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Abstract
Standard 3D dynamic PET imaging consists of independent image reconstructions of individual
frames followed by application of appropriate kinetic model to the time activity curves (TACs) at
the voxel or region-of-interest. The emerging field of 4D PET reconstruction, by contrast, seeks to
move beyond this scheme and incorporate information from multiple frames within the image
reconstruction task. Here we propose a novel reconstruction framework aiming to enhance
quantitative accuracy of parametric images via introduction of priors based on voxel kinetics, as
generated via clustering of preliminary reconstructed dynamic images to define clustered
neighborhoods of voxels with similar kinetics. This is then followed by straightforward maximum
a posterior (MAP) 3D PET reconstruction as applied to individual frames; and as such the method
is labeled “3.5D” image reconstruction. The use of cluster-based priors has the advantage of
further enhancing quantitative performance in dynamic PET imaging, because: (a) there are
typically more voxels in clusters than in conventional local neighborhoods, and (b) neighboring
voxels with distinct kinetics are less likely to be clustered together. Using realistic simulated 11C-
raclopride dynamic PET data, the quantitative performance of the proposed method was
investigated. Parametric distribution-volume (DV) and DV ratio (DVR) images were estimated
from dynamic image reconstructions using (a) MLEM, and MAP reconstructions using (b) the
quadratic prior (QP-MAP), (c) the Green prior (GP-MAP) and (d, e) two proposed cluster-based
priors (CP-U-MAP and CP-W-MAP), followed by graphical modeling, and were qualitatively and
quantitatively compared for 11 regions-of-interest (ROIs). Overall, the proposed dynamic PET
reconstruction methodology resulted in substantial visual as well as quantitative accuracy
improvements (in terms of noise vs. bias performance) for parametric DV and DVR images. The
method was also tested on a 90 min 11C-raclopride patient study performed on the high-resolution
research tomography. The proposed method was shown to outperform the conventional method in
visual as well as quantitative accuracy improvements (in terms of noise vs. regional DVR value
performance).

1. Introduction
Positron emission tomography (PET) is a powerful molecular imaging modality enabling
measurements of radiotracer distributions in vivo. Typically, dynamic scans are performed
to measure quantitative changes over time in the bio-distribution of radiopharmaceuticals
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throughout a target structure or the organs of interest. Physiological and/or biochemical
parameters are then derived with the additional use of tracer kinetic modeling techniques
(Bentourkia and Zaidi, 2007). These parameters are often crucial for interpreting dynamic
PET data and to better differentiate between normal and diseased tissues.

Traditionally, standard 3D dynamic PET imaging consists of independent image
reconstructions at individual frames followed by application of appropriate kinetic model to
the time activity curves (TACs) at the voxel or ROI level (Rahmim and Zaidi, 2008).
However, conventional 3D dynamic PET image reconstruction is challenged by the limited
statistical quality of the 3D images obtained from individual data frames, especially within
the context of continuing demands for improved spatiotemporal resolution. Independent-
frame 3D image reconstruction is commonly accomplished using statistical image
reconstruction methods (Leahy and Qi, 2000), such as maximum likelihood (ML) or
maximum a posterior (MAP) expectation-maximization (EM) methods. Direct ML estimates
of PET images exhibit high variances at low counts (Reader and Zaidi, 2007). This problem
of low counts is further accentuated with increased temporal sampling (i.e. use of increased
number of dynamic frames in a certain time period).

Bayesian methods attempt to tackle this ill-posedness inherent in PET image reconstructions
through the introduction of prior models (Leahy and Qi, 2000). Conventional priors focus on
local neighborhoods and subsequently penalize inter-voxel intensity differences through
different penalty functions such as the quadratic prior (Geman and Geman, 1984).
Nevertheless, a drawback of these conventional priors is that they only consider pre-defined
local neighborhoods to define the prior at any given position. Furthermore, they may lead to
blurring of edges. To this end, a number of more sophisticated priors have been proposed to
allow enhanced tolerance for edges including the median prior (Hsiao et al., 2003) and
priors whose gradients level off with increasing differences such as the Geman (Geman et
al., 1987), Huber (Mumcuoglu et al., 1996), Green (Green, 1990) and Nuyts (Nuyts et al.,
2002) priors.

An alternative approach seeks to control penalization of inter-voxel differences across edges
via incorporation of information obtained from anatomical images (e.g. Lipinski et al., 1997;
Comtat et al., 2002; Baete et al., 2004). More sophisticated anato-functional priors have also
appeared in the literature (e.g. Rangarajan et al., 2000; Somayajula et al., 2011; Vunckx et
al., 2011; Tang and Rahmim, 2009). Ultimately, however, while many types of PET imaging
tasks exhibit correlations between anatomy and radio-pharmaceutical uptake, the
relationship can be complex and indirect. The proposed framework seeks an approach in
which ‘functional neighborhoods’ of similar kinetics are identified via clustering methods,
and are incorporated as priors within the reconstruction task.

