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Abstract

The pathophysiological hallmark of spotted fever group rickettsioses comprises vascular inflammation. Based on the
emerging importance of the wingless (Wnt) pathways in inflammation and vascular biology, we hypothesized that
Dickkopf-1 (DKK-1), as a major modulator of Wnt signaling, could be involved in the pathogenesis in rickettsial infections.
Our major findings were: (i) While baseline concentration of DKK-1 in patients with R. conorii infection (n = 32) were not
different from levels in controls (n = 24), DKK-1 rose significantly from presentation to first follow-up sample (median 7 days
after baseline). (ii) In vitro experiments in human umbilical vein endothelial cells (HUVECs) showed that while heat-
inactivated R. conorii enhanced the release of interleukin-6 (IL-6) and IL-8, it down-regulated the release of endothelial-
derived DKK-1 in a time- and dose-dependent manner. (iii) Silencing of DKK-1 attenuated the release of IL-6, IL-8 and
growth-related oncogene (GRO)a in R. conorii-exposed HUVECs, suggesting inflammatory effects of DKK-1. (iv) Silencing of
DKK-1 attenuated the expression of tissue factor and enhanced the expression of thrombomodulin in R. conorii-exposed
HUVECs suggesting pro-thrombotic effects of DKK-1. The capacity of R. conorii to down-regulate endothelial-derived DKK-1
and the ability of silencing DKK-1 to attenuate R. conorii-induced inflammation in endothelial cells could potentially reflect a
novel mechanism by which R. conorii escapes the immune response at the site of infection.
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Introduction

Rickettsiae are Gram-negative intracellular bacteria transmitted

by arthropod vectors. Rickettsioses can present clinically in an

array of different clinical symptoms; the most consistent being

fever, myalgia, lymphadenopathy, and headache, with or without

eschar and/or maculopapular eruption [1]. The clinical spectrum

of spotted fever group (SFG) rickettsioses varies in severity from

mild to potentially lethal disease with systemic multi-organ

involvement such as in some cases of Rocky Mountain spotted

fever (RMSF) caused by Rickettsia rickettsii (R. rickettsii) and

Mediterranean spotted fever (MSF) caused by R. conorii [1].

The pathophysiological hallmark of SFG rickettsioses comprises

infection of endothelial cells and subsequent perivascular infiltra-

tion of T cells and monocytes/macrophages, resulting in vasculitis,

with increased microvascular permeability and in some cases,

cerebral and pulmonary edema [1,2]. This interaction between

microbe and endothelial cells triggers innate immune responses,

including the production of several cytokines by endothelial and

non-endothelial cells, representing both beneficial (i.e., anti-

microbial) and detrimental (e.g., tissue destruction and excessive

inflammation) responses in relation to the infected host [1,2].

Immune escape or immune evasion is an important mechanism

for microbe survival within the host to avoid innate and adaptive

immune responses. Such mechanisms are of importance in viral,

bacterial and parasitic infection, and are thought to be of

particular relevance for intracellular bacterial infection [3]. The

immune evasion mechanisms for bacteria involve molecular

mimicry, suppression of antibodies, hiding inside cells and

inhibition of phagocytosis [3]. There are also some reports

suggesting that such mechanisms could be operating in Rickettsial

infection [2,4], but these issues are far from clear.

The wingless (Wnt) pathway involves a large number of proteins

that participate in a range of developmental and physiological

processes including cardiac and vascular development. Wnt

signaling is regulated by multiple families of secreted antagonists
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such as soluble frizzled related receptors and dickkopfs (DKKs).

The best studied of these is DKK-1, which dampens the Wnt

signal by binding to the LPR5/6 receptor and a cell surface co-

receptor, Kremen-1/2, promoting internalization of the receptor

complex [5]. In adults, DKK-1 has been implicated in the

pathogenesis of bone disease, cancer, Alzheimer’s disease, and

brain ischemia [5,6]. Recent studies also point to an important

role of the Wnt signaling pathways and DKK-1 in the regulation

of inflammation. Thus, activation of the canonical Wnt/b-catenin

pathway induces proliferation and survival of endothelial cells,

enhances monocyte adhesion, and regulates transendothelial

migration of monocytes [7–10]. Also, the destructive effect of

tumor necrosis factor a (TNFa) on joints in rheumatoid arthritis

was found to involve DKK-1 [6], and we have shown that platelet-

and endothelial-derived DKK-1 could contribute to vascular

inflammation in atherosclerosis [11]. The Wnt signaling pathway

has recently also been implicated in the pathogenesis of certain

infectious disorders including septicemia [12] and infection by

intracellular pathogens (i.e., Chlamydia infection) [13].

