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Abstract

We analyze simple dynamical network models which describe the limited capacity of nodes to process the input
information. For a proper range of their parameters, the information flow pattern in these models is characterized by
exponential distribution of the incoming information and a fat-tailed distribution of the outgoing information, as a
signature of the law of diminishing marginal returns. We apply this analysis to effective connectivity networks from human
EEG signals, obtained by Granger Causality, which has recently been given an interpretation in the framework of
information theory. From the distributions of the incoming versus the outgoing values of the information flow it is evident
that the incoming information is exponentially distributed whilst the outgoing information shows a fat tail. This suggests
that overall brain effective connectivity networks may also be considered in the light of the law of diminishing marginal
returns. Interestingly, this pattern is reproduced locally but with a clear modulation: a topographic analysis has also been
made considering the distribution of incoming and outgoing values at each electrode, suggesting a functional role for this
phenomenon.
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Introduction

Most social, biological, and technological systems can be

modeled as complex networks, and display substantial non-trivial

topological features [1,2]. Moreover, time series of simultaneously

recorded variables are available in many fields of science; the

inference of the underlying network structure, from these time

series, is an important problem that received great attention in the

last years. A method based on chaotic synchronization has been

proposed in [3], a method based on model identification has been

described in [4]. Use of a phase slope index to detect

directionalities of interactions has been proposed in [5].

The inference of dynamical networks is also related to the

estimation, from data, of the flow of information between

variables, as measured by the transfer entropy [6,7]. Wiener [8]

and Granger [9] formalized the notion that, if the prediction of

one time series could be improved by incorporating the

knowledge of past values of a second one, then the latter is

said to have a causal influence on the former. Initially developed

for econometric applications, Granger causality has gained

popularity also among physicists (see, e.g., [10–15]) and

eventually became one of the methods of choice to study brain

connectivity in neuroscience [16]. Multivariate Granger causal-

ity may be used to infer the structure of dynamical networks

from data as described in [17]. It has been recently shown that

for Gaussian variables Granger causality and transfer entropy

are equivalent [18], and this framework has also been

generalized to other probability densities [19]. Hence a

weighted network obtained by Granger causality analysis can

be given an interpretation in terms of flow of information

between different components of a system. This way to look at

information flow is particularly relevant for neuroscience, where

it is crucial to shed light on the communication among

neuronal populations, which is the mechanism underlying the

information processing in the brain [20]. Furthermore, recent

studies have investigated the economics implications of several

network types mapping brain function [21,22].

In many situations it can be expected that each node of the

network may handle a limited amount of information. This

structural constraint suggests that information flow networks

should exhibit some topological evidences of the law of diminish-

ing marginal returns [23], a fundamental principle of economics

which states that when the amount of a variable resource is

increased, while other resources are kept fixed, the resulting

change in the output will eventually diminish [24,25]. The purpose

of this work is to introduce a simple dynamical network model

where the topology of connections, assumed to be undirected,

gives rise to a peculiar pattern of the information flow between

nodes: a fat tailed distribution of the outgoing information flows

while the average incoming information flow does not depend on

the connectivity of the node. In the proposed model the units, at
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the nodes the network, are characterized by a transfer function

that allows them to process just a limited amount of the incoming

information. We show that a similar behavior is observed in

another network model, which describes in a different fashion the

law of diminishing marginal returns. Moreover, we also propose

an exactly solvable Ising model on sparse networks, in the limit of

an infinite number of nodes, whose behavior may be seen in the

light of the law of diminishing marginal returns. Finally we show

that this relevant topological feature is found as well in real neural

data.

Materials and Methods

We implement three models on different network structures.

Then we analyze human EEG data.

Model 1
The first model we propose is as follows. Given an undirected

network of n nodes and symmetric connectivity matrix Aij [ f0,1g,
to each node we associate a real variable xi whose evolution, at

discrete times, is given by:

xi(tz1)~F
Xn

j~1

Aijxj(t)

 !
zsji(t), ð1Þ

where j are unit variance Gaussian noise terms, whose strength is

controlled by s; F is a transfer function chosen as follows:

F (a) ~aa DaDvh

F (a) ~ah awh

F (a) ~{ah av{h
ð2Þ

where h is a threshold value. This transfer function is chosen to

mimic the fact that each unit is capable to handle a limited amount

of information. For large h our model becomes a linear map. At

intermediate values of h, the nonlinearity connected to the

threshold will affect mainly the mostly connected nodes (hubs):

the input
P

Aijxj to nodes with low connectivity will remain

typically sub-threshold in this case. We consider hierarchical

networks generated by preferential attachment mechanism [26].

