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Abstract
Cancer, as well as other human disorders, has long been considered to result from the consequence
of genetic mutations in key regulatory genes that reside in pathways controlling proliferation,
cellular differentiation, DNA damage and repair. In the case of cancer, mutations are well
documented to arise in key oncogenes and critically important tumor-suppressor genes as part of
the disease progression process. In addition to more accepted, genetic mutations, a rapidly
increasing body of evidence supports the general view that profound alterations also occur in
‘epigenes’, whose products serve to define the ‘epigenetic landscape’ of tumor cells. Aberrant
changes in epigenetic mechanisms such as DNA methylation, histone modifications and
expression of micro RNAs play an important role in cancer and contribute to malignant
transitions. Here we review recent studies linking epigenetic mechanisms to epithelial-to-
mesenchymal transition as defined in normal processes, as well as abnormal transitions that lead to
oncogensis.
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Introducing Epigenetics and Epithelial-to-Mesenchymal transition (EMT)
Epigenetics can be defined as heritable alterations in states of gene expression that are not
linked to changes in the DNA sequence [1, 2]. A wealth of emerging literature suggests that
the precise organization of DNA in chromatin has important functional consequences.
Essentially all DNA-templated processes such as transcription, replication, repair,
recombination, and segregation are influenced by the complexity of the chromatin
architecture. Chromatin states, whether in the broadest terms, active or silent, establish,
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maintain and propagate different patterns of gene expression during normal differentiation
and development. Mistakes made in establishing these chromatin states, governed by
chromatin remodeling activities, lead to mis-expression or improper silencing with far-
reaching implications for human biology and human disease [3–8]. The fundamental and
interrelated epigenetic events involved in gene regulation, development and tumor
progression are DNA methylation, histone modifications, chromatin remodeling and micro-
RNA expression. Recent studies on epigenetic mechanisms in cancer have demonstrated that
epigenetic alterations also play important roles in epithelial-to-mesenchymal transition
(EMT).

EMT is a crucial process during normal development. Several milestones in embryogenesis,
including gastrulation, neural crest formation and heart morphogenesis, rely on dynamic
transitions between epithelium and mesenchyme [9]. Typically, EMT involves loss of
epithelial polarity, loss of adhesive properties, and acquisition of a fibroblastoid phenotype
with increased cell motility. Also during metastasis, carcinoma cells transition to a
fibroblast-like phenotype with drastically reduced cell-cell contact and increased migratory
abilities. A collection of compelling evidence suggests that cancer progression is initiated
via an EMT. These changes result in dispersed and isolated cells which are capable of
invading the surrounding stroma, intravasating into the bloodstream, and eventually
repopulating at distant sites as micrometastases [10–13]. Orchestration of complex and
interlinked networks is necessary for cells to transition into a mesenchymal phenotype [14–
16]. Molecular mechanisms underlying EMT were not analyzed until the early 1980s, but
since then a large number of molecular differences between epithelial and mesenchymal
cells have been described. Much more recently, researchers have learned that cancer cells
have to acquire genetic as well as epigenetic changes to undergo EMT. In this review, we
discuss how multiple, and likely, interconnected, mechanisms -- covalent DNA methylation,
histone modifications, chromatin remodeling and miRNAs -- are or might be associated with
EMT and cancer progression (Figure 1).