Based on the emerging importance of the Wnt signaling

pathways in inflammation and vascular biology, we hypothesized

that DKK-1, as a major modulator of Wnt signaling, could be

involved in the pathogenesis of rickettsial infections. Here, this

hypothesis was investigated by various experimental approaches

including in vivo studies in patients with R. conorii infection as well as

in vitro studies focusing on the role of DKK-1 in the interaction

between R. conorii and endothelial cells using heat-inactivated R.

conorii as a model for the early phase of this interaction.

Methods

Patients and controls
Thirty-two consecutively recruited patients (17 women and 15

men, 19–90 [mean 61.5] years of age) with MSF, confirmed by

seroconversion, admitted to the Termini Imerese Hospital

Palermo, Palermo, Italy, between June and September 2005,

were included in the study [14]. They all had characteristic signs

and symptoms of active MSF (fever, eschar at the site of tick bite,

and maculopapular rash). The duration of illness before diagnosis

was less than 2 weeks. One patient received cephalosporin, two

ciprofloxacin, one received no treatment, whereas the remaining

patients were treated with tetracycline (500 mg 4 times a day for 7

days). All patients with MSF had seroconversion with increases in

the levels of anti-R. conorii antibodies as assessed by enzyme-linked

immunosorbent assay (ELISA) and indirect immunofluorescence

assay [15]. Twenty-four healthy subjects (9 women and 15 men,

aged 21–67 [mean 43.4] years), recruited from the same area of

Italy, were included in the study as controls. All controls were

healthy individuals as assessed by disease history, clinical

examination and normal C-reactive protein levels, with no signs

of concomitant disease that could interfere with DKK-1 levels. All

patients were invited to sign the medical records and received

information and consented that their blood sampling might be

used for future investigations regarding their disease.

All parts of the study were approved by the local ethical

committee and conducted according to the ethical guidelines from

the declaration of Helsinki (Ref IRB, Termini Imerese Hospital

Palermo, Palermo, Italy and Regional Committee for Medical and

Research Ethics, South-East, Norway, ref 248-08/239 2008/230).

Blood sampling protocol
Blood was collected both at first presentation (less than 2 weeks

after the onset of the symptoms and before specific treatment), and

at two times during follow-up (median 7 days and .21 days after

baseline samples). At the last blood sampling, all patients had

recovered and were free of clinical symptoms. Peripheral venous

blood was drawn into pyrogen-free, vacuum blood collection tubes

without any additives, immediately immersed in melting ice and

allowed to clot before centrifugation at 2000g for 10 minutes.

Serum was stored at 280uC until analysis and samples were

thawed less than three times.

Bacteria
R. conorii (Malish strain) were grown in Vero cell monolayers in

150 cm2 tissue culture flasks, cultured in Modified Eagle Medium

(MEM; Gibco, Paisley, UK), supplemented with 4% fetal calf

serum (FCS) and 2 mM L-glutamine. Heavily infected cells (5 days

post-inoculation) were harvested with sterile glass beads and

pelleted by centrifugation at 10,000g for 15 minutes. Antigens used

were purified by sucrose gradients and were entire bacterial

antigens. The pellets were resuspended in sterile distilled water so

that each suspension had the same density of organisms as

determined microscopically at 6100 magnification [16]. Different

dilutions of this suspension were used for in vitro experiments. The

batch contained 10 million rickettsiae/ml and was diluted in

phosphate buffered saline (PBS) before being added to the cell

cultures. Heat-inactivated organisms were obtained by heating at

60uC for 30 minutes. All experiments with live bacteria were

conducted under Biosafety Level 3 (BSL3) conditions.

Endothelial cell culture
Human umbilical vein endothelial cells (HUVECs) were

obtained from umbilical cord veins by digestion with 0.1%

collagenase A (Roche Diagnostics GmbH, Mannheim, Germany)

and cultured as previously described [17]. HUVECs were

passaged by treatment with 0.05% trypsin-EDTA (Gibco) and

grown to confluence for 3 to 5 days. The HUVECs were used at

passage levels 4–9. The medium was then discarded, and

HUVECs were stimulated with different concentrations of heat-

inactivated R. conorii in MCDB-131 serumfree medium (Sigma St.

Louis MO), except for the long-term stimulations (up to 120 hrs),

when it was supplemented with 50% fetal bovine serum (Gibco).