In the different context of post-reconstruction dynamic PET image analysis, a number of
clustering-based techniques were previously proposed to either better facilitate segmentation
or to reduce noise in kinetic analysis (by grouping and concurrent analysis of voxels with
similar kinetics). In segmentation, this included the use of K-means-like clustering applied
to segment dynamic brain images (Wong et al., 2002; Liptrot et al., 2004). Fuzzy C-mean
(FCM) clustering, also known as soft K-mean clustering, as well as mixture models making
multivariate Gaussian or non-Gaussian assumptions (using EM or ICA methods) were also
proposed to segment dynamic brain images (Koivistoinen et al., 2004). In dynamic cardiac
PET imaging, factor analysis was applied to segment and estimate left and right ventricular
input functions automatically (El Fakhri et al., 2005). In oncologic whole-body imaging, the
PCA approach was used by Anzari et al. (1999) to enhance distinction of tumors in dynamic
FDG images compared to conventional static standard uptake value (SUV) images. Janssen
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et al. (2009) instead used K-means clustering applied to slopes of TACs (calculated based on
last few time frames of FDG uptake) to differentiate between tumors and healthy tissues.

In the context of kinetic analysis, clustering analysis for kinetics (CAKS) by Kimura et al.
was originally based on a single-compartment model (Kimura et al., 1999) but was also
extended to the irreversible two-compartment FDG model (k4 assumed 0) using principle
component analysis (PCA) (Kimura et al., 2002) and also supplemented by a mixed
Gaussian model to better facilitate PCA classification in the presence of noise (Kimura et
al., 2001). Two other approaches applied and evaluated in brain research PET include
hierarchical cluster analysis with average linkage method (Zhou et al., 2002); or combined
hierarchical and K-means cluster analysis (Huang et al., 2007).

In contrast to abovementioned post-reconstruction methods, the present work utilizes
clustering to enhance the image reconstruction task itself, via generation of kinetics-based
clusters of neighborhoods. The approach is labeled “3.5D” image reconstruction, because on
the one hand it is related to the emerging field of spatiotemporal 4D PET reconstruction
(Rahmim et al., 2009) which attempts to move beyond independent-frame reconstructions
(see also discussion in Sec. 5.3) while on the other hand, the final reconstruction step
includes straightforward application of maximum a posteriori (MAP) reconstruction to the
original individual dynamic frames without the need for advanced transforms, temporal
basis functions, or kinetic models as pursued in the 4D reconstruction framework.

2. Methods
2.1. MAP image reconstruction

Let fm ∈ Rnj denote the emission distribution in time frame m (1 ≤ m ≤ M). The PET data,
modeled as a collection of independent Poisson random variables with expectation g̅m ∈ Rni

in time frame m, can be related to fm through an affine transform:

(1)

where A ∈ Rni×nj is the system matrix with element (i, j) denoting the probability of a
positron emitted from voxel j resulting in a coincidence at the ith detector pairs, and rm ∈
Rni accounts for the scattered and random events in frame m, and ni and nj denote the total
number of detector pairs and voxels, respectively.

According to the measurement model, the log-likelihood function of the dynamic data set is
given by

(2)

where g={gm} and f={fm} denote the measured dynamic sinograms and the unknown
emission distributions, respectively.

Maximum likelihood (ML) estimation attempts to maximize L(g | f) with respect to f.
However, ML estimation will produce increasing noise levels with increasing iterations. A
powerful method to circumvent daunting noise levels is to utilize Bayesian theory to
maximize the posterior probability that includes prior image information. The prior
information can be specified by a probability density on f and subsequently combined with
the information contained in g to produce an estimation of the unknown image. Commonly,
the prior is modeled to follow a Gibbs distribution
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(3)

where U(f) is the energy function and β is a regularization parameter that controls the
tradeoff between resolution and noise. Combining the likelihood function and the image
prior, MAP estimation of f is given by

(4)

Based on equations (2) and (4), we then invoke the one-step-late (OSL) approach for an
iterative update to the MAP estimate (Green, 1990):

(5)

where the new estimate of voxel j in time frame m is updated from the old estimate. A single
bin i in mth frame of the measured dynamic sinograms g is represented by gim, and aij
represents an element of the system matrix A. The performance of the MAP reconstruction
strongly depends on the construction of the prior U(f) and the regularization parameter β,
and then we will elaborate them in section 2.2 and 2.3, respectively.

