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Abstract
Quantitative proteomics analysis of cortical samples of ten Alzheimer’s disease (AD) brains
versus ten normally aged brains was performed by following the accurate mass and time tag
(AMT) approach with the high resolution LTQ Orbitrap mass spectrometer. More than 1400
proteins were identified and quantitated. A conservative approach of selecting only the consensus
results of four normalization methods was suggested and used. A total of 197 proteins were shown
to be significantly differentially abundant (p-values<0.05, corrected for multiplicity of testing) in
AD versus control brain samples. Thirty seven of these proteins were reported as differentially
abundant or modified in AD in the previous proteomics and transcriptomics publications. The rest
to the best of our knowledge are new. Mapping of the discovered proteins with bioinformatic tools
revealed significant enrichment with differentially abundant proteins of pathways and processes
known to be important in AD, including signal transduction, regulation of protein
phosphorylation, immune response, cytoskeleton organization, lipid metabolism, energy
production, and cell death.
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Introduction
Alzheimer's disease (AD) is the most common form of dementia in the elderly affecting
10% of population aged over 65 years 1. Twin studies suggest that about 74% of the risk for
late-onset AD is genetic 2. The remaining 26% is the result of the interplay between genetic
variants and environmental factors 3. Proteomics directly addresses the level of gene
products present in a given cell state and reflects the influence of both genetic and
environmental factors and is therefore an important complement of genomics and
transcriptomics in the study of the mechanism of late-onset AD.

Several reviews 4–11 summarize the results of the proteomics and transcriptomics studies of
AD, where important findings of the differentially expressed and modified proteins in AD
brain tissue, CSF, and serum have been reported. Review 4 summarizes proteomics of AD
results from 1975 till 2006 and lists 96 proteins altered in AD, while the more recent clinical
proteomics of AD review 6 summarizes the results of 43 2D-gel electrophoresis proteomics
studies published since 1999 to 2010 and lists 93 proteins differentially expressed or
modified in 13 different brain regions in mild cognitive impairment, early AD and AD. The
2011 review 9 of the systems biology of AD presents the list of 36 “overlapping” proteins
affected in both human brain samples and in animal models of AD. Thirty of these proteins
belong to 5 functional groups: cytoskeleton organization, energy production and
metabolism, redox homeostasis, chaperons, and synaptic integrity.

Multiple groups looked at the biomarkers of AD in CSF, plasma, and serum, as reviewed
in 8,10,11. The biomarker panels of 23, 17, and 15 proteins in CSF were suggested in 12–14 to
distinguish AD patients from healthy elderly control subjects. Similarly, 5- and 18-protein
biosignatures of AD were suggested for blood samples 15–16. Several groups focused on the
studies of post-translational modifications in AD and studied Alzheimer’s brain
phosphoproteome 17–19, oxidatively modified proteome 20–21, and brain proteins
glycosylation 22.

The recently published whole transcriptome sequencing study 23 of the human brain samples
of 2 AD patients versus 26 normal brain samples was performed by using the RNA-Seq next
generation sequencing approach and demonstrated dramatic (up to plus 26-fold and minus
350-fold) over- and under-expression of multiple transcripts. Over 27 thousand transcripts
were found in AD brain that were not observed in the normal, while 51 thousand found in
normal were not present in AD. Both concordance and contradictions with the results of the
previous microarray studies 24–25 of AD were reported, including the contradictions for the
PP3GB, GRIA4, and GRIK1 genes.

There are several reasons for the relatively low overlap between the differentially expressed
proteins and transcripts in AD discovered in different studies. First is the heterogeneity of
AD reported by many authors 26–27 arguing that there exist several AD subtypes with both
genetic and epigenetic factors contributing to the disease phenotype. With the relatively low
number of AD brain samples analyzed both in proteomics and transcriptomics studies, this
heterogeneity could lead to some contradicting results. Second relates to the comparison of
proteomics and transcriptomics results which are typically relatively low correlated as
reported by multiple studies 28–30 and is indicative of the numerous posttranslational
modifications and regulations. Last but not least is the dramatic improvement both in
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transcriptomics and proteomics technology in the recent years which resulted in higher
sensitivity and accuracy of quantitative analysis. Modern proteomics, based on the high
resolution, high mass accuracy mass spectrometers, has “turned quantitative” and is ready
for genome-wide comprehensive protein expression analysis, as recently summarized by the
pioneers of the field 31–33. Studies 34–36 are some recent examples of successful use of
modern LC-MS/MS based proteomics in psychiatry and neuroscience.

Here, we present the results of the quantitative proteomics study of temporal cortical
samples of 10 brains affected by AD compared to 10 normally aged brains. Samples from
the temporal lobe were selected for analysis, since this region is affected even at the early
stages of AD 37. Analysis was performed using the accurate mass and time tag (AMT)
proteomics approach 38–41 that was developed at PNNL about a decade ago and proved
successful in multiple applications including the more recent quantitative proteomics studies
of mouse brain 42–43. This approach incorporates the high mass measurement accuracy of
Fourier transform ion cyclotron resonance (FTICR), Orbitrap, or other high mass accuracy
MS instrument with accurate elution time measurements from liquid chromatography (LC)
separations for peptide identification. The concept of the AMT tag strategy is based on
generating a “look-up” table of tags based on LC-MS/MS peptide identifications in a limited
but representative set of samples. This library of accurate masses and times for each peptide
tag allows for the direct identification of peptides from LC-MS runs in the larger dataset
without having to perform tandem mass spectrometry (MS/MS) on every sample. In mouse
brain tissue AMT tag approach is able to identify and quantify upwards of one-thousand
proteins 42–43. In this study, we enhanced and adapted the AMT approach to the analysis of
multiple human brain samples by focusing on two stages: selection of the best available
protein extraction protocol and improvement of the reliability of quantitation by using only
the consensus results of four normalization methods.

