Skip to main content
. Author manuscript; available in PMC: 2012 Sep 18.
Published in final edited form as: IEEE Trans Pattern Anal Mach Intell. 2010 Sep;32(9):1610–1626. doi: 10.1109/TPAMI.2009.190

Algorithm 1.

Pseudocode of the proposed feature selection algorithm.

Input : Data 𝒟={(xn,yn)}n=1NJ×{±1},
    kernel width σ, regularization parameter
    λ, stop criterion θ
Output: Feature weights w
1 Initialization: Set w(0) = 1, t = 1 ;
2 repeat
3  Compute d(xn, xi|w(t−1), ∀xn, xi ∈ 𝒟
4  Compute P(xi=NM(xn)|w(t−1)) and
P(xj=NH(xn)|w(t−1)) as in (4) and (5);
5  Solve for v through gradient descent using the update rule specified in (10);
6 wj(t)=vj2,1jj;
7 t = t +1 ;
8 until   ‖w(t)w(t−1)‖ < θ;
9 w = w(t).