Epigenetic mechanisms in cancer cells
DNA methylation

One of the more extensively described epigenetic modification in humans is the methylation
of cytosine. DNA methylation is believed to be a mechanism of stable gene silencing, which
is crucial for regulating gene expression and chromatin states, in an interplay with histone
modifications and chromatin-associated proteins. In mammalian cells, DNA methylation is
mostly found within CpG dinucleotides, which tend to form clusters known as CpG islands,
and in regions of large repetitive sequences, such as retrotransposon elements and
centromeric repeats[17–19]. CpG islands are mostly located at the 5’ end of genes and mark
approximately 60% of human gene promoters [19, 20]. DNA methylation has long been
associated with gene silencing and is especially important for genomic imprinting, wherein
one of the two parental alleles is hypermethylated to ensure monoallelic expression, and for
inactivation of the X-chromsome in females [21, 22]. Furthermore, repetitive genomic
sequences are heavily methylated to maintain chromosomal integrity by preventing
chromosomal rearrangements, translocations and gene disruption through the reactivation of
transposable elements [5, 17, 23, 24]. DNA-methylation is also a mechanism to control
expression of germline-specific genes, like MAGE (Melanoma antigen-encoded gene)
family members. It is further used to silence tissue-specific genes, such as MASPIN
(mammary serine protease inhibitor, also known as SERPIN5B), in tissues were they should
not be expressed [25–27]. Extensive DNA methylation changes, probably induced by cell
differentiation, have recently also been described to occur at CpG island “shores”, which are
areas of relatively low CpG density close to CpG islands [28, 29]. The recent discovery that
5-methylcytosine can be converted into 5-hydroxymethylcytosien by the 2-oxoglutarate- and

Stadler and Allis Page 2

Semin Cancer Biol. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fe (II)-dependent oxygenases TET1, TET2 and TET3 indicates that there is much more
complexity to the relationship between DNA methylation and gene expression than first
believed [30–34]. More insight is necessary to understand the role of 5-
hydroxymethylcytosine, detected in ES cells and Purkinje neurons, to get a much clearer
understanding of this new modification and its potential contribution to the cancer
epigenome.

Gene silencing through DNA methylation is achieved by a variety of mechanisms. For
example, it can inhibit binding of transcription factors to target sites, or alternatively,
function as docking sites for methyl-binding domain proteins (e.g. MBD proteins, MeCP2),
which induce gene silencing through the recruitment of histone deacetylases (HDACs) [35,
36]. In normal cells, CpG islands in expressed genes are often found to be unmethylated.
Cancer cells, however, acquire distorted methylation patterns, which display an inversion of
the pattern found in normal tissues. In fact, changes in DNA methylation pattern were the
first epigenetic alterations described in cancer cells [37, 38]. Cancer cells are characterized
by a general loss of DNA methylation (approximately 20–60% less cytosine methylation)
[39]. On the other hand, site-specific hypermethylation at CpG islands is frequently
observed at the same time [5]. While the underlying mechanisms that initiate these global
changes are still under investigation, recent studies indicate that changes occur very early in
cancer development and may contribute to cancer initiation [40].

Covalent histone modifications
Clearly, DNA-methylation is one critical layer in a complex mechanism that is responsible
for establishing chromatin states, a layer which in some organisms is well-documented to be
influenced by histone modifications. The fundamental packaging element of chromatin is
the nucleosome, which consists of 147 pairs of DNA wrapped around an octamer of eight
globular histone proteins (two each of H2A, H2B, H3 and H4) [41, 42]. The N-and C-
termini of the histones protrude from the nucleosome into the nuclear milieu, were they can
be highly decorated with a diverse set of post-translational modifications (PTMs) that are
recognized to govern the structure and function of chromatin. These modifications include
acetylation, phosphorylation, methylation, citrullination, ADP-ribosylation, and
ubiquitylation [43, 44]. PTMs such as these can also occur within the globular domains of
the histone proteins, providing a staggering degree of complexity to the ‘language’ of
covalent histone modifications that may contribute to a histone or epigenetic “code” that
remains under active investigation (see below).