Protein extraction
A prerequisite for any credible quantitative proteomics study is to get a good coverage of the
proteome in the targeted sample. We evaluated three protocols for preparation of the tissue
samples for LC-MS analysis. The main difference between the protocols is the type of
detergent for solubilization of the tissue protein content:(i) 8M urea with 2% SDS, (ii) 8M
urea, (iii) 6M guanidine. Three criteria were applied to assess the protocols, including the
number of identified peptides and proteins, the percentage of identified peptides with missed
cleavages, and the recovery of several pathology-related proteins. The details of the
comparison are provided in the Supplementary Material Methods. Briefly, the 8M urea
protocol resulted in the most comprehensive proteome coverage, the most efficient tryptic
digestion with fewest missed cleavages identified, and the best recovery on the proteins of
particular interests among the Alzheimer’s disease research community (see Suppl. Material
Methods Figure S1). Although the addition of detergents, such as SDS, is usually preferred
to help solubilize proteins from tissue samples, we found that the addition of SDS was not
able to generate an overall satisfying proteomics result. Therefore, the 8M urea protocol was
chosen to prepare all the samples in the main quantitative proteomics study presented in this
paper.

Normalization
Quantitative proteomics requires normalization of protein abundances that compensates for
systematic biases both in the sample preparation and in the sensitivity of LC-MS runs. This
is especially important for label-free as opposed to quantitation approaches relying on
isotopic labeling because of additional potential of biases incurred during the instrumental
analysis. Label-free quantitation was initially proposed in the proteomics analysis of serum
samples 44, where it was assumed that most of the proteins in the compared samples had
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similar abundances and only a relatively small percentage of proteins were differentially
abundant. Based on this assumption, the median value of the ratios of abundances of the
same proteins in the compared samples were used as normalization coefficients 44,45.
However, the validity of this assumption in the analysis of samples that are expected to
differ more radically is not evident. The obvious example is the comparison of proteomes of
cancer and non-cancer cells where the substantial percentage of proteins can be affected.
Alternatively, normalization can be based on the certain group of “housekeeping” proteins
whose abundances are assumed not to be affected by cancer. However, as recently
summarized 46, there is a growing body of evidence demonstrating that commonly used
housekeeping proteins may not be adequate internal standards as they may be affected by a
large number of factors including drug and experimental treatment, cell cycle phase, age,
gender and stress conditions. Spiking of a standard reference material (exogenous proteins)
may be useful as an additional control, but does not solve all the problems of the variability
before spike-in and could create additional problems by ion suppression of endogenous
proteins. Therefore, normalization in analysis of samples that are expected to differ
substantially (as in AD) is an important and not yet solved problem both in quantitative
proteomics and in microarray analysis as well 47–48. Below we suggest an approach for
minimizing the effect of “normalization uncertainty” on the quantitation by using multiple
normalization methods and selecting consensus results.

In this paper, we compared samples from AD and normally aged post-mortem brains that
were expected to differ substantially. We identified and quantitated more than 1400 proteins
in our analysis; abundances of many of them differ dramatically. We used 4 normalization
methods (described in more detail in the Methods section), compared their results and
selected for the consensus list only the proteins that were significantly (FDR<0.05, derived
from the p-values corrected for multiple hypothesis testing)) differentially abundant across
all normalization methods. The consensus list consisted of nearly two hundred significantly
differentially abundant proteins including both known to be differentially abundant in AD
and new ones.

Materials and Methods
Cortical Brain Samples

Frozen human brain tissues were obtained from the University of Michigan Alzheimer’s
Disease Research Center’s brain bank. Our criteria for inclusion were as follows: self-
defined ethnicity of European descent, neuropathologically confirmed LOAD or no
neuropathology present, male gender and age of death greater than 65. Prior to selection for
this study, the genotypes of all samples were additionally analyzed via the program
STRUCTURE 49,50 as described in 51,52 and ethnic outliers (non-Caucasian) were removed
from the study. Neuropathological diagnosis was defined by board-certified
neuropathologists as per standard National Alzheimer’s Coordinating Center protocols.
Sample properties (mean±s.d., range in parenthesis): Age (years): cases - 77.8 ± 3.3, (73–
83), controls – 76.4±4.8, (69–83); post-mortem delay (hours): cases – 8.2 ± 3.2, (4.5–14),
controls – 16.9 ±7.2, (6–28) ; Braak stage (mean and range): cases −5.4 (5–6), controls - 0.3
(0–2). Samples were de-identified before receipt, and the study met local human studies
institutional review board and HIPPA regulations. This work is declared not human-subjects
research and is IRB exempt under regulation 45 CFR 46.

Sample Preparation for Proteomic Analysis
The extraction and digestion of the proteins was performed using a commonly used protocol
based on denaturation of protein in 8M urea followed by digestion with trypsin. The choice
of this protein extraction protocol is justified in more detail in the Supplementary Material
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Methods. Briefly, approximately 5 mg of human brain tissue was resuspended in 100 µl
denaturing solution (8M urea, 50 mM Tris-HCl pH 8.0 and 1 mM EDTA) and homogenized
with a motorized pestle. The samples were sonicated for ~1 min in a bath sonicator
(Branson, Danbury, CT) then the total protein content was measured by Bicinchoninic
Protein Assay (BCA, Pierce, Rockford, IL). DTT was added to a concentration of 10 mM in
sample, then to solubilize and unfold the proteins the samples were incubated for 60 min at
37°C with shaking. Cysteine residues were alkylated by adding iodoacetamide to 40 mM
concentration and incubating for 1 hour at 37°C, with shaking, in the dark. For protein
digestion the samples were diluted 10-fold with 50 mM ammonium bicarbonate (pH 7.8)
and supplemented with 1 mM CaCl2. Trypsin was added in a 1:50 ratio (w: w trypsin:
protein) and incubated for 3 hours at 37°C with shaking. The sample digests were purified
with solid phase extraction using C18 columns (Discovery DSC-18, SUPELCO, 52601-U),
lyophilized and resuspended in 25 mM ammonium bicarbonate pH 7.8. The peptide amounts
were estimated with BCA assay.