2.2. Generation of the prior model
2.2.1. Conventional localized priors—The prior energy function U (f) in (5) is
commonly computed via a weighted sum of potential functions v of the differences between
voxels in the local neighborhood Nj:

(6)

where wkj is the weight of a given pixel k in the neighborhood of pixel j. For 3D
reconstructions, a neighborhood with 18 neighbors was selected. The weight wkj is set to 1 if

k and j are orthogonal nearest neighbors, to  for diagonal neighbors and to 0 otherwise.
Generally, different choices of potential function v lead to different priors. The prior
becomes quadratic prior (QP) when the potential function v takes the form of v(u) = u2. We
also considered Green’s prior (GP) where the potential function v is set to v(u) = log cosh(u/
δ), where δ is a free parameter to be optimized (Green 1990).

2.2.2. The proposed cluster-based prior—In order to make use of more voxels to
further encourage smoothing without causing significant bias, we expanded the use of
localized neighborhoods to those containing all voxels with similar temporal behaviors as
clustered together. We continue to use the quadratic potential function, nonetheless the
neighborhood definitions are now different:

(7)

where c{j} stands for the functional cluster in which voxel j is grouped. As for the weight
definition, a straight-forward approach is to equally weight all voxels within each
neighborhood:
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(8)

where Nc{j} is the number of voxels in functional cluster c{j}, resulting in what we refer to
as the un-weighted cluster-based prior (CP-U).

However, due to noise and/or usage of insufficient number of clusters, some voxel may be
incorrectly clustered together, and lead to bias in the MAP reconstructed images.
Subsequently, a methodology was developed to alleviate such a bias: namely, distance
weighting was introduced to reduce the resulting adverse impact:

(9)

where dkj is the Euclidean distance between voxel j and voxel k, resulting in a distance-
weighted cluster-based prior (CP-W). In this latter scenario, we only compute wjk in a
particular neighborhood (5×5×5) that is not necessarily as large as the entire cluster, as the
weights of more distant voxels within the cluster will be negligible and this can lead to
considerable computational speed-up. In turn, this can lead to considerable computational
speed up. It is important to note that, relative to most previous applications of MAP
reconstruction to emission computed tomography, our proposed cluster-based priors attempt
to use neighborhoods that are optimally defined to contain kinetically homogeneous voxels.
This can effectively reduce noise levels without causing significant increases in bias for a
given temporal sampling scheme.

2.2.3. Clustering of time activity curves (TACs)—The construction of the two priors
in Eqs. (7–9) strongly depends on the functional clusters c{j}, which determines how
accurately the priors describe the nature of the images. In dynamic PET studies, the
temporal behavior of each voxel j can be described by a TAC vector collecting the
reconstructed activity estimates of the voxel over time. Instead of separately clustering an
individual image based on voxel intensities, as we preliminarily investigated in Lu et al.
(2011), here we propose to perform clustering based on voxel dynamic (i.e. TACs). Our aim
is to classify the image voxels according to their corresponding TAC shapes and magnitudes
so that voxel TACs within a cluster are relatively homogeneous, while voxel TACs drawn
from different clusters are relatively heterogeneous. Suppose that there exist K characteristic
curves in the dynamic PET image f, the fuzzy C-means clustering approach minimizes

(10)

where ‖.‖ stands for the Euclidian norm, fj ∈ RM is the TAC for the jth voxel, vk ∈ RM is the
centroid TAC of the kth cluster,ukj is the degree of membership of fj in the kth cluster, q is
the fuzzification parameter, and W ∈ RM×M is a square matrix containing the weighting
factors on the diagonal entries and zeros otherwise. The weighting factors are set as
inversely proportional to variances in each dynamic frame m: the estimated variance of
OSEM reconstructed images is elaborated in section 2.3.

2.3. Regularization parameter model
The regularization parameter (β in (5)) determines how much a role the prior plays in the
reconstruction process. Commonly in the literature, β is equally set amongst different
frames, even though different frames demonstrate distinct statistics. Alternatively, we
propose the following frame-dependent regularization parameter:
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(11)

where α is a scaling factor, and  is the estimated variance for frame m. In fact, this can be
seen as an effort to obtain relative consistency in image resolution and noise amongst
different frames, given dependence of both image resolution and noise on frame statistics
(Qi and Leahy, 2000). Based on the variance model in Yaqub et al. (2006), the variance of a
decay-corrected frame is

(12)

where Nm denotes decay-corrected sinogram counts, ΔTm represents the frame length, and
dcfm is the decay correction factor. The decay correction factor (for each frame) is given by
dcf=λ×(Te − Ts)/{exp(−λ×Ts)−exp(−λ×Te)}, where λ is the decay constant;Ts and Te are
the frame start and end times, respectively. A similar frame-varying regularization approach
was also applied in (Wang and Qi, 2009a), though the effect of decay correction was not
considered or not discussed. For quantitative comparison purposes, we also consider the
conventional frame-independent regularization approach as:

(13)

where α is defined as that in (11), and σ0 is a mean overall statistics measure obtained by
averaging σm across the frames.