A rapidly emerging body of literature indicates that epigenetic alterations are fundamental
for normal development, cell differentiation and also play an important role in abnormal
human pathologies, such as cancer. Modulation of chromatin by covalent histone marks is
one fundamental way of regulating DNA accessibility during processes such as gene
transcription, DNA replication and DNA damage repair. For example trimethylation of
lysines (K) 4, 36 or 79 on histone 3 (H3K4me3, H3K36me3, H3K79me3), and acetylation
of H3K9 and H3K14 (H3K9ac, H3K14ac, and in some developmentally-regulated enhancer
elements, even H3K27ac) most often correlate with transcriptional activation, whereas
histone modifications like di- or trimethylation of H3K9 (H3K9me2 and H3K9me3) and
trimethylation of H3K27 (H3K27me3) generally mediate gene repression [45–47]. The
histone code postulates that the state of chromatin, active or repressed, depends on the
combination of histone modifications, which regulate critical downstream events by
providing a signalling platform to recruit “readers” or “effector” proteins [48–50].
Alterations in this “code” either through changes in the “writer” and “erasers” of these
covalent marks, or the effector protein complexes that read them, are closely linked with
oncogenesis [7, 8, 18]. For example, a wide-ranging study of histone-modifying enzymes
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even allowed the discrimination between cancer samples and their normal counterparts and
grouped the tumor samples by cell type [51]. Recently the mechanisms of chromatin
remodeling gained increased attention in cancer research because of the clear links to human
biology and human malignant diseases. For example, the histone variant H3.3 and one of its
dedicated chaperone systems DAXX/ATRX were linked to the formation of malignant
tumors. Even though H3.3 differs from its canonical counterparts by only 4–5 amino acids,
H3.3 is enriched at highly dynamic regions of chromatin which are subject to high rates of
nucleosome turnover, including telomeres [52–56]. A number of recent studies reported
mutations in DAXX/ATRX in patients with pancreatic cancer, acute myeloid leukemia, and
pediatric glioblastoma and even described alterations in H3.3 as “driving mutations” in
pediatric glioblastoma [57–59]. These “game-changing” studies provoke the intriguing, but
unexpected, possibility that mutated histone variants, notably H3.3, might function as
oncogenes. To what extent, for example, do the point mutations in histone proteins, alter any
of the PTMs described above, thereby bringing about mis-expression of critically important
downstream genes? Clearly, this will be an exciting area for future investigations.

Remarkable progress has been made in describing molecular mechanisms that introduce
variation into the chromatin template, however, identifying the physiologically-relevant
combinations of chromatin modifications in normal and pathological states remains a
daunting challenge. As well, until mechanisms of inheritance for histone modifications are
better understood, the extent to which histones are true carriers of epigenetic information
will be open for debate and future experimentation.

Deregulation of miRNAs
MicroRNAs (miRNAs) are non-coding RNA molecules consisting of approximately 21–23
nucleotides that regulate gene expression through post-transcriptional silencing of target
genes. They are differentially expressed, depending on the tissue and the developmental
context, and some estimates suggest that approximately 30% of messenger RNA transcripts
are regulated by miRNAs [60]. Sequence-specific miRNAs pair with the 3’ untranslated
regions of target messenger RNA within a RNA-induced silencing complex and conclude in
target messenger RNA degradation or inhibition of translation [61]. MicroRNAs have been
shown to regulate various important physiological and pathological processes by altering the
expression levels of their target mRNAs that play major roles in diverse cellular processes,
such as differentiation, proliferation, migration, invasion and survival. Like normal genes,
the expression of miRNAs can be altered by various mechanisms, e.g. transcription factor
binding, chromosomal rearrangements, genetic and also epigenetic alterations [62–64].

Additionally, miRNAs can in turn regulate intracellular epigenetic mechanisms by
modulating enzymes involved in modifying histones (enhancer of zeste-EZH2) and in
methylating DNA (DNA methyltransferases DNMT3A and DNMT3B) [65–67]. Studies
from recent years accumulate evidence that widespread changes of microRNA expression
patterns are associated with tumor progression [68]. Some miRNAs are overexpressed in
cancer cells, whereas others are downregulated and, depending on their target genes,
miRNAs can function as tumor suppressors or oncogenes [69, 70]. Deregulation of miRNA
expression has also been linked to EMT, e.g. by targeting repressors of E-cadherin [71, 72].