LC-MS(/MS) Proteomics Analysis
Proteomics analysis was performed by following the well established accurate mass and
time (AMT) tag approach 38–43 and by using the high resolution high mass accuracy mass
spectrometer LTQ Orbitrap. The database of AMT tags was created by performing the LC/
LC-MS/MS analysis (using SCX as a first dimension of separation) of the pooled 10 AD and
pooled 10 control samples separately. The quantitation was performed by the LC-MS
analysis of each of 20 individual samples. The details of AMT technology and software used
for creation of AMT tag database and peptide identification and quantitation were described
in 53–58 and are provided in the Supplementary Materials Methods. As shown in 59 the AMT
tag analytical platform enables good level of reproducibility (correlation of peptide
abundances of about R=0.94 across 9 technical replicates) and therefore allows avoiding
technical replicates.

Protein Quantitation and Bioinformatics Analysis
Normalization—As discussed in the Introduction, normalization is not obvious in analysis
of the samples that might have dramatic differences in abundances of numerous proteins. In
this study, we used four normalization methods denoted VP, V01, V03 and Eigen MS and
described below: (1) method VP is based on the assumption that the majority of proteins are
not affected or the number of proteins approximately balanced between the up- or down-
regulation; normalization coefficients are calculated as the median ratio of the abundances
of peptides detected across all the samples 42; (2) method V01 introduced in 60 is based on
the less strict assumption that not necessary the majority, but at least some proteins are not
affected; normalization coefficients are calculated similar to above but based only on
peptides whose relative abundances differ by not more than ±10% from the mode of relative
peptide abundance distributions in all analyzed samples; (3) method V03 is the same as V01
except it considers as non-affected common peptides in the ±30% vicinity of the mode of the
distributions; (4) method Eigen MS is based on the recently introduced 61 algorithm, which
identifies the bias of arbitrary complexity by singular value decomposition (SVD) and
removes it from the data.

Imputation—We imputed missing peptide abundance values by following two imputation
methods. According to the first method we filtered out peptides with missing values present
in both groups; we imputed the peptide abundance values only if they were missing in more
than 7 out of 10 samples in one group and simultaneously present in all samples in the other
group. Missing values were imputed with the minimum peptide abundance observed
regardless of the group. This method leads to conservative estimate of the fold-change
especially in the case of “complete informative missingness” 62, where the protein was not
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observed in all 10 samples in one group and was observed in all 10 samples in another
group. Informative missingness is synonymous with censoring and occurs when a mass
spectrometer is not able to detect peptides of abundances below some censoring cutoff. Such
missing values are informative because we know that the values are below the lowest
observed abundance for a peptide. This imputation method does not accurately predict the
amplitude of the effect, but it correctly assigns the rank of the abundance value in the case of
“informative missingness”. Thus, such imputation method is compatible with non-
parametric rank-based statistical testing described below. This imputation method was used
together with the normalization methods VP, V01, and V03. The second, imputation method
uses a maximum likelihood model to determine if peptide abundance is missing completely
at random or if it is censored as recently described in 62 and was used together with the
Eigen MS normalization method. This method typically results in lower missing value
peptide abundances and is therefore less conservative. After normalization and imputation
the peptide abundance values were “rolled up” to protein abundance values, using reference
roll-up algorithm 42,63.

Statistical analysis—Significance analysis was performed with Wilcoxon test, where the
values of the normalized relative protein abundances served as an input data and ranking
was done across the samples separately for each protein. The reason we choose Wilcoxon
rank test over t-test is that we did not want to rely on assumption of the normality of protein
abundance distribution in the human population and especially population affected by
Alzheimer’s disease. Basically the hypothesis we tested is if there is overall increase or
decrease in protein abundance using their ranks, but not necessarily the difference between
the means of log-normal protein abundance distribution in the AD and control subjects.
Correction for multi-testing, through calculation of false discovery rate (FDR) and q-values
was performed following the algorithm introduced by J.D. Storey 64, as implemented in the
mafdr.m function (Bioinformatics Toolbox, MATLAB 2008a, Mathworks, Inc., Natick,
MA, USA). (Importantly, this FDR in determination of differentially abundant proteins in
AD versus control samples should not be confused with the FDR of peptide identification
that was discussed earlier.) Finally, to minimize the impact of normalization and imputation
methods we selected as consensus significant only the proteins determined as significant
according to all 4 normalization methods.

Pathway and Network Analysis—Enrichment analysis was performed with MetaCore
6.4 (GeneGo, Inc, St.Joseph, MI, USA). Thresholds were set at ±1.3-fold change and at 0.05
FDR levels. The total list of proteins detected in any of 20 samples was used as a
background list. MetaCore’s enrichment analysis tool utilizes the hypergeometric model to
determine statistical significance of enrichment with the differentially expressed genes of
several groups of gene categories: GeneGo pathway maps, GO processes, GeneGo process
networks, and GeneGo diseases. The above GeneGo categories are based on the GeneGo
knowledge base, which reflects findings reported in the literature. GO processes are the
categories defined in the Gene Ontology project 65.

Gene set enrichment analysis (GSEA) was performed following the algorithm introduced
in 66 as implemented in Pathway Studio 7.1 (Ariadne Genomics, Rockville, MD, USA).
Unlike MetaCore’s enrichment analysis, GSEA does not implement any thresholding.
Instead, in GSEA, genes are ordered in a rank list according to their differential expression.
The goal of GSEA is to check whether the members of a gene set tend to occur at the top or
bottom of the list, in which case the gene set is correlated with the phenotypic class
distinction. The gene set categories examined in Pathway Studio include: Ariadne Metabolic
Pathways, Ariadne Signaling Pathways, Ariadne Ontology, as well as GO cellular
component, molecular function, and biological process.
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Verification method
Western Blot analysis for verification of differentially abundant proteins—
Around 5mg of human normal and AD cortex samples were lysed in ice-cold RIPA buffer
(20 mM Tris pH 7.5, 150 mM Nacl, 1% NP40, 0.5% Sodium deoxycholate, 1 mM EDTA
and 0.1% SDS) by homogenization. Thereafter, cell lysates were placed on ice for 30 min
and cleared by centrifugation at 3,000g for 15 min at 4 °C. The supernatants were collected
and frozen at −80 °C until used for analysis. The protein concentrations of lysates were
measured using the Bio-Rad protein assay kit.