2. 4. The implementation of proposed 3.5D dynamic PET reconstruction
The proposed 3.5D PET reconstruction algorithm is depicted in figure 1. There are three
steps elaborated as follows:

Step 1: The standard 3D MLEM reconstruction (including 3 iterations and 16 subsets) is
run to generate a sequence of pre-reconstructed dynamic PET frames

.

Step 2: The kinetics-based clustering is performed on the pre-reconstructed dynamic
frames f(MLEM). In this case, the dynamic PET images are set to f=f(MLEM) and the

weighting matrix is set to . To speed up the computation, we
have set the fuzzification parameter q in Eq. (10) as 2, as commonly pursued in the
literature (e.g. Ahmed et al., 2002; Chen and Zhang, 2004). The solution (Bezdek,
1981) of the objective function J in Eq. (10) can be obtained through an iterative
process, which is carried as follows:

1. Set the total cluster number K and stopping condition ε.

2.
Randomly initialize the fuzzy partition matrix U(0) consisting of individual 
values.

3. Set the loop counter b = 0.

4. Calculate the cluster centers  from U(b)
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(14)

5. Calculate the membership matrix U(b+1)

(15)

6. If max{U(b) − U(b+1)} <ε then stop; otherwise, set b = b + 1 and go to step 4.

Step 3: 3.5D PET reconstruction (MAP using kinetics-based cluster priors) is followed
by kinetic modeling. After the fuzzy partition matrix U is obtained, we determinate the
functional cluster c{j} for each voxel j by setting the largest membership value ukj to 1
and others to 0. Thus, the MAP OSL algorithm (5) is invoked utilizing the proposed
cluster-based prior (7) along with the frame-dependent regularization parameter (11).

3. Experimental design
3.1. Simulation study

A two-compartment model (including non-displaceable and bound compartments) (Innis et
al., 2007) was used to simulate dynamic PET studies with reversible binding. For a given
plasma input Cp(t), the factional plasma volume in tissue Vp, and the four standard rate
parameters K1 (ml/min/g), k2 (1/min), k3 (1/min) and k4 (1/min), the measured total
radioactivity C(t) is given by (Bentourkia and Zaidi, 2007):

(16)

where * denotes the convolution operation, and

(17)

For our simulations, we used 55 11C-raclopride dynamic PET human scans, from which K1,
k2, k3 and k4 rate constants were estimated for multiple regions across the brain for each
study (Vp was set to 0.03), as elaborated by Rahmim et al (2012). The estimated parameters
were then employed within equation (16) to generate a set of dynamic images using a
mathematical brain phantom (Rahmim et al., 2008). An acquisition protocol of 4 × 15 s, 4 ×
30 s, 3 × 1 min, 2 × 2 min, 5 × 4 min, and 7 × 5min was simulated. We then performed
analytic simulations of all frames to generate dynamic datasets followed by reconstructions.

To validate the reconstructions, post-reconstruction graphical analysis was used to estimate
the parametric images. In the present work, we utilized a graphical formulation by Zhou et
al. (Zhou et al., 2009) which does not exhibit noise-induced bias due to very favorable linear
properties. For a system reaching relative equilibrium (RE) with respect to the plasma input
at t≥t*, the RE graphical model is given by:
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(18)

where DVj and Bj are the slope and intercept parameters at a voxel j, Cp and Cj are the
plasma and target tissue tracer concentrations, respectively, estimated at a time t, in
accordance with the imaging protocol. Furthermore, assuming a reference tissue Cref that is
also in relative equilibrium with respect to the plasma input after a time t≥t*, the DV ratio
(DVR) can be directly extracted:

(19)

where DVRj and  are the slope and intercept parameters at a voxel j. The time integrals
employed in Eqs. (18) and (19) are calculated from t=0 to 45 min, 50min, 55min, 60min and
65min. Both abovementioned graphical formulations were utilized for parametric image
estimation in the present work.

3.1.1. Tomography imaging—We performed realistic analytic simulations for the
geometry of the high resolution research tomograph (HRRT) (Sossi et al., 2005). Decay,
normalization and attenuation effects were taken into account; these effects were also
incorporated within the reconstructions. The simulations did not include randoms and
scattered events. By contrast, the patient study in Sec. 3.2 included presence of, and
corrections for, both randoms and scattered events. Parametric images were obtained using
graphical analysis from: (i) conventional 3D dynamic reconstruction (MLEM), (ii)
conventional 3D MAP reconstruction (using quadratic prior QP-MAP and Green’s prior GP-
MAP approaches), and (iii) proposed 3.5D dynamic reconstructions (CP-U-MAP and CP-
W-MAP). We performed 10 iterations with 16 subsets in all reconstructions. All images
(activity and parametric) were reconstructed with matrix dimensions of 256 × × 256 × 207
and cubic voxel sizes of 1.219×1.219×1.219mm3.