In a separate set of experiments, HUVECs were transfected with

small interfering RNA (siRNA) against DKK-1 prior to exposure

to heat-inactivated R. conorii (see below). Cell-free supernatants and

cell pellets were harvested after various time points and stored at

280uC until analyses. The density of the endothelial cells were

,86.000 cells per well, and as an example, 46105 bacteria per ml

will give approximately 1.4 bacteria/cell. The toxicity in cell

cultures was examined for lactate dehydrogenase leakage using a

cytotoxicity detection kit (Roche Applied Science, Indianapolis,

IN).

Cultures of THP-1 macrophages and vascular smooth
muscle cells (SMC)

In a separate set of experiments, Tamm-Horsfall protein 1

(THP-1) macrophages and vascular SMC were incubated with

heat-inactivated R. conorii. The human monocytic cell line THP-1

(American Type Culture Collection, Rockville, MD) was cultured

in RPMI 1640 (PAA laboratories, Pasching, Austria), supplement-

ed with 2.5% fetal bovine serum. Before the experimental start,

the THP-1 cells were differentiated into macrophages by

incubation for 24 hours with phorbol myristate acetate (PMA,

100 nM; Sigma) before resting for additional 48 hours, and

further incubated with or without heat-inactivated R. conorii.

Human aortic SMC were obtained from PromoCell GmbH

(Heidelberg, Germany) and grown in SMC Growth Medium 2

DKK-1 in Rickettsia conorii Infection
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with complete supplement mix (PromoCell). At 90% confluence,

the culture was trypsinized and replated. At experimental start, the

cells were cultured in Optimem with Glutamax (Gibco-Invitrogen,

Carlsbad, CA) with or without heat-inactivated R. conorii. At

different time points, cell-free supernatants were harvested and

stored at 280uC.

Preparation and stimulation of platelets
Preparation and stimulation of platelets were performed as

previously described [18]. Briefly, one-fourth volume of acid-

citrate-dextrose (85 mM trisodium citrate, 71.4 mM citric acid

and 111 mM glucose, pH = 4.5) was added to platelet-rich plasma

prior to centrifugation at 1,500g for 7 minutes at 22uC. The

platelets were then resuspended in MCDB-131 media (56108

platelets/ml) before stimulation with R. conorii for 1 hour. DKK-1

levels were determined in platelet-free solution (centrifugation of

platelet suspension for 5 minutes at 10,000g) at the end of the

experiment.

Whole blood experiments
Human whole blood from four different healthy donors was

collected. The blood was anti-coagulated with lepirudin (50 mg/

ml), and immediately split into sterile polypropylene tubes (1.8 ml

NUNC cryotubes) for incubation. The blood was incubated under

tilting for 4 hours at 37uC with and without heat-inactivated R.

conorii diluted in PBS with CaCl2 and MgCl2 (Sigma). Further

activation was blocked by adding EDTA (10 mM). The tubes were

centrifuged for 15 minutes at 4000g at 4uC. Plasma was stored at

280uC until being analyzed for DKK-1-release.

Preparation and transfection of siRNA
siRNAs with the following sense and antisense sequences were

used: DKK-1, first strand (sense), 59-GCUUCACACUUGUCA-

GAGAtt-39, second strand (antisense), 59-UCUCUGACAAGU-

GUGAAGCct-39. Scrambled control, a non-targeting siRNA

(siSCR), was used as control. All sequences were provided from

Applied Biosystems (Foster City, CA). For transfection, 50 nM

siRNA duplexes and 6 ml HiPerFect transfection reagent (Qiagen,

Hilden, Germany) were prepared in OptiMem with glutamax-1

(Gibco-Invitrogen, Carlsbad, CA), and added when HUVECs

reached 70% confluence at a final volume of 300 ml in 12-well

plates (Costar, Cambridge, MA). The concentration of siRNA

duplexes (50 nM) was based on dose-response efficacy experiments

and toxicity studies (lactate dehydrogenase [LDH] release), and

importantly, there was no difference in LDH-release between

siDKK-1 and siSCR exposed HUVECs. After 6 hours, 300 ml

medium with 10% FCS was added to the cells for overnight

incubation. After 24 hours incubation, the cells were cultured with

or without R. conorii as described above. In a separate experiment,

the transfected cells were incubated with or without different

concentration of recombinant DKK-1 (R&D Systems, Minneap-

olis, MN).

Isolation of nuclear and cytoplasmic extract of HUVECs
The cells were seeded in 12 well plates and grown to confluence.