Thirty µg of total protein from each sample was resolved on 10% sodium dodecyl sulfate-
polyacrylamide gels (SDS-PAGE) and transferred onto nitrocellulose membranes (Protran,
Schleicher & Schuell, Inc., Keene, NH). Membranes were blocked with 5% nonfat dry milk
in Tris-buffered saline (20 mM Tris base (pH 7.5) and 150 mM NaCl) containing 0.05%
Tween 20 (TBS-T), then probed with the primary antibody. The primary antibodies were
diluted in 5% nonfat dry milk in TBS-T as indicated and used for immunoblotting: Anti-
PKCγ (1:1000 dilution; sc-211 from Santa Cruz Biotechnology, Inc., Santa Cruz, CA); anti-
NumbL (1:500 dilution; sc-135071 from Santa Cruz Biotechnology, Inc., Santa Cruz, CA)
and anti-ENO2 (1:500 dilution; sc-51880 from Santa Cruz Biotechnology, Inc., Santa Cruz,
CA). After washing in TBS-T, membranes were incubated with their appropriate horseradish
peroxidase-conjugated secondary antibodies (Bio-Rad Laboratories, Inc.) and developed
using an enhanced chemiluminescence detection system (Amersham Biosciences, Arlington
Heights, IL) according to the instructions of the manufacturer and were exposed to X-Ray
film (Phenix Research Products, Hayward, CA).

Densitometric analysis—To quantify the bands obtained via Western blot analysis, we
applied ImageJ software based analysis (http://rsb.info.nih.gov/ij/). The area of the specific
signal was corrected for the corresponding signal from the area of the loading control.
Average normalized optical density (OD) values ± SE were used to plot matching diagrams.

Results
Normalization, quantitation, and significance analysis

A total of 13,671 peptides attributed to 1408 proteins were detected and quantitated. Figure
1 presents the distributions of relative peptide abundances for the above 20 samples. In this
figure, relative abundances of each peptide in each sample were calculated by dividing the
individual peptide abundances by the average abundance for each peptide across all 20
samples followed by log2 transform. The range of relative peptide abundances is roughly
15,000, which indicates the presence of dramatic differences in peptide abundances across
the samples. Therefore, as discussed in the Introduction, the choice of normalization method
is not obvious and might be of importance. As described in the Methods section, we
calculated protein abundances by using 4 normalization methods: VP, V01, V03, and Eigen
MS. Table 1 presents the values of Pearson correlation of protein abundances calculated
after normalization and imputation using the above 4 methods, while Supplementary Figure
1 presents the scatter plots of protein abundances calculated with these methods. The results
for the methods VP, V01, V03 are similar (R≥0.993), while all three are noticeably different
from Eigen MS (R≥0.908).

Importantly, despite the above differences, a large group of 1049 (74% of total 1408)
“consensus” proteins exists. For these proteins the sign of the fold change of mean
abundance in AD samples versus the mean abundance in control samples does not depend
on the normalization method chosen. Supplementary Table 1 presents the list of these
consensus proteins with their log-changes and FDR levels calculated for each of the methods
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as well as mean values and standard deviations across 4 methods. In addition, the number of
peptides used for quantitation of the given protein is presented. Note that the number of
peptides used for protein quantitation (mean=4.4 peptides per protein; 55% proteins
quantitated with two and more peptides) is decreased relative to the number of peptides used
for protein identification (mean=6.9 peptides per protein; 72% proteins identified with 2 and
more peptides). This is typical for large sample sets (the larger the number of the samples
the higher the likelihood that some peptides are not detected in at least one of the samples of
the group). Such peptides were discarded as described in the Supplementary Material
Methods section. Using single peptide quantitation based on the measured abundance values
is in our opinion more reliable than using double peptide quantitation based on imputation.

As many as 197 of these consensus proteins are significantly differentially abundant
(statistical analysis described in Methods), in all four normalization/imputation methods.
The list of these significant differentially abundant proteins together with their mean log-
changes and max FDRs is presented in Supplementary Table 2. In addition, this table
presents the comparison of the protein abundance changes with the published data (which is
discussed in more detail in the Discussion section) and the information on the number of
peptides used for the identification and quantitation of the above 197 proteins. Of these
proteins, 188 (95.4%) were identified with two and more peptides, while 65 (33%) were
quantitated with two and more peptides. The more stringent requirement for peptides used
for quantitation arises from the need to have the peptide measurements across majority of
the samples. Thus peptides with substantial portion of missing values were filtered out.
Having single peptide for protein quantitation intuitively seems to reduce the precision and
reliability of quantitation. However, less reliability should manifest itself in larger variance
across the samples of the same group and therefore higher p-values. The proteins with the
increased variability and therefore increased p-value have less chance to be called
significant. It implies that quantitation with single peptide may have lower statistical
sensitivity for detecting truly affected proteins, but likely does not compromise the
reliability of the quantitation of proteins that pass the significance test. In our case, the mean
of the corrected p-values for 131 proteins quantitated with single peptides is equal to 0.014
(min p=0.005, max p=0.0489). These proteins are flagged in the Supplementary Table 2 as
quantitated with single peptides, but are considered reliably quantitated and included in the
further discussion.