3.1.2. Figures of Merit (FOMs)—To compare the DV or DVR parametric images
estimated from the different algorithms described in the previous subsection, we use
quantitative evaluation criteria involving regional normalized standard deviation (NSD) vs.
bias tradeoff curves. We studied eleven regions of interest (ROIs), namely the cerebellum,
caudate, putamen, cingulate Cx (cortex), occipital Cx, orbitofrontal Cx, parietal Cx, frontal
Cx, temporal Cx, thalamus and white matter. The normalized standard deviation (NSDROI)
for each ROI was defined as

(20)

where Xj denotes the estimated DV or DVR parametric value at a voxel j (j = 1,…, NROI) of

the specified ROI, and  represents the mean value of estimated DV or
DVR parametric value in a specified ROI. For a given ROI of known uniform parametric

value , the regional bias (BiasROI) was defined as
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(21)

Overall FOMs: To quantify NSDoverall vs. Biasoverall for the entire image (in order to allow
an overall assessment of quantitative performance), NSDROI and BiasROI values for the
ROIs (r=1…R) were averaged, and weighted by the size (number of voxels NROI) for each
ROI to estimate the overall NSD and Bias.

3.2. Application to patient study
We also considered application of the proposed method to subject data from the second-
generation HRRT scanner (Sossi et al., 2005). We modified the existing HRRT
reconstruction code to form the parametric images using graphical analysis from: (i)
standard 3D dynamic reconstruction (MLEM), and (ii) proposed 3.5D dynamic
reconstructions (CP-W-MAP). In addition to corrections for attenuation and normalization,
corrections for random and scatter events were also performed, as estimated using the
singles rate method and the standard single scatter simulation, respectively, for the HRRT
scanner (Rahmim et al., 2005).

A 11C-raclopride PET study on a 27 year-old male subject was considered. The reference
tissue model was applied for 0–65min, while five end-times t (45, 50, 55, 60 and 65 min)
were considered. The cerebellum TACs were used as reference and were estimated using
initial OSEM reconstructions. Up to 6 iterations (16 subsets each) of both aforementioned
conventional and proposed approaches were studied.

Since the true DVR values are not known, bias measurement was not performed. Instead, we
plotted DVRROI vs. NSDROI values for a variety of ROIs, where NSDROI was defined as in
(20). This would allow comparisons of noise performances given similarly obtained values
of DVR.

4. Results
We evaluated the proposed 3.5D dynamic reconstruction algorithm in comparison with
conventional 3D MLEM and MAP reconstruction algorithms. The parameters in the two
algorithms were first optimized separately using separate projection data, followed by
quantitative comparison in terms of regional noise versus bias performance.

4.1. Tomography simulation
4.1.1. Parameter Optimization—Figure 2(a) illustrates σ0 and σk for a typical raclopride
PET study. For a reasonable scaling factor α (as optimized in this study, as discussed later),
the noise performance of QP-MAP reconstruction using frame-independent vs. frame-
dependent regularization approaches is presented in figure 2(b). We can see that the latter
approach utilizing frame-dependent βk demonstrates enhanced uniformity across frames.

For the proposed 3.5D PET reconstruction method (including CP-W-MAP and CP-U-MAP),
we also studied the impact of cluster number K on the quantitative accuracy, specifically by
studying the final obtained parametric images. Through extensive testing, we found that
within our task of parametric imaging in raclopride PET scans, use of 13 clusters provided
reasonable results, as shown in figure 3.

Next, the effect of varying the scaling factor α in the context of frame-dependent
regularization was studied. We emphasize that optimization of regularization was performed
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for both conventional MAP (not shown) and proposed 3.5D MAP reconstruction (shown
next), to provide a fair comparison between the two approaches. This was achieved using
noise versus bias tradeoff curves as shown in figure 4. The curves in the plots (each
generated with increasing iterations) demonstrate quantitatively improved overall NSD
versus Bias trade-offs with increasing α values for both CP-U-MAP and CP-W-MAP
reconstructions. Nonetheless, more notable quantitative improvements were observed for the
latter: in fact, at a fixed iteration, both noise and bias levels were improved in CP-W-MAP,
while in case of CP-U-MAP, reduced noise was obtained at the cost of degraded bias. This
is attributed to the fact that CP-W-MAP reconstruction has an enhanced ability to minimize
interactions between distant voxels that are incorrectly clustered together. As a result, in our
subsequent work, we focus on this algorithm.