They were treated for 15 and 120 min with vehicle and R. conorii,

(n = 4), and washed twice with cold PBS. Thereafter cells were

scraped and resuspended in cell lysis buffer (10 mM Tris-HCl

pH 7.4, 10 mM NaCl, 3 mM MgCl, protease inhibitor cocktail

tablet [EDTA-free; Roche, Basel, Switzerland], 1 mM phenyl-

methylsulfonyl fluoride, 0.3% Igepal) on ice, and centrifuged at

5000g for 6 minutes at 4uC. The supernatant fraction (cytoplasmic

extract) was removed, centrifuged again at 5000g for 6 minutes at

4uC and supernatants were stored at 80uC until further analyses.

The cell pellet (nuclear fraction) was washed twice in cell lysis

buffer, (10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl,

protease inhibitor cocktail tablet [EDTA-free; Roche, Basel,

Switzerland], 1 mM phenylmethylsulfonyl fluoride) on ice, and

resuspended in another cell lysis buffer (50 mM Hepes pH 7.5,

125 mM NaCl, 0.5% Igepal, 1 mM EDTA, 5% glycerol, 1 mM

NaF, protease inhibitor cocktail tablet [EDTA-free; Roche],

1 mM phenylmethylsulfonyl fluoride), briefly sonicated (approx.

2 sec), centrifuged at 5000g for 6 minutes at 4uC and supernatants

were stored at 80uC until further analyses.

Intracellular total b-catenin measurements
Both phosphorylated and unphosporylated b-catenin was

measured by ELISA from R&D Systems in nuclear and

cytoplasmic cell fractions and correlated to total protein (BCA

Protein Assay Kit; Pierce, Rockford, IL).

Real-time quantitative RT-PCR
Total RNA was extracted from HUVECs using RNeasy

columns (Qiagen), subjected to DNase I treatment, and stored in

RNA storage solution (Ambion, Austin, TX) at 280uC. Primers

for DKK-1 (forward primer [FP]: 59-GGGAATTACTG-

CAAAAATGGAATA-39 and reverse primer [RP]: 59-AT-

GACCGGAGACAAACAGAAC-39), interleukin-6 (IL-6) (FP: 59-

AGCCCTGAGAAAGGAGACATGTA-39 and RP: 59-

CATCTTTGGAAGGTTCAGGTTGT-39), monocyte chemoat-

tractant protein 1 (MCP-1) (FP: 59-AAGCTGTGATCTTCAA-

GACCATTGT-39 and RP: 59-TGGAATCCTGAACC-

CACTTCTG-39), growth-related oncogene (FP: 59-

TGCGCCCAAACCGAAG-39 and RP: 59-TGCAGGATT-

GAGGCAAGCTT-39), IL-8 (FP: 59-GCCAACACAGAAAT-

TATTGTAAAGCTT-39 and RP: 59-CCTCTGCACC-

CAGTTTTCCTT-39), plasminogen activator inhibitor (PAI)-1

(FP: 59-AGGCTGACTTCACGAGTCTTTCA-39 and RP: 59-

GCTGAGACTATGACAGCTGTGGAT-39), tissue factor (TF)

(FP: 59-GCGCTTGAGGCACTAAAAT-39 and RP: 59-

TTTGCTTTTCCAATCTCCTGA-39), and thrombomodulin

(FP: 59-CCCAACACCCAGGCTAGCT-39 and RP: 59-

CGTCGATGTCCGTGCAGAT-39) were designed using the

Primer Express software, version 2.0 (Applied Biosystems).

Quantification of mRNA was performed using the ABI Prism

7500 (Applied Biosystems). Gene expression of the housekeeping

gene b-actin (Applied Biosystems) was used for normalization.

ELISA
Levels of IL-6, IL-8, MCP-1, GROa, and DKK-1 were

measured by ELISAs obtained from R&D Systems. The intra-

and inter-assay coefficients of variations were ,10% for all

ELISAs. To further minimize run-to-run variability, serial samples

from a given individual were analyzed on the same tray.

Statistical methods
In vivo data (i.e. serum) were analyzed by non-parametric

statistics: Mann-Whitney U test for comparing patients and

controls and Wilcoxon signed-rank test for comparing changes

in individuals over time. In addition, linear regression was used to

verify differences in DKK-1 levels due to differences in age

between patients and controls (i.,e., log transformed DKK-1 levels

as dependent variable and age and group as independent in a

forced linear regression). For in vitro data, parametric statistics were

used. When two groups were compared (i.e. siRNA experiments

comparing the same time point or R. conorii concentration between

DKK-1 in Rickettsia conorii Infection
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siSCR and siDKK-1), unpaired t-tests were used, while in some

dose experiments with 3 or more groups to compare (i.e. un-

stimulated and 2 or 3 doses), a one way ANOVA was used first

and if significant, unpaired t-test was used to compare differences

with the un-stimulated situation. The level of significance was set

at p,0.05.