From numerical simulations of eqs. (1), we evaluate the linear

causality pattern for this system as the threshold is varied. We

verify that, in spite of the threshold, variables are nearly Gaussian

so that we may identify the causality with the information flow

between variables [18].

Model 2
We also analyze the following model: to each node of an

undirected network we associate the variable xi whose evolution

is

xi(tz1)~a xj(t)(t)zsji(t), ð3Þ

where j(t) is a node chosen randomly, at each time t, in the set of

the neighboring nodes of i. Equations (3) implement, in a different

way from (1), the occurrence that nodes may handle a limited

incoming information: at each time each node is influenced just by

one other node.

Model 3
As another example we consider a diluted Ising model on a

directed network [27], [28], constructed as follows. The model is

made of N Ising spins si~+1, each connected (with coupling J )

to k input spins, chosen at random among the N{1 remaining

spins. The number of incoming links for each spin, the in-degree

k, is independently sampled with probability Pin(k),
k~1, . . . ,Kmax, Kmax being the maximum value that k may

assume. The dynamics of the system corresponds to parallel

updating of Ising variables fsigi~1,...,N :

p si(t)~z1DS(t{1)ð Þ~ 1

1ze{2hi (t{1)
, ð4Þ

where the local fields are given by

hi(t{1)~J
X
vjiw

sj(t{1) ð5Þ

where the sum is over the input spins of si, and J is the positive

coupling. We will consider the limit Kmax vv lnN: it is well

known that input spins may be treated as independent stochastic

variables in this limit: this makes simple the numerical evaluation

of TE(k), the transfer entropy from one input spin to a target spin

of connectivity k (see, e.g., [29]). For N?? the out-degree of

spins, Pout(k), is a Poisson distribution with parameter

l~
XKmax

k~1

Pin(k)k:

The input flow of information for a spin with in-degree k is

cin(k)~k TE(k),

whilst the average information flow outgoing a spin of out-degree

k is given by

cout(k)~kl
XKmax

q~1

qPin(q)TE(q)

 !
:

The distribution of cin in the whole system is.

rin(c)~
XKmax

k~1

Pin(k)d c{cin(k)ð Þ:

Human EEG Data
As a real example we consider electroencephalogram (EEG)

data. We used recording obtained at rest from 10 healthy subjects.

During the experiment, which lasted for 15 min, the subjects were

instructed to relax and keep their eyes closed. To avoid drowsiness,

every minute the subjects were asked to open their eyes for 5 s.

EEG was measured with a standard 10–20 system consisting of 19

channels [5]. Data were analyzed using the linked mastoids

reference, and are available from [30].

Limited Information Flow in Networks: EEG and Model
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Results

Model 1
Concerning the first model, we compute the incoming and

outgoing information flow from and to each node, cin and cout,

summing respectively all the sources for a given target and all the

targets for a given source. Then we evaluate the standard

deviation of the distributions of cin and cout, varying the realization

of the preferential attachment network and running eqs. (1) for

10000 time points.

In figure 1 we depict R, the ratio between the standard

deviation of cout over those of cin, as a function of the h. As the

threshold is varied, we encounter a range of for which the

distribution of cin is much narrower than that of cout. In the same

figure we also depict the corresponding curve for deterministic

scale free networks [31], which exhibits a similar peak, and for

homogeneous random graphs (or Erdos-Renyi networks [32]),

with R always very close to one. The discrepancy between the

distributions of the incoming and outgoing causalities arises thus in

hierarchical networks. We remark that, in order to quantify the

difference between the distributions of cin and cout, here we use the

ratio of standard deviations but qualitatively similar results would

have been shown using other measures of discrepancy.

In figure 2 we report the scatter plot in the plane cin{cout for

preferential attachment networks and for some values of the

threshold. The distributions of cin and cout, with h equal to 0.012

and corresponding to the peak of figure 1, are depicted in figure 3:

cin appears to be exponentially distributed around a typical value,

whilst cout shows a fat tail. In other words, the power law

connectivity, of the underlying network, influences just the

distribution of outgoing causalities.