Figure 5 plots NSD versus Bias tradeoff curves for CP-W-MAP in representative individual
brain regions as generated with increasing iterations, using different scaling factors α. For
the α-values plotted, considerable improvements in image quality were achieved when α
increased from 0.1 to 0.4 (increasing α to 0.6 did not noticeably impact performance). We
thus utilized α=0.4 as an optimal value for CP-W-MAP reconstructions. Here, we wish to
emphasize the practicality of optimizing α (and not β directly) allowing the regularization
task to be naturally tuned for different scans given their unique overall or individual frame
statistics, as pursued using equations (13) and (11) respectively, though we utilize the frame-
dependent approach for enhanced performance.

4.1.2. Results for the plasma input model—Following the optimization of
parameters, we compared the performance of conventional 3D PET reconstructions
(including MLEM, QP-MAP, GP-MAP) and proposed 3.5D PET reconstruction (CP-W-
MAP). To provide an overall evaluation perfomance of the reconstruction algorithms across
the brain, figure 6 depicts plots of overall NSD versus overall Bias for various parametric
DV images. It is clearly seen that the MLEM approach results in substantially increasing
noise levels with increasing iterations, while QP-MAP and GP-MAP approaches somewhat
reduce the noise levels at the cost of degraded bias levels. By comparison, the proposed CP-
W-MAP reconstruction method results in improved bias levels while controlling noise
levels. It is also worth noting that GP-MAP performs better than QP-MAP in term of noise
versus bias tradeoff of the reconstructed image.

The regional NSD versus Bias tradeoffs (11 regions) of the DV images estimated from
conventional 3D PET reconstruction (MLEM, QP-MAP and GP-MAP) and the proposed
3.5D PET reconstruction (CP-W-MAP) are shown in figure 7. As depicted in plots for the
individual ROIs, applying conventional 3D MAP reconstruction can reduce the noise but
sacrifices the bias. Noise versus bias tradeoff curves achieved by the proposed CP-W-MAP
reconstruction method is seen to outperform those from MLEM and conventional MAP.

In order to provide a more direct visual impression of the estimated DV images, figure 8
shows transaxial, coronal, and sagittal slices through parametric images obtained by two
algorithms (MLEM and CP-W-MAP), together with the true image. It is seen that while the
standard MLEM approach results in increasingly noisy images (with increasing iterations),
reconstructed images using the proposed CP-W-MAP approach show a clearly improved
visual performance. Parametric images obtained by other two algorithms (QP-MAP and GP-
MAP) are not shown in figure 8: both QP-MAP and especially GP-MAP reduced the noise
levels though at the cost of degraded bias levels, the latter not easily detected visually,
though clearly observed in quantitative noise versus bias analysis (e.g. figure 6 and figure 7).

4.1.3. Results for the reference input model—The abovementioned quantitative
analysis was also performed on parametric DVR images obtained using the reference tissue
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model, with the cerebellum used as reference. Figure 9 shows regional NSD versus Bias
tradeoffs (11 regions) of the DVR images estimated from conventional 3D PET
reconstructions (MLEM, QP-MAP and GP-MAP) and the proposed 3.5D PET
reconstruction method (CP-W-MAP). It is worth noting that for all reconstructions, the
estimated parametric DVR images (obtained using the reference tissue model) lead to larger
bias levels in comparison with using the plasma input model (figure 7). In any case, the
proposed CP-W-MAP reconstruction method is seen to noticeably outperform conventional
3D reconstructions, by lowering the noise (NSD) while achieving reduced bias.

4.2 Application to patient study
Subsequently, following extensive validations using simulations, we applied the proposed
3.5D reconstruction method to a 11C-raclopride patient study on the HRRT scanner (as
elaborated in section 3.2). In order to provide a visual comparison of the estimated DVR
images, figure 10 shows transaxial slices of parametric images obtained by conventional
MLEM and proposed 3.5D reconstruction algorithms. The noise reduction in parametric
DVR image reconstructed from the proposed approach is clearly observed.

Figure 11 depicts NoiseROI verus DVRROI plots generated by increasing iterations for 13
individual regions of the brain (cerebellum, both left (L) and right (R) anterior putamen,
posterior putamen, anterior caudate nucleus, posterior caudate nucleus, thalamus and ventral
striatum). Across these ROIs, the proposed 3.5D reconstruction method is commonly seen to
quantitatively outperform conventional 3D MLEM reconstruction, in the sense that for a
given DVR value, improved noise values are attained.

Future work consists of application to an extensive pool of test-retest subject studies on the
HRRT scanner, aiming to validate a hypothesized enhanced quantitative accuracy using the
proposed approach, including increased reproducibility (e.g. intraclass correlation
coefficient (Shrout and Fleiss, 1979)).

