The other parameter values are: Ca
= 0.4, η = 100, ϕ = 0.5, Pes = 103, Sta = 0.3, Std = 0.03, λ = 1 and El = 1.
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FIGURE 7.
The effect of the bulk Péclet number Peb on (a) the bubble pressure pb, (b) the dimensionless
interfacial pressure drop at the bubble tip, (c) the viscous contribution to the bubble-tip
pressure drop and (d) the dimensionless fractional film thickness that is deposited on the
channel wall. The other parameter values are identical to those used to generate figure 6.
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FIGURE 8.
Streamlines and bulk concentration contours for (a) Peb = 1, (b) Peb = 10 and (c) Peb = 100.
The other parameter values are the same as those used in figures 6 and 7.
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FIGURE 9.
The effect of the adsorption depth parameter λ on (a) the surface velocity us, (b) the surface
concentration Γ and (c) the subsurface concentration Cs. The inset in (a) shows that the
surface velocity changes sign near the bubble tip for sufficiently small λ. The other
parameter values are: Ca = 0.4, η = 100, ϕ = 0.5, Peb = 50, Pes = 103, Sta = 0.3, Std = 0.03
and El = 1.
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FIGURE 10.
Streamlines and bulk concentration contours for (a) λ = 0.1 and (b) λ = 1. All other
parameter values are the same as those in figure 9.
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FIGURE 11.
The influence of the adsorption depth parameter λ on (a) the thin-film bulk concentration
Cf, (2.21), and (b) the thin-film surface concentration Γ, (2.20), for three different values of
Sta/Std.
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FIGURE 12.
Bubble pressure versus adsorption depth parameter. The other parameter values are: Ca =
0.4, η = 100, ϕ = 0.5, Peb = 50, Pes = 103, Sta = 0.3, Std = 0.03 and El = 1. The dashed line,
with λ → ∞, represents the surfactant-free case, while the dotted line represents the bulk
equilibrium limit.
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FIGURE 13.
The effect of adsorption depth parameter λ on (a) the dimensionless interfacial pressure
drop at the bubble tip, (b) the viscous contribution to the bubble-tip pressure drop and (c) the
dimensionless fractional film thickness that is deposited on the channel wall. The other
parameter values are set to: Ca = 0.4, η = 100, ϕ = 0.5, Peb = 50, Pes = 103, Sta = 0.3, Std =
0.03 and El = 1.
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FIGURE 14.
The effect of the adsorption Stanton number Sta on (a) the surface concentration Γ and (b)
the subsurface concentration Cs. The other parameter values are: Ca = 0.4, η = 100, ϕ = 0.5,
Peb = 50, Pes = 103, Std = 0.03, El = 1 and λ = 1.
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FIGURE 15.
The influence of Sta on the flow field and bulk concentration field: (a) Sta = 0.1 and (b) Sta =
0.4. The other parameter values are the same as those used for figure 14
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FIGURE 16.
Profiles of (a) the non-dimensional wall normal stress and (b) the wall tangential stress for
Ca = 0.2 and 0.4 and λ = 0 and ∞. The other parameter values are η = 100, ϕ = 0.5, Peb =
50, Pes = 103, Std = 0.03 and El = 1.
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FIGURE 17.
Nonlinear pressure–channel height relationship and effective stiffness, (5.2).
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FIGURE 18.
The influence of using a nonlinear tube law, (5.2), on (a) the wall normal stress and (b) the
wall tangential stress. Here Ca = 0.8, corresponding to the transition between pushing and
peeling solutions. The parameter values are: Ca = 0.8, η = 100, ϕ = 0.5, Peb = 50, Pes = 103,
Sta = 0.03, Std = 0.03 and El = 1.
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FIGURE 19.
Grid used to solve interfacial surfactant concentration.
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FIGURE 20.
A typical finite-volume cell used in the computation of the bulk surfactant concentration.
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