In figure 4 we show the average value of cin and cout versus the

connectivity k of the network node: cout grows uniformly with k,

thus confirming that its fat tail is a consequence of the power law

of the connectivity. On the contrary cin appears to be almost

constant: on average the nodes receive the same amount of

information, irrespective of k, whilst the outgoing information

from each node depends on the number of neighbors.

It is worth mentioning that since a precise estimation of the

information flow is computationally expensive, our simulations are

restricted to rather small networks; in particular the distribution of

cout appears to have a fat tail but, due to our limited data, we can

not claim that it corresponds to a simple power-law.

Model 2
A fat tail in the distribution of cout is observed also in model 2: in

figure 5 we depict R as a function of a, for preferential attachment

networks and for different size of the networks: the discrepancy

between the distributions of cin and cout increases as the size of the

network grows while keeping a fixed.

Model 3
As already stated, model 3 is exactly solvable in the limit

N??. In figure 6 we depict cin and cout versus k, for a power law

distribution for connectivity Pin(k)!k{a, a~1:5, Kmax~100 and

J~0:5. The incoming information flow tends to saturate for spins

with large in-degree.

In figure 7 we depict rin(c) for several values of J corresponding

to a power law distribution for in-degree of spins characterized by

a~1:5. For low J the distribution of cin appears to be a power law

as the in-degree distribution: rin(c)!J2(a{1)c{a at small J .

Increasing J, the distribution tends to became exponential, in

spite of the power law of input connectivity. These results are

robust w.r.t. changes in the exponent a.

EEG Data
For each subject we considered several epochs of 4 seconds in

which the subjects kept their eyes closed. For each epoch we

computed multivariate Kernel Granger Causality [15] using a

linear kernel and a model order of 5, determined by leave-one-out

cross-validation. We then pooled all the values for information

flow towards and from any electrode and analyzed their

distribution.

In figure 8 we plot the incoming versus the outgoing values of

the information flow, as well as the distributions of the two

quantities: the incoming information seems exponentially distrib-

uted whilst the outgoing information shows a fat tail. These results

suggest that overall brain effective connectivity networks may also

be considered in the light of the law of diminishing marginal

returns.

More interestingly, this pattern is reproduced locally but with a

clear modulation: a topographic analysis has also been made

considering the distribution of incoming and outgoing causalities

at each electrode. In figure 9 we show the distributions of

incoming and outgoing connections corresponding to the

electrodes locations on the scalp, and in figure 10 the

corresponding map of the parameter R; the law of diminishing

marginal returns seems to affect mostly the temporal regions. This

well defined pattern suggests a functional role for the distributions.

It is worth to note that this pattern has been reproduced in other

EEG data at rest from 9 healthy subjects collected for another

study with a different equipment.

Discussion

In this work we have pointed out that the pattern of information

flow among variables of a complex system is the result of the

interplay between the topology of the underlying network and the

capacity of nodes to handle the incoming information. Imple-

Figure 1. Modulation of R for different network architectures.
The ratio between the standard deviation of cout and those of cin, R, is
plotted versus h for the three architectures of network: preferential
attachment (PRE), deterministic scale free (SFN) and homogeneous
(HOM). The parameters of the dynamical system are a~0:1 and s~0:1.
Networks built by preferential attachment are made of 30 nodes and 30
undirected links, while the deterministic scale free network of 27 nodes
is considered. The homogeneous networks have 27 nodes, each
connected to two other randomly chosen nodes.
doi:10.1371/journal.pone.0045026.g001
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menting two simple toy models on different network structures, we

have shown that they may exhibit the law of diminishing marginal

returns for a suitable choice of parameters: the presence of nodes

with different in-degree is a fundamental ingredient for these

phenomena. Our simulations for these two models are restricted to

rather small networks, due to the computational burden. However

to address this issue we have also proposed an Ising model on a

sparse network, which can be exactly solved in the limit of an

Figure 2. Incoming and outgoing information and coupling. Scatter plot in the plane cin{cout for undirected networks of 30 nodes and 30
links built by means of the preferential attachment mechanism. The parameters of the dynamical system are a~0:1 and s~0:1. The points represent
the nodes of 100 realizations of preferential attachment networks, each with 10 simulations of eqs. (1) for 10000 time points. (Top-left) Scatter plot of
the distribution for all nodes at h~0:001. (Top-right) Contour plot of the distribution for all nodes at h~0:012. (Bottom-left) Scatter plot of the
distribution for all nodes at h~0:1. (Bottom-right) The total causality (obtained summing over all pairs of nodes) is plotted versus h; circles point to
the values of h in the previous subfigures.
doi:10.1371/journal.pone.0045026.g002