Results

Serum levels of DKK-1 in MSF patients
While baseline (less than 2 weeks after the onset of the

symptoms and before specific treatment) concentrations of DKK-1

in patients with MSF (n = 32) were not different from levels in

healthy controls (n = 24), DKK-1 rose significantly from presen-

tation to first follow-up sample (median 7 days after baseline),

reaching levels that were 2-fold higher than in healthy individuals

(Figure 1). This late surge is in contrast to the immediate increase

in levels of established inflammatory parameters such as IL-8 and

circulating adhesion molecules that are seen during R. conorii

infection [14]. After recovery (.21 days after baseline), DKK-1

decreased to reach the same levels as on first presentation

(Figure 1).

The control group was somewhat younger than the MSF

patients (see Methods), but we found no significant or non-

significant trend for the association between age and DKK-1 levels

in neither patients nor controls (data not shown). However, as

there was a significant difference in age between patients and

controls, we wanted to make it clear that the differences in DKK-

1-levels were not due to age differences and importantly, a

significant difference (p = 0.003) in DKK-1 levels at time point 2

(first follow-up sample) between patients and controls was observed

also when adjusting for age using linear regression. Blood samples

from the control group were only collected at one time point.

However, when collecting serum samples longitudinally (baseline,

1 week and 3 weeks) from 9 additional healthy controls to evaluate

the stability of DKK-1 levels over time, the coefficient of variation

for DKK-1 levels was 16.7612.6%. Although this reflects some

variation, it is clearly below the increase in DKK-1 levels from

baseline to time point 2 in MSF patients (Figure 1).

Effects of heat-inactivated R. conorii in endothelial cells
We have previously shown that endothelial cells release large

amounts of DKK-1 upon activation [11], and these cells are also

clearly relevant in relation to rickettsial infection. We therefore

next examined the ability of heat-inactivated R. conorii to modulate

DKK-1 release in HUVECs. As shown in Figure 2, R. conorii

promoted a significant decrease in the release of DKK-1 from

HUVECs in a dose- and time-dependent manner, with a maximal

suppression after 120 hours at a concentration of 105/ml. In

contrast to this suppressive effect on DDK-1 release, R. conorii

enhanced the release of the prototypical inflammatory cytokines

IL-8 and IL-6, emphasizing that R. conorii may differentially

regulate DKK-1 and inflammatory cytokines (i.e., IL-8 and IL-6)

in HUVECs (Figure 2). The culture media was not changed

during the culture period (120 hours), and the increase in IL-6 and

IL-8 levels over time most probably reflects accumulation of these

proteins in combination with enhanced synthesis.

Effects of heat-inactivated R. conorii on DKK-1 release in
other cells with relevance to MSF

Platelets have been shown to release significant amounts of

DKK-1 upon activation [11], and we have previously shown that

heat-inactivated R. Africae could promote platelet action [19]. To

Figure 1. Serum levels of DKK-1 in patients with MSF. The figure
shows serum DKK-1-levels measured at baseline (BL), first follow-up (T1,
median 7 days after baseline) and after recovery (T2, .21 days after
baseline) in 32 patients with MSF and in 24 healthy controls (grey area
represent mean695% CI of healthy controls). Data are given as
mean6SEM. {P,.001 vs. baseline, *P,.001 vs. controls.
doi:10.1371/journal.pone.0043638.g001

Figure 2. The effect of R. conorii on cytokine in release in
HUVECs. The figure shows the effect of different concentrations of
heat-inactivated R. conorii on the release of IL-8 (left panels), IL-6
(middle panels) and DKK-1 (right panels) in HUVECs after culturing
for 5 (A), 24 (B), 48 (C) and 120 (D) hours. Data are given as mean6SEM
(n = 6). *P,.05, **P,.01 and ***P,.001 vs. un-stimulated cells (US).
doi:10.1371/journal.pone.0043638.g002

DKK-1 in Rickettsia conorii Infection
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examine wether platelets and other cells with relevance to R. conorii

infection could contribute to serum levels of DKK-1 during MSF,

we examined the ability of heat-inactivated R. conorii to modulate

the release of DKK-1 in vascular SMC, macrophages, whole

blood cultures and platelets. As in endothelial cells, R. conorii down-

regulated DKK-1 release in vascular SMC, but the levels were in

general markedly lower than in endothelial cells (Figure 3). In

contrast, heat-inactivated R. conorii enhanced the release of DKK-1

from washed platelets and whole blood with the same pattern in

these two cell cultures, potentially reflecting effects on platelets in

the whole blood culture (Figure 3). Finally, R. conorii had no effect

on the release of DKK-1 in THP-1 macrophages (Figure 3).