Considering the fundamental role of epigenetic mechanisms in the maintenance of gene
regulation, it is not surprising that aberrations of these integrated patterns are found in
cancer cells. The fine tuned cross-talk of the epigenetic machinery is disturbed in cancer
cells and leads to a distorted epigenetic landscape promoting tumor progression. The main
epigenetic alterations found in human cancer tissues are aberrant hypermethylation of
tumor-suppressor genes, global DNA-hypomethylation and changes in histone modifications
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[5, 6, 18, 24]. The study of epigenetic mechanisms in cancer during the last decade has
provided extensive information about the mechanisms that contribute to the neoplastic
phenotype and changes in DNA-methylation pattern, histone modifications and miRNA
expression are now accepted as common hallmarks of cancer.

Epigenetic control of genes associated with EMT
Epithelial and mesenchymal cells differ in various functional and phenotypic characteristics
and complex signaling networks are necessary to orchestrate EMT [15, 16]. The study of
epigenetics in tumor progression during recent years has provided intriguing clues and some
insights into mechanisms that promote EMT through the regulation of expression of genes
critical to relevant transformation pathways. Cells undergoing EMT show complex
alterations in gene expression patterns and a proportion of these alterations could be
explained by disrupted epigenetic mechanisms, such as histone modifications and DNA-
methylation [24, 73]. Cancer cells almost certainly have specific epigenomes distinct from
their parental cell type of origin, but little is known as to when and how alterations in
epigenetic landscapes take place along the transformation process. While changes in gene
expression patterns during EMT have been well described, the function of DNA methylation
in this transition is less clear. However, several studies, described below, document aberrant
promoter hypermethylation of genes that are associated with the regulation of EMT. These
genes involve cadherin genes, laminins, thrombospondins, estrogen signaling and axon
guidance molecules, to mention a few.

The silencing of the E-cadherin gene (CDH1) by aberrant promoter CpG island
hypermethylation is one of the most informative examples. E-cadherin is an important
“caretaker” of the epithelial phenotype and downregulation of E-cadherin leads to several
intra-and inter-cellular changes that are of direct relevance for EMT [15, 16]. Limited E-
cadherin levels result in the loss of E-cadherin-dependent intercellular epithelial cell-cell
contact complexes, and E-cadherin-regulated sequestering of β-catenin in the cytoplasm is
inhibited. Consequently, β-catenin localizes to the nucleus and promotes the Wnt signaling
pathway by activating transcriptional regulation through LEF/TCF4 (lymphoid enhancer-
binding factor/T-cell factor 4). In addition, other epigenetic mechanisms, such as
recruitment of repressive chromatin-remodeling complexes and changes in histone
modifications have been reported to be involved in the silencing of the E-cadherin gene.
Here, the transcriptional repressors Snail and Slug bind to the CDH1 gene and recruit
histone deacetylase (HDAC) containing complexes, such as the Sin3A/HDAC1/HDAC2
complex [74, 75]. Another example is the silencing of CDH1 by Snai1 in breast cancer cells
lacking estrogen receptor alpha. In the presence of estrogen receptor alpha (ERα), Snai1 is
repressed by a MTA3/Mi-2/NuRD remodeling complex binding to its promoter. The
absence of ERα abolishes the formation of this repressive complex and leads to expression
Snai1, which in turn represses the epithelial marker protein E-cadherin [76]. Snai1 has also
been shown to physically interact with lysine-specific demethylase 1 LSD1 (KDM1A), on
epithelial gene promoters, such as E-cadherin. LSD1 removes dimethylation of lysine 4 on
histone H3 (H3K4m2), a histone mark often associated with active chromatin, leading to a
more repressive chromatin state. LSD1 is essential for Snai1-regulated gene repression and
for maintenance of the silencing of Snai1 target genes in invasive cancer cells [77].