Figure 3. Distributions of information flow for the preferential attachment network. For the preferential attachment network, at h~0:012,
the distributions (by smoothing spline estimation) of cin and cout are depicted. Units on the vertical axis are arbitrary.
doi:10.1371/journal.pone.0045026.g003
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infinite number of nodes; a similar behavior emerged as well in this

case.

The analysis of a real EEG data-set has shown that similar

patterns exist for brain signals and could have a specific functional

role. We remark that the distribution of in-degree in resting state

fMRI directed networks has been observed to fit an exponentially

truncated power law [33]; in the same study the architecture of

directed networks was presented as a complement to the same

work performed in anatomical and functional connectivity.

Figure 4. Information flow versus connectivity. In the ensemble of preferential attachment networks of figure (2), at h~0:012, cin and cout are
averaged over nodes with the same connectivity and plotted versus the connectivity.
doi:10.1371/journal.pone.0045026.g004

Figure 5. Influence of the network size on R. For the model (3) the ratio R, between the standard deviation of cout and those of cin , is depicted
versus a. Preferential attachment networks, of n nodes and n links, are considered.
doi:10.1371/journal.pone.0045026.g005
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Apart from fMRI, there is an increasing interest in investigating

resting state networks from EEG recordings [34]. The findings of

our study could then represent an additional feature to consider in

these networks.

The study of information flow mechanisms is crucial in brain

research, and effective methods to mine the information flow

pattern from data have been recently introduced. Recently

interesting contributions, towards a better understanding of

communications in brain, have been provided [35]. Our results,

thus, may be relevant to get a better characterization of the

topology of brain networks.

Figure 6. Information flow distributions for the Ising model. The total transfer entropy versus the in-degree and the out-degree for the Ising
model.
doi:10.1371/journal.pone.0045026.g006

Figure 7. Modulation of incoming information for the Ising model. The distribution of cin, for the Ising model, with J varying from 0:05 to 0:5
with step 0:05 (from the left to the right).
doi:10.1371/journal.pone.0045026.g007
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Figure 8. Incoming and outgoing information for EEG data. For the EEG data the distributions of cin and cout are depicted in a scatter plot
(left) and in terms of their distributions, obtained by smoothing spline estimation (right).
doi:10.1371/journal.pone.0045026.g008

Figure 9. Topological probability distributions. The distributions for incoming (above, light grey) and outgoing (below, dark grey) information
at each EEG electrode displayed on the scalp map (original binning and smoothing spline estimation).
doi:10.1371/journal.pone.0045026.g009
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In general, evidences of the law of diminishing marginal

returns are related to the presence of units which are close to be

receiving the maximal amount of information that they can

process. A similar interpretation may apply in neuroscience.

Indeed the brain is an expensive part of human body, and the

organization of brain networks can be explained by a parsimo-

nious drive; it has been proposed that connectomes organization

corresponds to a trade-off between minimizing costs and the

emergence of functional connectivity between multiple neural

populations [22]. This economical principle in brain networks

may also be connected to the presence, under particular

circumstances, of brain units receiving the maximal amount of

information in input. Such situations will display evidences of the

law of diminishing marginal returns and should be put in

evidence by the proposed analysis.

We should as well mention that there are other measures of

directed brain connectivity, such as Directed Transfer Function,

Partial Directed Coherence and Phase Slope Index, for which the

interpretation in terms of information flow is still debated [36]. On

the other hand we verified that a significant discrepancy between

the distributions of incoming and outgoing connectivities holds

also for these methods. Furthermore, bivariate measures do not

display this asymmetry of the distributions of cin and cout: this is

not surprising, indeed it is well known that bivariate causality also

account for indirect interactions, see e.g. [17]. Here we limited

ourselves to linear information flow; the amount of nonlinear

information transmission and its functional roles are not clear [37].

It will be interesting to investigate these phenomena also in the

nonlinear case.
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