Heat-inactivated R. conorii activates the Wnt pathway in
endothelial cells

To examine if endothelial-derived DKK-1 could modulate the

interactions between R. conorii and endothelial cells, we first

examined if heat-inactivated R. conorii could activate the Wnt

pathway in these cells. The canonical Wnt/b-catenin pathway

stimulates stabilization and accumulation of cytosolic, and then

later nuclear b-catenin, which binds to sensitive transcription

factors [20]. As shown in Figure 4, heat-inactivated R. conorii

induced accumulation of b-catenin within the nucleus after

2 hours, suggesting that R. conorii promotes activation of canonical

Wnt/b-catenin pathway in HUVECs.

Effect of silencing DKK-1 on the R. conorii-mediated
induction of inflammatory cytokines in endothelial cells

In order to further examine the interaction between R. conorii

and the Wnt pathway, we transfected HUVECs with siRNA

probes to silence DKK-1. HUVEC spontaneously expressed large

amounts of DKK-1 at both mRNA and protein levels, and we

found successful silencing of DKK-1 as assessed by real-time RT-

PCR (,48%) and by ELISA (,78%) 48 hours post-transfection

(Figure 5). Heat-inactivated R. conorii induced a significant increase

in IL-6, IL-8 and GROa levels compared with un-stimulated cells,

although the increase in GROa was only seen at the mRNA level

(Figure 5). Notably, silencing DKK-1 attenuated the R. conorii-

mediated release of these inflammatory cytokines (Figure 5). This

effect was particularly marked for IL-6, but did not reach statistical

significance for IL-8 (p = 0,19) (Figure 5). The cells were cultured

with heat-inactivated R. conorii for 24 hours following the initial

24 hours of transfection. The same patterns were also seen at the

mRNA levels (6 hours), suggesting that DKK-1 influences the

production and not only the release of these inflammatory

mediators (Figure 5). Silencing DKK-1 markedly down-regulated

the inflammatory response upon exposure to heat-inactivated R.

conorii. Still, the R. conorii-induced IL-6 and IL-8 response at the

protein level, but not the GROa response that was even lower

than in un-stimulated cells, was significantly increased as

compared to the un-stimulated condition in non-silenced cells

(Figure 5). In contrast to the effect on IL-6, IL-8 and GROa,

silencing DKK-1 did not modulate the R. conorii-induced

expression of MCP-1 neither at protein nor mRNA levels (data

not shown).

Figure 3. The effect of R. conorii on DKK-1 release in various
cells and cell lines. The figure shows the effect of heat-inactivated R.
conorii (105/ml A–C, 104/ml D) on the release of DKK-1 in cell free
supernatants in vascular SMC (A, culture time 20 hours), THP-1
macrophages (B, culture time 20 hours), washed platelets (C, culture
time 1 hour) and whole blood (D, culture time 4 hours). Data are given
as mean6SEM (n = 4–6). *P,.05 and ***P,.001 vs. un-stimulated cells
(US).
doi:10.1371/journal.pone.0043638.g003

Figure 4. The effect of R. conorii on b-catenin activation in HUVECs. The figure shows the effect of heat-inactivated R. conorii (400,000/ml) in
HUVECs on the accumulation of total (phosphorylated and non-phosphorylated) b-catenin in cytosol (A) and within the nucleus (B) after culturing for
15 minutes (min) and 2 hours (h). Data are given as mean6SEM (n = 6). ***P,.001 vs. un-stimulated cells (US) at the same time point.
doi:10.1371/journal.pone.0043638.g004

DKK-1 in Rickettsia conorii Infection
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Effect of silencing DKK-1 on the heat-inactivated R.
conorii-mediated induction of pro- and anti-thrombotic
mediators in endothelial cells