5. Discussion
5.1. Relationship with spatiotemporal four-dimensional (4D) PET reconstruction

Spatiotemporal 4D PET reconstruction approaches, as reviewed in (Rahmim et al., 2009),
aim to obtain improved noise performance for a given temporal sampling scheme, through
incorporation of information from more than one frame in the reconstruction task. These
include techniques that utilize (a) iterative temporal smoothing, (b) smooth temporal basis
functions (c) principal components transformation of the dynamic data, (d) wavelet-based
techniques and (e) direct kinetic parameter estimation methods. The direct approach, also
reviewed in (Tsoumpas et al., 2008), combines kinetic modeling and emission image
reconstruction into a single framework, comprehensively utilizing data from all dynamic
frames in the reconstruction process. It allows accurate incorporation of noise from
sinogram data within kinetic parameter estimation. However, this approach tends to require
more complex optimization algorithms than conventional methods (Carson and Lange,
1985; Kamasak et al., 2005; Wang and Qi, 2009b). Though closed-form direct 4D
parametric imaging algorithms have been developed, they are primarily based on linear
graphical models (Wang et al., 2008; Tang et al., 2010; Rahmim et al., 2012). By
comparison, while our proposed 3.5D dynamic PET reconstruction does extract and
incorporate 4D kinetics information from the overall data, it maintains a straightforward
approach to 3D reconstruction of individual frames, and does not require the use of temporal
basis functions, complex transforms or sophisticated optimization algorithms. Furthermore,
the algorithm does not require pre-specification of the kinetic model to be applied to the
reconstructed images.
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5.2. Selection of cluster number
The true number of clusters is usually not known a priori. Therefore one faces the challenge
of specifying the appropriate number of clusters. In the work by Belhassen and Zaidi
(Belhassen and Zaidi, 2010), the number of clusters for a static PET image is computed by
optimizing the Bayesian information criterion (BIC). Wong et al (Wong et al., 2002) used
two information theoretic criteria, namely the Akaike information criterion (AIC) and the
Schwaz criterion (SC, which is equivalent to BIC) to determine the number of clusters for
2D dynamic PET images. AIC and BIC invoke different statistical models (Schwarz, 1978).
Nonetheless, in our simulations, we did not find AIC and BIC to perform reliably for
realistic 3D dynamic PET images. One possible reason is that both AIC and BIC are model
dependent, thus a specific probability distribution function is not appropriate for the realistic
3D dynamic PET images.

In this study, we have instead used quantitative NSD versus Bias tradeoff performance to
optimize the cluster number. We previously studied the effect of different cluster numbers
on static image reconstruction (Lu et al., 2011). It was found that if the cluster number is
less than the true number of clusters, reconstructed images obtained using CP-U-MAP may
introduce notable bias, while CP-W-MAP depicted better performance: this was attributed to
the ability of CP-W-MAP to minimize interactions between distant voxels that may have
been wrongly clustered together. This was also validated in the present context of dynamic
imaging: the overall NSD versus Bias tradeoff curves for parametric images obtained
following CP-W-MAP reconstruction depicted enhanced quantitative performance
compared to CP-U-MAP reconstruction when the number of clusters was set to less than the
true number of clusters (as illustrated in Section 4.1.1; figure 3). We also observed neither
obvious improvements nor degradations in overall NSD versus Bias tradeoff performance
when the number of clusters was greater than the true number of clusters (i.e. 13). However,
as the true number of clusters is not known in practice and underestimation is expected to
lead to poor quantitative performance, it may be wiser to follow an aggressive approach that
is more likely to induce over- rather than underestimation of this parameter. Alternatively, it
is possible to explore approaches such as hierarchical cluster analysis (Huang et al., 2007) to
fit the dynamic data using a varying number of clusters until an optimum value is reached.

5.3. Selection of the regularization parameter
Selection of a proper regularization parameter β in MAP reconstruction can be critical for
dynamic PET reconstructions. Adaptive approaches such as generalized cross validation
(GCV), L-curve and maximum likelihood methods (Johnson et al., 1991; Saquib et al.,
1998; Zhou et al., 1997; Hansen, 1992) impose high computational costs and are not task-
based. Wang and Qi proposed a kinetic-task-dependent method to guide the selection of
regularization parameters in the MAP reconstruction for dynamic PET (Wang and Qi,
2009a). However, this method, aside from its computational complexity, requires both the
estimated true value of the TAC inside the ROI and the definition of the ROI (prompting
‘plug-in’ approaches). In the present work, given the dependence of both image resolution
and noise levels on frame statistics (Qi and Leahy, 2000), we utilized a simple yet practical
approach of scaling the regularization parameters in accordance with the variance of each
dynamic frame (as elaborated in Section 2.3). We used NSD versus Bias tradeoff curves to
optimize the scaling factor, and demonstrated more uniform noise levels (NSD) between the
reconstructed images from the various dynamic frames.