Another well-described and illustrative example for epigenetic silencing of an EMT-related
gene, is the repression of the estrogen receptor alpha (ESR1) gene. Estrogen receptor alpha
(ERα) is an important regulator of proliferation and differentiation in mammary epithelial
cells. In a ligand-dependant fashion, ERα induces gene expression by binding to its
transcriptional targets directly but als through secondary effects mediated by biological
activities of direct target genes [78–80]. The loss of ERα is a marker for poor prognosis in a

Stadler and Allis Page 5

Semin Cancer Biol. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



significant proportion of breast cancer patients [81], and in many cases this repression is a
result of the hypermethylation of CpG islands within the ESR1 promoter [82, 83].
Hypermethylation within this promoter leads to estrogen-independent tumor growth and
subsequently to cancers with increased aggressiveness and failure to endocrine therapy.
Other studies have shown that DNA-methyltransferases and HDACs play important roles in
the silencing of ESR1. Co-treatment of ERα-negative breast cancer cells with the
methyltransferase inhibitor 5-aza-2-deoxycytidine (5-aza-dC) and HDAC-inhibitors, such as
TSA can synergistically re-induce ESR1 gene expression, indicating that DNA-
methyltransferases and HDACs function through a common mechanistic pathway to repress
transcription [82]. Other epigenetic mechanisms besides aberrant hypermethylation have
also been shown to be involved in repression of ESR1 expression. For example, the
repressive transcription factor Snail binds to the ESR1 promoter in ERα-positive MCF-7
breast cancer cells, leading to the recruitment of HDAC1/2 complexes, which in turn, leads
to a decrease in histone H3 lysine 9 acetylation levels. Although the recruitment of these
complexes does not result in permanent silencing, the binding of Snail and concerted loss of
histone acetylation bring about drastic downregulation of ESR1 gene expression [84].

Recently, another epigenetic modulator, the lysine methyltransferase SET8, was described to
be involved in EMT of breast cancer cells. Yang and colleagues demonstrated that SET8
interacts and cooperates with TWIST, a transcription factor known to play an important role
in promoting EMT, to regulate expression levels of the E-cadherin and N-cadherin genes.
SET8 is recruited by TWIST to these two gene promoters where it acts as a dual epigenetic
modifier through its H4K20 monomethylation activity. H4K20me1 has generally been
associated with gene silencing, but also with transcriptional activation of single genes [85].
Expression of SET8 was found to be positively associated with expression of N-cadherin
and TWIST, promoting EMT, and negatively correlated with E-cadherin levels in MCF-7
breast adenocarcinoma cells [86].

The above examples describe the epigenetic mechanisms involved in the regulation of
specific EMT-associated genes and demonstrate that a fine tuned interplay of DNA-
methylation, histone modifications and chromatin remodeling complexes is necessary to
control gene expression. As might be expected, genome-wide changes in epigenetic
landscapes are now being reported to support the above view. In AML12 mouse hepatocytes
undergoing EMT following TGFβ-treatment, McDonald and colleagues found DNA-
methylation patterns to be unchanged during EMT [79]. However, a global loss of the
heterochromatin mark H3K9me2 was observed, together with an increase in euchromatin
marks, H3K4me3 and H3K36me3. Intriguingly, these changes were dependent on
expression of LSD1, since loss of LSD1 and its activity drastically affected cell migration
and chemoresistance of the cells driven into EMT. Mapping of the genome-wide changes in
histone modifications revealed that these alterations were mainly specific to large-organized
domains of heterochromatin enriched in H3K9 methylation, so called LOCKs [79]. These
results suggest that like stem cell differentiation, germ cell development and malignant
transformation, EMT is characterized by widespread changes in chromatin modifications [6,
40, 87, 88]. It will be interesting to investigate if these changes are a general characteristic of
EMT by performing similar studies in other cell systems and in other physiological contexts.