In addition to vasculitis, thrombus formation related to

endothelial cell activation is an important clinical manifestation

of SFG rickettsioses [4,19]. We therefore next examined the effect

of silencing DKK-1 on the R. conorii-induced expression of

endothelial-derived pro- (i.e., TF and PAI-1) and anti- (i.e.,

thrombomodulin) thrombotic mediators. While heat-inactivated

R. conorii enhanced the expression of TF in scrambled control cells,

silencing DKK-1 attenuated mRNA levels of TF after culturing

for 6 hours in both un-stimulated and R. conorii-exposed cells

Figure 5. The effect of silencing DKK-1 on the R. conorii-induced cytokine levels in HUVECs. The figure shows the effect of different
concentrations of R. conorii in HUVECs on mRNA expression (left panel) and release of protein in cell supernatants (right panel) of DKK-1 (A), IL-6 (B),
IL-8 (C) and GROa (D) in the presence (siDKK, filled bars) and absence (siSCR, open bars) of siRNA probes to silence DKK-1. Silencing for 24 hours plus
culturing for 6 (mRNA) and 24 (protein) hours respectively. Data are given as mean6SEM (n = 4). **P,.01, ***P,.001 vs. siSCR treated cells (control
cells). {P,.05, {{P,.01 and {{{P,.001 vs. un-stimulated (US) siSCR treated cells.
doi:10.1371/journal.pone.0043638.g005
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(Figure 6). In contrast, whereas R. conorii decreased the expression

of thrombomodulin in control cells, silencing DKK-1 enhanced

mRNA levels of this anti-thrombotic mediator in both un-

stimulated and R. conorii-stimulated cells suggesting anti-throm-

botic net effects of silencing DKK-1 in endothelial cells (Figure 6).

In fact, silencing of DKK-1 resulted in a significant decrease in

TF in R. conorii-exposed cells even compared with un-stimulated

non-silenced cells (Figure 6). As for PAI-1 mRNA levels, there

were no significant differences between silenced and non-silenced

HUVECs in either un-stimulated or R. conorii-exposed cells

(Fig. 6).

Recombinant DKK-1 attenuates, but does not abolish,
the suppressive effect of silencing DKK-1 on IL-6 release
in HUVECs

To further explore the role of DKK-1 in endothelial-related

inflammation, we examined if recombinant DKK-1 could

counteract the down-regulatory effect of silencing DKK-1 on

IL-6 release. As shown in Figure 7, when adding recombinant

DKK-1 to HUVECs that had silenced DKK-1, there was a dose-

dependent increase in IL-6 release reaching statistical significance

at a concentration of 1 mg/ml. However, although significant, the

increase was rather modest (20%), and the addition of recom-

binant DKK-1 did not reverse the inhibitory effect of siDKK-1

on IL-6 release. This may suggest that it is the intracellular and

not the secreted form of DKK-1 that is of most importance for

the effect of DKK-1 on inflammatory mediators in endothelial

cells.

Discussion

The infection of endothelial cells and subsequent perivascular

infiltration of leukocyte subpopulations is a major feature of

infection with R. conorii and other SFG rickettsioses [2,4]. This

inflammatory interaction between R. conorii and endothelial cells

involves the release of inflammatory cytokines and chemokines as

well as up-regulation of adhesion molecules on endothelial cells

and leukocytes [2,4,14]. The inflammatory response within the

Figure 6. The effect of silencing DKK-1 on the R. conorii-induced levels of pro- and anti-thrombotic mediators in HUVECs. The figure
shows the effect of different concentrations of R. conorii in HUVEC on mRNA expression of tissue factor (TF), plasminogen activator inhibitor (PAI-1)
and thrombomodulin (TM) in the presence (siDKK, filled bars) and absence (siSCR, open bars) of siRNA probes to silence DKK-1 after silencing for
24 hours with additional culturing for 6 hours. Data are given as mean6SEM (n = 4). *P,.05, ***P,.001 vs. siSCR treated cells (control cells). {P,.05
and {{P,.01 vs. un-stimulated (US) siSCR treated cells.
doi:10.1371/journal.pone.0043638.g006

Figure 7. The effect of different concentrations of recombinant
DKK-1 (mg/ml) on the release of IL-6 in HUVECs in the presence
of siRNA probes to silence DKK-1 (culture time 24 hours). Data
are given as mean6SEM (n = 4). *P,.05 vs. un-stimulated cells (US).
doi:10.1371/journal.pone.0043638.g007
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endothelium may be of importance for clearance of the bacteriae,

whereas an overwhelming and persistent inflammatory response

could also contribute to tissue damage and disease progression. In

the present study we report for the first time an interaction

between R. conorii and the Wnt pathway in the endothelium, with a

decreased release of endothelial-derived DKK-1 in R. conorii

exposed cells. Based on our finding in siDKK-1 transfected cells,

with markedly attenuated inflammatory responses in cells with

decreased DKK-1 expression, it is tempting to hypothesize that

the R. conorii-induced down-regulation of endothelial-derived

DKK-1 may reflect an immune evasion mechanism that facilitates

rickettsial infection in the vascular bed.