Figure 2 presents the Venn diagram of the proteins determined as significantly differentially
abundant by using 3 normalization methods: VP, V01, and Eigen MS. The later one is rather
inclusive and results in 1144 significant differentially abundant proteins which include
practically all (326) proteins determined as significant either with VP or V01. The overlap
between the lists of proteins significant according to VP and V01 is 199 – roughly 3/4 of
each list. Results from V03 (not presented at the diagram for clarity) are similar to V01 and
slightly reduce the overlap of 4 normalization methods to 197 consensus significantly
differentially abundant proteins. Interestingly, though similar and highly correlated (see
Table 1), normalization methods VP and V01 generate only 75% overlap of significant
differentially abundant proteins. Figure 3 presents heat maps for the more detailed
comparison of the corrected p-values and log2(AD/C) calculated with four normalization
methods. The proteins are sorted, so that consensus significant ones are at the bottom of the
map, followed by the proteins significant with two methods (Eigen MS and either VP or
V01), then followed by significant only with Eigen MS, and finally proteins significant in
either VP or V01, but not in Eigen MS. (Light green in the first heat map indicates
FDR<0.05). The second heat map illustrates that abundance ratios are quite consistent across
the normalization methods for consensus significant proteins. (See red and green color bands
across the bottom part of the heat map). The level of agreement between the normalization
methods for the values of abundance change in the 197 consensus significant differentially
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abundant proteins is rather high: relative standard deviation of log2(AD/C) values
determined for the given protein with 4 normalization methods is less than 10% for 70 and
less than 20% for 120 proteins. Note that 41 out of 197 proteins are flagged with “CIM”
standing for “complete informative missingness”, meaning that they were observed in all 10
samples in one group and not observed in any of 10 samples of another group.

Below, we present the shortlist of the gene names of 10 most increased and 10 most
decreased proteins in AD versus control with the log2 (AD/C) values in parenthesis (CIM
proteins flagged). Ten most over-abundant proteins in AD samples: NBEAL1 (7.88, CIM),
AUH (5.19), PICALM (4.63, CIM), TSN (4.35), PTBP2 (4.34, CIM), PTPN23 (4.15, CIM),
MAPRE1 (4.12), C1QBP (4.08), PCYT1A (4.06), IQGAP1 (3.78). Ten most under-
abundant proteins in AD samples: PPP1CB (−4.77, CIM), WARS2 (−4.22), FXYD7 (−4.18,
CIM), HMGN2 (−3.69), FKBP1A (−3.64), PDE4DIP (−3.56), HSD24 (−3.34, CIM),
NSMCE4A (−3.22), MYH15 (−3.07, CIM), CETN2 (−3.06). The given log ratios were
calculated as median log ratios across all four normalization methods. Also note that in CIM
cases the given log ratios are most likely conservative estimates, since conservative
imputation procedures were used as explained in the Methods section.

Western blot verification
In order to validate the mass spectrometry results, western blot analysis was conducted on
randomly selected normal and AD human cortex samples. Four out of ten of the available
samples of each group were randomly selected. This insured adequate representation of the
variability of protein expression across samples of the same group while preventing
exhaustion of all of the precious sample cortices we had. In addition, we also randomly
selected to probe for PRKCG, NUMBL and for ENO2 protein expression which were shown
to be under-abundant, over-abundant and unchanged respectively in AD cortices versus
normal patient cortices using mass spectrometry (see Supplementary Tables 1, 2) Indeed,
densitometric analyses of western blot signals showed an average of 4.16 fold decrease and
of 2.02 fold increase in PRKCG and NUMBL protein abundance respectively in AD cortices
versus controls (Figure 4) which is in good concordance with our mass spectrometry based
proteomics results (2.6-fold decrease for PRKCG and 3.2-fold increase for NUMBL). Also,
ENO2 protein abundance levels remained practically unchanged in the two groups in
concordance with mass spectrometry based quantitation results.

Pathway and network analysis
To explore the plausible biological relevance of the observed 197 significantly differentially
abundant proteins, we performed enrichment analysis with MetaCore 6.4 (GeneGo, Inc) as
described in Methods section. Supplementary Table 3 is an Enrichment Analysis Report
presenting the lists of top 10 categories: GeneGo pathway maps, GO processes, GeneGo
process networks, and GeneGo diseases enriched with differentially abundant proteins.
Below, these categories are referred as increased (enriched amongst 124 over-abundant
proteins) and decreased (enriched amongst 73 under-abundant proteins). Among the most
significant are (p-values shown in parenthesis): (i) increased GeneGo pathways: signal
transduction - cAMP signaling (0.016), regulation of lipid metabolism - stimulation of
arachidonic acid production by ACM receptors (0.016), DNA damage - NHEJ mechanisms
of DSBs repair (0.030); (ii) decreased GeneGo pathways: signal transduction - activation of
PKC via G-Protein coupled receptor (0.0024), ubiquinone metabolism (0.015), immune
response - NFAT in immune response (0.015); (iii) increased GO processes: negative
regulation of phosphate metabolic process (0.0001), negative regulation of protein amino
acid dephosphorylation (0.0007), response to corticosterone stimulus (0.002); (iv) decreased
GO processes: branched chain family amino acid metabolic process (0.0024), positive
regulation of interleukin-2 biosynthetic process (0.0027), positive regulation of cytokine
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biosynthetic process (0.008); (v) increased GeneGo process networks: DNA damage – core
(0.005), DNA damage – checkpoint (0.006), apoptosis - apoptotic nucleus (0.019); (vi)
decreased GeneGo process networks: transcription - mRNA processing (0.039), immune
response -T helper cell differentiation (0.042). Among the enriched GeneGo diseases are:
chromosome aberrations (4e-10), amyloidosis (5e-10), amyloid neuropathies (6e-9),
memory disorders (2e-6).

To further explore the biological relevance of protein abundance changes observed in AD
versus control samples we used the GSEA approach described in the Methods section. The 4
lists of relative protein abundances calculated with above 4 normalization methods were
uploaded to Pathway Studio 7.1. Supplementary Table 4 presents the list of 75 gene sets
(together with the names of the quantitated proteins) reported as enriched (mean p-value
across all normalization methods below 0.05). Here, we present the shortlist of the most
increased and most decreased gene sets with their mean log2 ratio (AD/Control) and p-value
in parenthesis. Top increased gene sets: regulation of small GTPase mediated signal
transduction (3.26, 0.008), NF-kappaB binding (2.99, 0.029), protein modification process
(2.87, 0.002), transcription from RNA polymerase II promoter (2.49, 0.017), intermediate
filament polymerization (2.32, 0.002), cell death (2.24, 0.0006), nucleosome (2.23, 0.023),
telomere maintenance (2.20, 0.019), immune response (2.16, 0.011). Top decreased gene
sets: phosphoprotein phosphatase inhibitor activity (−2.02, 0.022), transcription factors
(−1.22, 0.009), guanyl-nucleotide exchange factor activity (−0.65, 0.048), cytoskeleton
organization (−0.61, 0.041).