Genome-wide investigations of epigenetic regulation in EMT is still in its early stages, but
the discovery of new genes involved in this malignant transition will be of great importance
for the treatment of aggressive cancer types. In addition, the discovery of EMT-associated
miRNAs will further our understanding of the multilayer epigenetic events that control
EMT.
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Emerging literature describes changes in miRNA expression patterns in primary human
tumors relative to normal tissues and it conceivable that dysregulation of miRNAs plays a
role in tumorigenesis [68–70]. Several miRNAs have been described to enhance tumor
progression. Examples for miRNAs that promote cell migration in breast cancer are
miR-10b, miR-373 and miR520c [89, 90]. The latter two were shown to promote tumor
progression by suppression of CD44 [89]. The well-described oncogenic miR-21 also
contributes to EMT by promoting cell metastasis by inhibiting tumor suppressor genes like
TPM1, MASPIN and PDCD4, genes that heve been linked to tumor cell migration and
invasion [91–93]. On the other hand, miRNAs can also function as suppressors of EMT and
metastasis, like the miRNAs miR-126 and miR-335, which inhibit tumor cell proliferation
and migration in breast cancer [94, 95].

Another well-described group of micro-RNAs involved in EMT is the miR-200 family.
Members of this miRNA family are known to be downregulated in human tumors and are
important for the inhibition of EMT by targeting known repressors of E-cadherin, such as
ZEB1, ZEB2, SIP1 and transcription factor 8 [75, 96–99]. Interestingly, in cancer cells
miRNAs are also used to modify epigenetic patterns in cells undergoing EMT. For example,
miR-138 inhibits EMT in squamous cell carcinoma cell lines by regulating the expression of
ZEB and EZH2 [100]. Also, miR-101 has been described to regulate the histone
methyltransferase responsible for H3K27 methylation, EZH2. The targeting of EZH2 by
miR-101 leads to a degradation of EZH2 and therefore increased expression of tumor
suppressor genes due to the down-regulation of this repressive chromatin mark [66, 67,
101]. MiR-101 is found to be downregulated in several cancer types, which consequently
brings about higher expression levels of EZH2.

In addition, the expression of miRNAs can reciprocally be changed by epigenetic
mechanisms, such as CpG island hypermethylation and alterations in histone modifications.
Epigenetic silencing of miRNAs plays an important role in the acquisition of an invasive
cell phenotype and the development of metastasis [71]. MiRNA expression studies with the
DNA methylation inhibitor 5-aza-2′-deoxycytidine of metastatic cells from lymph node
metastasis of different human cancers revealed a DNA-methylation pattern characteristic of
cancer cells, specifically for the CpG islands in the promoter regions of miR-148a, miR-9
family and miR-34b/c.

Epigenetic silencing of these miRNAs activates genes such as c-myc, CDK6 and E2F3
targeted by miR-34b/c downregulation, and TGIF2 (transforming growth factor-β-induced
factor-2), which are known to play important roles in EMT programming and cancer
progression [71, 102]. Changes in expression levels of these miRNAs have been found in
several cancer types such as breast [103], ovarian [104] and pancreatic cancer [105].
Interestingly, miR-9 has also been described as a microRNA with oncogenic character, due
to its involvement in the silencing of E-cadherin in hepatocellular carcinomas promoting cell
invasion [106]. This finding suggests that miRNAs, depending on the tissue, potentially play
a double role in either promoting or abolishing tumor progression. In addition,
hypermethylation of the miR-9 family has also been detected in hematopoietic malignancies
[107] and renal cell carcinoma [108]. Studies within the last two years also report silencing
of some miR-200 familiy members by DNA-hypermethylation-associated in cancer cells
[109–113]. As mentioned above, the miR-200 family plays an important role in regulating
epithelial–mesenchymal transitions [75, 97, 99]. Importantly, new findings indicate that
DNA-methylation-associated silencing of the miR-200 family is a dynamic process that
mediates evolving epithelial–mesenchymal transition phenotypes in colorectal and breast
tumors [114]. Thus, current studies collectively demonstrate, that miRNAs can both
modulate the epigenetic machinery and be regulated through epigenetic alterations. These
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inter-connected mechanisms constitute a fine-tuned control loop, which should be further
explored for epigenetic therapy in the future.