Activation of the Wnt signaling pathway has been suggested to

promote inflammation [7–10,12], but there are also some reports

indicating that this pathway could be involved in anti-inflamma-

tory responses. Hence, recent studies suggest that DKK-1, an

inhibitor of the Wnt signaling pathway, possess inflammatory

properties. DKK-1 has been shown to trigger inflammation-

induced bone loss [6,21]. In endothelial cells, DKK-1 has been

found to promote angiogenesis and enhance the inflammatory

interaction between platelets and endothelial cells [11,22]. In the

present study we extend these findings by showing that silencing

DKK-1 markedly attenuated the inflammatory response to heat-

inactivated R. conorii in HUVECs with down-regulatory effects on

IL-6, GROa and IL-8 at both mRNA and protein level.

Moreover, we show that the effect of silencing DKK-1 in

HUVECs is not restricted to inflammation. Down-regulation of

DKK-1 in R. conorii-exposed HUVECs attenuated TF expression

and enhanced thrombomodulin expression, suggesting pro-

thrombotic net effect of DKK-1. Our findings further support a

role for DKK-1 in vascular inflammation and atherothrombosis,

and neutralization of DKK-1 could potentially represent a

therapeutic target in relevant disorders.

Inflammatory stimuli such as TNFa have been shown to induce

enhanced DKK-1 release in various cells [6]. Patients with MSF

have previously been reported to have an early rise in TNFa and

other inflammatory mediators [23]. It is therefore noteworthy that

we found that patients with R. conorii infection had DKK-1 levels

within the range of healthy controls when attending the hospital

and before any specific treatment. However, endothelial cells

release large amounts of DKK-1 upon activation, and the capacity

of R. conorii to down-regulate DKK-1 in these cells, as opposed to

its enhancing effect on IL-6 and IL-8, as shown in the present

study, could counteract the increase in DKK-1 in relation to

inflammatory stimuli in MSF patients. Yet, although heat-

inactivated R. conorii down-regulated the release of DKK-1 from

endothelial cells, there was no initial decrease in DKK-1 levels in

serum in patients with R. conorii infection. This could potentially

reflect contribution of other cells than endothelial cells to DKK-1

levels in serum. In fact, while R. conorii decreased the release of

DKK-1 in HUVECs, it enhanced the release of DKK-1 in

platelets and whole blood culture. In contrast to serum levels of

DKK-1 at baseline, there was a significant increase in DKK-1

levels after 7 days. The reason for this pattern is at present unclear.

Based on the ability of R. conorii to attenuate DKK-1 release, the

possible clearance of R. conorii at time point 2 could contribute to a

late increase in DKK-1. Second, the late increase could also be

secondary to effects of inflammatory cytokines released during R.

conorii infection known to induce DKK-1 release (e.g. TNFa).

Nonetheless, our findings suggest that R. conorii affects DKK-1 and

inflammatory cytokines differently both in vivo and in vitro in

endothelial cells.

Immune evasion is of importance for the survival of microbes

within the host, and such mechanisms also seem to be related to

Rickettsial infection involving selection of inteferon-c resistant

strains, evasion of phagosomes and induction of anti-apoptotic

mechanisms in endothelial cells [2,4]. The production of

inflammatory cytokines such as IL-6, IL-8, IL-12 and chemokines

is crucial in the innate and adaptive immune responses to

infections, and some bacterial pathogens have evolved mecha-

nisms for attenuating cytokine production by host cells, which

modifies the host’s subsequent immune response [3]. Our findings

in the present study could suggest that such mechanisms might be

involved in immune evasion of R. conorii through its ability to

down-regulate DKK-1 in endothelial cells. The Wnt signaling

pathway has been linked to immune evasion mechanisms in

relation to malignancies [24], and interestingly, recent studies

indicate that Wnt signaling could be implicated in immune evasion

in Mycobacteria and salmonella infection through anti-inflamma-

tory and anti-apoptotic mechanisms, respectively. [25,26] Our

findings herein may suggest that the Wnt signaling pathway could

also be involved in R. conorii related immune evasion by its ability

to down-regulate DKK-1 expression in endothelial cells. The anti-

apoptotic effects of DKK-1 may further support such a notion.

[27,28]. The current study has some limitations such as the use of

heat-inactivated as opposed to live bacteria and a relative low

number of patients with MSF. However, although our data are

preliminary, we suggest that the capacity of R. conorii to down-

regulate endothelial-derived DKK-1 as well as the ability of

silencing DKK-1 to attenuate R. conorii-induced inflammatory

responses in endothelial cells could reflect a novel mechanism by

which R. conorii escapes the immune response at the site of

infection. Yet, further studies are needed to establish this

hypothesis as an important mechanism in SFG rickettsioses. Such

studies should comprise more mechanistic studies including

intervention studies in mice models for R. conorii infection.
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