In search of the common regulators of the discovered 197 differentially abundant proteins
we used the transcription regulation workflow in MetaCore 6.4 (GeneGo, Inc). The
complete results of this analysis are presented in the Suppl. Report 1. Briefly, 20
transcription regulation networks were found to be significantly enriched (p-values within
the range 7e-122 to 5e-17) with the above proteins. The top networks (with the number of
affected differentially abundant proteins given in parenthesis) are: SP1 (49), c-Myc (36),
HNF4-alpha (33), p53 (26), ESR1 (17). Figure 5 presents the SP1 network (red circles
indicate over-abundant and blue circles under-abundant proteins). The rest of the networks
are presented in the Suppl. Report 1. Importantly, these networks are interconnected: many
proteins are affected by multiple transcription factors (TF) and itself are affecting other TFs.
For example, APP is affected by the following TFs: SP1, c-Myc, p53, NF-kB, c-Jun, NF-Y,
C/EBPbeta, oct-1. AP-2A regulates YY1, regulates and is affected by androgen receptor.
PICALM is affected by c-Myc, p53, and ETS1. PKC-alpha regulates p53 and p73, affects
and is affected by SP1 and ETS1. Figure 6 presents the direct interaction network of the
above 20 transcription factors, which are connected through numerous transcription
regulation and binding interactions, with both inhibition (red) and activation (green) effects.
The high level of interconnectedness of the above transcription regulation networks adds
confidence in the non-randomness and biological relevance of the discovered differentially
abundant proteins.

Discussion
A total of 197 proteins were determined as significantly differentially abundant in the
comparison of 10 AD and 10 control cortical brain samples. We compared these results with
the published data on protein differential abundance in AD. The Supplementary Table 2
contains information on the published data related to the 197 significantly differentially
abundant proteins determined in our study. Out of 197 proteins, 11 were mentioned as
differentially abundant in AD in the 2006 omics review paper 4, 12 appeared in the list of
genes with causal association with AD created with MetaCore 6.4 from the GeneGo
database of publications, 21 were reported as differentially abundant in the recent
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proteomics and transcriptomics papers 6–23, 67–74, and 6 appeared in the AD pathway from
KEGG 75. Figure 7 presents the results of mapping of the list of 1049 consensus proteins
determined in our study on the AD pathway from KEGG. Over-abundant proteins are
marked with pink and under-abundant as green. These KEGG AD related proteins are also
flagged in the Supplementary Table 1. Importantly, the differentially abundant proteins
observed in our study are present in three important branches of the AD pathway (APP,
APOE and Tau).

A total of 37 proteins out of our 197 were mentioned in the above literature sources as
differentially abundant or modified. Importantly, for the majority (28) of these proteins the
sign of change in AD shown in our findings and reported in the literature coincides. (These
concordant proteins are marked in Suppl. Table 2). Five of the proteins are mentioned in the
literature as modified or affected (without indication of the sign of the change). While for
other 4 (out of 37) proteins the sign of change differs in literature and our results.
Specifically, p-glycoprotein (PGP) is over-abundant in AD in our study, while reported to be
diminished in AD by Vogelgesang et al 76–77. Interestingly, however, PGP was also
reported in 77 as over-abundant in the early stage of disease. Sulfotransferase 4A1is over-
abundant in AD in our study while reported under-expressed in the cDNA study 74; protein
cGMP-dependent 3’,5’-cyclic phosphodiesterase is 2-fold over-abundant in our study, while
the transcript of this gene is under-expressed in the whole transcriptome study 23 ; cadherin
23 is 4-fold under-abundant in our study while the transcript of these gene is reported over-
abundant in 23. Note that 3 out of 4 sign of change differences are observed in comparison of
proteomics and transcriptomics measurements which are known to correlate poorly due to
post-translational regulations. However, some of the transcriptomics and proteomics results
are in good concordance, e.g. PICALM is at least 25-fold increased in AD in our study and
the level of its mRNA is elevated in AD in 78, PCYT1A (choline-phosphate
cytidylyltransferase A) is 16-fold increased in our study and 7-fold increased in the
transcriptomics study 23, CAP2 (adenylyl cyclase-associated protein 2) is 2.4-fold decreased
in our study and 2.6-fold decreased in the transcriptomics study 74.

In comparing our results with the recent proteomics of AD papers 71–72,21 interesting
quantitative and qualitative similarities are worth mentioning. Specifically, in 71 the analysis
of hippocampal samples was performed by 2D gel electrophoresis followed by MALDI TOF
MS. As a result of the analysis, eighteen proteins were determined with significantly altered
abundances in AD versus controls. Three of these proteins are in our list of 197 significantly
differentially abundant proteins and are found to be over-abundant in both studies. The level
of over-abundance, however, is higher in our study than in 71 for all three proteins (fold
change found in our study versus fold change found in 71 is given in parenthesis): ferritin
heavy chain (7.1-fold vs 1.23-fold), heat shock 70 protein (4.4-fold vs 1.14-fold), and
glycerol-3-phosphate dehydrogenase (7-fold vs 1.28-fold).