6. Summary
This work proposed a 3.5D dynamic PET reconstruction method to enhance the image
reconstruction via introduction of priors based on voxel kinetics. We used a weighted fuzzy
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C-means method to cluster the preliminary reconstructed dynamic images and then defined
neighborhoods of voxels with similar kinetics. Two forms of cluster-based priors were
defined and incorporated via straightforward maximum a posterior (MAP) 3D PET
reconstruction as applied to individual frames. Using realistic simulated 11C-raclopride
dynamic PET data, we optimize the performance of the proposed 3.5D dynamic PET
reconstruction algorithm, and compared its performance with conventional 3D MLEM and
MAP (QP-MAP and GP-MAP) reconstruction algorithms. A frame-dependent regularization
parameter was developed and studied quantitatively, using overall NSD versus frame, to
obtain relative consistency in image resolution and noise amongst different frames. The
proposed 3.5D dynamic reconstruction algorithm resulted in quantitatively enhanced DV
and DVR parametric images, as demonstrated in extensive 11C-raclopride PET simulation as
well as an HRRT patient study.
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Figure 1.
The flowchart of the proposed 3.5D dynamic PET reconstruction algorithm.
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Figure 2.
(a) Comparison of σ0 vs. σm as utilized in frame-independent vs. frame-dependent
regularizations (13) and (11). To minimize dependence on early-uptake, highly-varying
noise levels, only σm values for frames with t>1.5min were averaged to obtain σ0, (b) Plots
of resulting image NSD versus frame number for QP-MAP reconstruction using: (i) standard
non-regularized MLEM shown as reference, (ii) QP-MAP with frame-independent
regularization (MAP (β0)), and (iii) QP-MAP with frame-dependent regularization (MAP
(βm)).
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Figure 3.
Plots of overall NSD (noise) vs. bias for DV images obtained with increasing iterations of
3.5D dynamic reconstruction: (left) CP-U-MAP and (right) CP-W-MAP for varying cluster
numbers and using frame-dependent regularization with typical scaling factor α.
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Figure 4.
Plots of overall NSD (noise) vs. bias for DV images obtained using proposed reconstruction
method with 13 clusters: (left) CP-U-MAP and (right) CP-W-MAP, as generated for varying
regularization parameters. Increasing bias levels were observed for CP-U-MAP
reconstruction, unlike CP-W-MAP reconstruction.
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Figure 5.
Plots of regional NSD (noise) vs. bias curves for DV images obtained using 3.5D dynamic
reconstruction with 13 clusters (CP-W-MAP) for varying regularization parameter.
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Figure 6.
Plots of overall NSD (noise) vs. bias for DV images (generated with increasing iterations)
obtained using: (i) conventional 3D MLEM reconstruction, (ii) conventional 3D MAP
reconstruction (QP-MAP and GP-MAP) and (iii) proposed 3.5D reconstruction (CP-W-
MAP). Regularization was optimized for both conventional and proposed MAP
reconstructions to provide a fair comparison.
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Figure 7.
Plots of regional NSD (noise) versus bias trade-off curves of the estimated DV images
(generated with increasing iterations) for different regions of the brain reconstructed using
(i) conventional 3D MLEM reconstruction, (ii) conventional 3D MAP reconstruction (QP-
MAP and GP-MAP), and (iii) proposed 3.5D MAP reconstruction (CP-W-MAP)
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Figure 8.
True and estimated parametric DV images: (a)–(c) corresponding to transaxial, coronal and
sagittal slices, respectively. For each, (i) true image, (ii) standared 3D MLEM reconstruction
(MLEM) and (iii) proposed 3.5D reconstruction (CP-W-MAP) are shown (From left to
right): Increasing iterations of 1, 2, 3, 5 and 10 (16 subsets). No post-filtering was applied to
the images shown.
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Figure 9.
Plots of regional NSD (noise) versus bias curves of the estimated DVR images (using the
reference tissue model), as generated with increasing iteration numbers, for different regions
of brain images reconstructed using (i) conventional 3D MLEM reconstruction, (ii)
conventional 3D MAP reconstruction (MAP) and (iii) proposed 3.5D MAP reconstruction
(CP-W-MAP).
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Figure 10.
Transaxial parametric DVR images for a raclopride HRRT study. (top) standared 3D MLEM
reconstruction, (bottom) proposed 3.5D reconstruction (CP-W-MAP). (From left to right):
Increasing iterations of 1, 2, 3, 4, 5 and 6 (16 subsets). Post-filtering was applied to the
images shown.
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Figure 11.
Plots of regional NSD versus DVR curves of the estimated DVR images with the iteration
number for different regions of brain images reconstructed using (i) standard 3D MLEM
reconstruction, and (ii) proposed 3.5D MAP reconstruction (CP-W-MAP).
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