Epigenetic Therapy
As described in this review, cells undergoing EMT are characterized by multiple, distinct
epigenetic changes, such as DNA hypermethylation and histone modifications inducing
chromatin remodeling. In many cases, hypermethylation and histone deacteylation are
biomarkers of tumor progression and therefore associated with poor prognosis for cancer
patients [102]. However, the reversible nature of drastic epigenetic alterations in cancer cells
led to novel targets for anti-cancer drugs and the development of “epigenetic therapy” [115].
The aim of these treatment options is the reconstitution of the epigenome of normal cells
together with the re-expression of epigenetically mis-silenced genes. In recent years
successful drugs have been discovered that effectively reverse DNA methylation and
aberrant histone modifications, such as DNA-methylation inhibitors zebularine, 5-
azacytidine and 5-aza-2’-deoxycytidine and HDAC-inhibiting drugs, including SAHA
(suberoylanilide hydroxamid acid), valproic acid (VPA) and trichostatin A (TSA) [116].
Several of these drugs have significant anti-tumor activity and some of these drugs were
approved by the US Food and Drug Administration (FDA) for the treatment of cancer
patients [117–122].

Combinatorial use of epigenetic drugs involving DNA methylation and HDAC inhibitors
together, has proven to be especially effective in several types of cancer. For example, co-
treatment of estrogen-receptor negative breast cancer cells with DNMT and HDAC
inhibitors, such as TSA, can synergistically induce estrogen-receptor re-expression. At the
same time, treated breast cancer cells show reduced soluble DNMT1 expression and DNMT
activity, leading to partial demethylation of ER promoter regions, and increased acetylation
of histones H3 and H4 [123]. Other preclinical studies of combinatorial HDAC and DNMT
inhibitor treatment in colon and lung cancer models showed successful re-expression of
silenced genes, decreased tumorigenesis in lung cancers, and increased apoptosis [124].
Besides the development of new, potentially less toxic DNA methylation and HDAC
inhibitors, drugs inhibiting histone methyltransferases (HMT) and demethylases are also
being actively pursued. For example, the HMT inhibitor DZNep was shown to target EZH2,
a protein of the polycomb repressive complex 2 and to effectively induce apoptosis in breast
cancer cells [125]. Also polyamine-based LSD1-inhibtors like 2d or PG-11144 were used to
reactivate epigenetically silenced tumor suppressor genes in cancers [126, 127]. One proof
of principle that so called “reader” proteins are a promising target for epigenetic drug
therapy is the development of small molecule inhibitors that block the bromodomains of
BET-family of chromatin adaptors, like Brd4. Translocation and/or overexpression of Brd4
have been linked to a master regulator role in lethal forms of childhood epithelial cancer and
AML by leading to overactivation of the MYC oncogene in these cancer types. The
inhibition of BET proteins with small-molecule bromodomain inhibitors decreased the
activity of the MYC oncogene and inhibited tumor cell proliferation in vitro and in vivo
[128–132]

In addition, miRNAs are also attractive targets for epigenetic therapy. A study using 5-aza-
CdR and 4-phenylbutyric acid demonstrated the successful reactivation of anti-oncogenic
miR-127 [64]. Also, synthetic miRNAs, which mimic tumor suppressor miRNAs, have
proven to be effective in repressing tumorigenesis [133]. However, the development of
efficient and targeted delivery vehicles of synthetic miRNAs is still necessary for this
treatment option to be more generally successful.
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Conclusion
Although we are just starting to understand the involvement and the importance of
epigenetic mechanisms in the process of EMT, we should expect major steps forward over
the next few years. Many studies have already identified epigenetically modified genes and
miRNAs known to play major roles during EMT.

Despite the fact that an understanding of epigenetics in EMT still needs to be translated into
clinical treatment options, we should promote future studies of novel EMT-associated genes
and miRNAs that are modulated by the epigenetic machinery in cancer cells. New
fundamental insights into the epigenetic regulatory mechanisms and advances in powerful
technologies will enable us to discover more EMT-related modifications and therefore
potential predictive biomarkers for clinical outcome and targets for novel epigenetic
therapeutics.
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Figure 1.
Known epigenetic changes involved in epithelial-to-mesenchymal transition of tumor cells.
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