Authors of another recent proteomics of AD paper 72 performed the 1D gel protein
separation followed by in-gel digestion and high resolution LC-MS/MS study of the frontal
cortex brain samples. The major difference from our approach is that they analyzed the
detergent-insoluble subproteome in AD, i.e. were particularly interested in the thorough
analysis of the neuropathological lesions associated with AD, while in our study we did not
separate the plague from non-plague regions. Another important difference is that while in
our study quantitation was based on the individual analysis of 10 AD and 10 control
samples, in 72 analysis was performed by comparison of the pooled AD, control, and fronto-
temporal degeneration (FTLD) samples. Eleven differentially abundant proteins were
determined in AD versus FTLD and controls 72. Not surprisingly, amyloid beta was shown
as over-abundant in both studies: 3.2-fold in our and 11-fold in 72. The members of the
14-3-3 protein family, known as important in neuronal development and abundant in brain
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tissue (1% wt of total soluble brain tissue protein)79, were also found as over-abundant in
AD in both studies: 14-3-3 beta/alpha (3.3-fold) and 14-3-3 epsilon (2.5-fold) in our study,
while two other isoforms 14-3-3 eta (3.7-fold) and 14-3-3 zeta (3.3-fold) were found in 72.

Several redox proteomics studies summarized in 21 reported a number of oxidatively
modified brain proteins belonging or associated with mitochondrial proteome both in AD
and in mild cognitive impairment. Interestingly, among our 197 significant differentially
abundant proteins 14 are directly related to the mitochondrial proteome. Four of these
proteins are over-abundant, while ten are under-abundant in AD in our study. Among them
are: AUH (methylglutaconyl-CoA hydratase, mitochondrial) 36-fold over-abundant
(FDR=0.0022), WARS2 (Tryptophanyl-tRNA synthetase, mitochondrial) 18-fold under-
abundant (FDR=0.007), which to the best of our knowledge were not previously reported as
affected in AD. Although our study does not examine oxidative protein modifications, it
demonstrates the dramatic changes in the mitochondrial proteome and therefore is in
concordance with the previous observations 21.

PICALM was recently in the center of attention of AD community due to GWAS studies
that demonstrated association of AD risk with PICALM and CLU SNPs 80–82. Elevation of
PICALM mRNA in AD brain tissue recently was studied with real time PCR and shown to
happen predominantly in the endothelial cells 78. In our proteomics study PICALM was
observed in all 10 AD samples and was not detected in any of 10 control samples, thus
confirming its significant over-abundance in AD. Clusterin (CLU) is present as over-
abundant (1.5-fold) in our consensus protein list (Suppl. Table 1), but didn’t make it to the
significant protein list (mean FDR =0.09). Another protein of particular interest, ubiquitin-
like modifier-activating enzyme 6 (UBA6) is shown in our study to be significantly
(FDR=0.02) and strongly (6-fold) over-abundant in AD. UBA6 was recently shown to
activate not only ubiquitin but also FAT10 (human leukocyte antigen F-associated transcript
10) which represents the new layer of regulation of ubiquitin conjugation system 83–84. The
important role of ubiquitin-proteosome system in AD pathogenesis is reflected in
reviews 85–86.

Overall, the level of overlap and concordance of our results and previously published data is
similar to that of any new “omics” study of AD. Historically, some proteins were reported as
affected in AD by the majority of the studies, some were novel in each next study which
employed higher sensitivity approach. Later, some of them were confirmed and joined the
core AD proteome, and some remained non-confirmed mainly due to the heterogeneity of
AD and low sample size of the studies. The record high numbers (thousands) of new
transcripts affected in AD were reported in the recent whole transcriptome study 23.
Although not yet confirmed by alternative methods, these novel transcripts provide an
important resource for future studies. We expect the same to be true to our 160 novel
differentially abundant in AD proteins. Importantly, the overlap between the studies is
higher at the level of biological processes; for instance, signal transduction, regulation of
protein phosphorylation, immune response, cytoskeleton organization, lipid metabolism,
energy production, and cell death were reported as affected in AD both in our and many
other studies including 5, 9, 19, 21, 23. The affiliation of the novel differentially abundant
proteins to the biological processes known to be affected in AD increases the confidence in
the relevance of these proteins.

The interpretation of the observed differential abundance of 197 proteins is complicated by
the fact that AD is characterized by the massive neuropathological alterations and shifts in
cell population, e.g. formation of plaques and tangles, neuronal loss, gliosis, etc 87. With this
in mind, we avoided using terms “up-regulated” and “down-regulated” and referred to the
observed differentially abundant proteins as “over-abundant” and “under-abundant”. Here,
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we make an attempt to roughly estimate the relative role of cell population shift and
intracellular process regulation in the observed differential abundance of the 197 proteins of
this paper. We mapped our 197 differentially abundant proteins on the recently published
database of transcripts enriched in astrocytes, neurons, and oligodendrocytes of mouse
forebrain 88; to the best of our knowledge no such whole transcriptome cell type enrichment
data exist for the human brain cells. By using the MammalHom tool (http://
depts.washington.edu/l2l/aboutmammalhom.html) 184 mouse homologues of our 197
proteins were found. The results of the mapping are presented in Figure 8A. Of 124 proteins
observed as over-abundant in AD in our study, 19 are enriched in neurons, 25 in
oligodendrocytes, and 28 in astrocytes; of 73 under-abundant in AD, 18 are enriched in
neurons, 8 in oligodendrocytes, and 8 in astrocytes; 93 of our differentially abundant
proteins are not shown to be enriched in any of three cell types. Figure 8B presents the heat
map of the differential abundance and cell type enrichment for 104 of our 197 proteins that
overlap with the cell type enrichment database (Suppl. Fig 3 provides the zoomable version
of this heat map with the names of the proteins). Table 2 presents Pearson correlation of
differential abundance and cell type enrichment. As expected, differential abundance in AD
is negatively correlated (−0.25) with enrichment in neurons and positively correlated with
enrichment in astrocytes (0.10), which agrees with the fact of neuronal loss in AD.
However, this correlation is not strong. With all the reservations in mind about the
differences between human and mouse brains, we think that this result together with the fact
that 93 of the differentially abundant proteins are not enriched in any of three cell types
indicates that the observed differential abundance of our 197 proteins represents the
combined effect of both the regulation of the intracellular processes and the alternations in
the cell type composition of the AD brain. The more detailed quantitative discrimination of
the effects of the intracellular regulation and of the shift of cell population would require
laser capture microdissection and separate proteomics analysis of several cell types and is
beyond the scope of this study.

Conclusion
We generated a list of 197 proteins differentially abundant in AD temporal cortical samples
versus normally aged controls, by using the high sensitivity high resolution mass
spectrometry based proteomics with the AMT label-free quantitation approach together with
a conservative procedure of selecting only the proteins determined as significant
(FDR<0.05) in four normalization/imputation methods. The sign of the change in abundance
is confirmed by the published data for 28 of these proteins, for 3 it is in contradiction with
the existing transcriptomics data, and only for one in contradiction with existing proteomics
data. The majority (160 out of 197) proteins were not previously reported as differentially
abundant or modified in AD.

We performed verification of our findings by analyzing with Western blot two (PRKCG and
NUMBL) randomly selected differentially abundant proteins out of these 160. For both of
them Western blot and mass spectrometry based proteomics results are in concordance:
PRKCG – 4-fold and 2.6-fold decrease, NUMBL – 2-fold and 3.2-fold increase. Our
findings will be further validated with the highly sensitive targeted proteomics approach 89

to quantify the above 197 differentially abundant proteins. The targeted proteomics
quantitation will serve as an independent method of validation that is more practical in the
case of the numerous proteins than Western blot or ELISA validation of the total list of
differentially abundant proteins.

Mapping of the discovered differentially abundant proteins revealed significant enrichment
of gene sets, pathways, and processes known to be important in AD thus further confirming
the relevance of our findings. Based on the maturity of the LC-MS based proteomics,
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conservative consensus selection of the differentially abundant proteins used in the current
study, and the concordance of our results with the published data for a large group of
proteins, we believe it is important to publish the list of discovered 197 differentially
abundant proteins (Suppl. Table 2) The present study offers a valuable data resource for data
mining and generation of hypotheses for follow-up studies of Alzheimer’s disease etiology.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Histograms of distributions of peptide abundances in 10 control (top two rows) and 10 AD
(bottom two rows) brain samples. Vertical axis – number of peptides. Horizontal axis :
log2(Iik/mIk), where mIk=ΣIik/N – mean abundance of the given peptide across all 20
samples.
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Figure 2.
Venn diagram comparison of proteins determined as significantly differentially abundant
with 3 normalization methods: VP (275 proteins), V01 (270), Eigen MS (1144). Results for
V03 (not shown) are similar to V01. See details in the text.
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Figure 3.
Comparison of p-values corrected for multiplicity of testing (FDR) and abundance ratios
calculated with four normalization methods. First heat map: FDR-values. Light green
indicates FDR<0.05. Bottom part of the heat map – consensus significant proteins. Followed
by proteins significant with two of normalization methods and then with single
normalization method. Second heat map: log2(AD/C), green indicates proteins under-
abundant in AD, red – over-abundant. Note that abundance ratios for consensus significant
proteins are consistent across the normalization methods (green and red bands in the bottom
of the map).
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Figure 4.
Validation of expression of selected proteins by western blotting. (A) Western blot gels of
PKC-gamma and NUMBL in normal and Alzheimer Disease human cortices. ENO2 was
used as an internal control for equal loading. (B) and (C) Densitometric analysis of PKC-
gamma and NUMBL protein expression in normal versus Alzheimer Disease human cortices
(n = 4 samples per group). Average normalized OD values ± SE were used to plot respective
diagrams. Control normal human cortex samples: C142, C147, C148, C150. Alzheimer’s
Disease human cortex samples: D171, D175, D179, D184. OD: Optical density.
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Figure 5.
The top significant transcription regulation network involving 49 out of 197 significantly
differentially abundant proteins (AD versus control) determined in this study. Red circles –
over-abundant proteins, blue circles - under-abundant proteins. Network map is generated
with Build Network tool (option Transcription Regulation) of MetaCore 6.4 (GeneGo, Inc).
See legend in Suppl . Fig. 2 for complete list of symbols. See Suppl. Report 1 for 19 more
transcription networks regulating 197 differentially abundant proteins.
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Figure 6.
Network of 20 transcription factors regulating 197 significant differentially abundant
proteins. Network map is generated with Build Network tool (option Direct Interactions) of
MetaCore 6.4 (GeneGo, Inc). Transcription factors are closely interconnected with
transcription regulation and binding interactions. Green lines – activation, red – inhibition,
grey – unspecified.
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Figure 7.
Alzheimer’s Disease pathway from KEGG. The list of 1049 consensus proteins determined
in our study is mapped on the Alzheimer’s disease pathway from KEGG. Over-abundant
proteins are marked with pink and under-abundant with green. The differentially abundant
proteins observed in our study are present in three important branches of the KEGG AD
pathway (APP, APOE and Tau).
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Figure 8.
Mapping of the 197 proteins significantly differentially abundant in AD onto the mouse
CNS cell type enrichment database. Fig 8A. Proteins over-abundant and under-abundant in
AD and their cell type enrichment. Fig 8B. Heat map of abundance and cell type enrichment
for 104 proteins common for the list of 197 significantly differentially abundant in AD and
cell type enrichment database 88, where transcripts were considered enriched if they were at
least 1.5-fold over-expressed and statistically different by significance analysis of
microarrays with false discovery threshold of 1%.
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Table 1

Pearson Correlation (R) of Relative Protein Abundances Calculated with Four Normalization Methods

Procedure VP V01 V03 Eigen MS

VP 1 0.993 0.997 0.915

V01 0.993 1 0.999 0.908

V03 0.997 0.999 1 0.912

Eigen MS 0.915 0.908 0.912 1
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Table 2

Pearson Correlation(R) of differential abundance in AD and cell type enrichment

Abundance/enrichment AD neurons Oligodendrocytes Astrocytes

AD 1 −0.2535 0.012 0.1052

Neurons −0.2535 1 −0.2884 −0.3296

oligodendrocytes 0.012 −0.2884 1 −0.23

Astrocytes 0.1052 −0.3296 −0.23 1
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