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Abstract
Significance Analysis of INTeractome (SAINT) is a software package for scoring protein-protein
interactions based on label-free quantitative proteomics data (e.g. spectral count or intensity) in
affinity purification – mass spectrometry (AP-MS) experiments. SAINT allows bench scientists to
select bona fide interactions and remove non-specific interactions in an unbiased manner.
However, there is no `one-size-fits-all' statistical model for every dataset, since the experimental
design varies across studies. Key variables include the number of baits, the number of biological
replicates per bait, and control purifications. Here we give a detailed account of input data format,
control data, selection of high confidence interactions, and visualization of filtered data. We
explain additional options for customizing the statistical model for optimal filtering in specific
datasets. We also discuss a graphical user interface of SAINT in connection to the LIMS system
ProHits which can be installed as a virtual machine on Mac OSX or PC Windows computers.
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INTRODUCTION
Affinity purification followed by mass spectrometry (AP-MS) is a popular method for
identifying interactions between an affinity purified bait and its co-purifying partners (or
prey) (Gingras et al., 2007). AP-MS is efficient at capturing bona fide bait-prey interactions,
but each experiment also yields numerous non-specific interactions. Non-specific
interactors, also known as contaminant proteins or frequent fliers, include proteins binding
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to epitope tags or affinity supports and carry-over from one experiment to subsequent ones.
For a transparent analysis of AP-MS datasets, it is therefore important to utilize a scoring
framework for filtering interactions so that the evidence for specific association against non-
specific binding is properly reflected.

To this end, our group previously developed a method termed Significance Analysis of
INTeractome (SAINT), which utilizes label-free quantitative information to compute
confidence scores (probability) for putative interactions (Breitkreutz et al., 2010; Choi et al.,
2012; Choi et al., 2011). Such quantitative information can include counts (e.g. spectral
counts or number of unique peptides) or MS1 intensity-based values. In an optimal setting,
SAINT utilizes negative control immunoprecipitation data (typically, purifications without
expression of the bait protein or with expression of an unrelated protein) to identify non-
specific interactions in a semi-supervised manner. A separate unsupervised SAINT
modeling is capable of scoring interactions in the absence of implicit control data, but only
when a sufficient number of experiments are used for the modeling. In addition to the
quantitative aspects of the prey detection in the purifications, SAINT can also incorporate
additional features in the statistical model, including the prey protein length and the total
number of spectra identified in each purification.

The ideal dataset for interaction scoring is one that includes a large number of baits in which
each bait is analyzed in multiple biological replicates. Preferably, a sufficient number of
appropriate negative control experiments should also be included: this – together with the
biological replicate analysis – provides robustness in the interaction detection (see
“Commentary” for a discussion of experimental design). However, such an ideal set-up is
rarely possible and in practice the experimental design of AP-MS falls short in many
different ways. Because of this, it is challenging to provide a `one-size-fits-all' statistical
model, and adjustments should be made to the model to enable meaningful scoring of
different datasets. Such adjustments are implemented in SAINT via different statistical
models for spectral counts and intensity data with and without control purifications, and
user-selected “options” that enable customization to the dataset at hand (Figure 1). How to
use these “options” is detailed in the Basic Protocol 2.

BASIC PROTOCOL 1 INSTALLATION AND DATA FORMATTING
We first begin by explaining the installation of the software in the Linux environment and
the steps for preparing the input files to run SAINT. The prerequisite for running SAINT is
to have AP-MS data associated with quantitative information such as spectral counts,
number of unique peptides, or MS1 intensity for each bait-prey interaction. Experimental
design considerations are discussed in the “Commentary” section below.

Materials
Hardware

• Workstation running under Linux OS platform

Software
• GNU Scientific Library (http://www.gnu.org/software/gsl/)

• Source code for SAINT (http://saint-apms.sourceforge.net/Main.html)

• R package (http://cran.r-project.org/)
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Setting up SAINT
1 Download the source code from the SourceForge website and install by `make

all' command.

2 Move the folder to a permanent position.

3 Download and install GNU Scientific Library for C Language.

4 We also recommend adding the directory containing the executable files to the
PATH variable. For instance, one can add the directory to bash shell file
(.bashrc) as follows:

… PATH=/home/user/projects/SAINT/bin/:$PATH

Data preparation
5 Prior to running SAINT, identify and quantify peptides and proteins from MS

data using computational pipelines (Nesvizhskii, 2010).

A typical analysis involves searching MS/MS spectra against a protein sequence
database to identify peptides, statistically validating peptides to spectrum
matches, mapping peptides to proteins and summarizing the data at the protein
level. One commonly used data analysis tool is Trans Proteomic Pipeline (TPP;
http://tools.proteomecenter.org/software.php) for processing peptide and protein
identification data (Deutsch et al., 2010). With respect to the choice of the
protein sequence database, for AP-MS studies we recommend using RefSeq
database due to its low degree of sequence redundancy and ease of gene-level
summarization of the data. Protein identifications should be filtered to eliminate
most false positive protein identifications, with false discovery rate (FDR) of 1%
being a commonly applied threshold.

With respect to protein quantification, SAINT can be used with both discrete
(e.g. spectral counts) and continuous (e.g. MS1 integrated peptide ion intensity)
data. Spectral counts can be extracted from processed MS files using the
computational tool Abacus (Fermin et al., 2011)
(http://abacustpp.sourceforge.net) compatible with TPP results files. Peptide
intensities can be extracted from MS data using tools such as IDEAL-Q (Tsou et
al., 2010) or MaxQuant (Cox and Mann, 2008), and then used to estimate the
protein abundances by summing the intensities of all peptides, or using the top 3
most intense peptide approach (Silva et al., 2006). It should also be noted that,
due to presence of shared peptides, peptide level quantification is not always an
unambiguous measure of protein abundance. As a result, several quantitative
measures can be defined for each protein depending on whether all peptides are
considered, or only unique (non-shared) peptides. For detecting non-specific
binders in AP-MS data using SAINT, we recommend using all peptides, i.e.
total spectral count, or total summed peptide intensity (Nesvizhskii, 2012). This
represents the most conservative approach less likely to underestimate the
abundance of proteins that are members of homologous protein families, many
of which are common background contaminants (e.g. ribosomal proteins,
tubulins, histones, etc.).

6 Given the list of proteins identified with high confidence in the entire
experiment, with associated quantitative information for each protein in
individual experiments, the next step is to prepare input files for SAINT
analysis. This involves preparing the prey, bait, and interaction tables in tab-
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delimited files, as illustrated in the SAINT vignette (included in the software
release) or Figure 2.

7 Re-open tab delimited files generated from Mac OS X or Microsoft Windows in
a text editor in unix environment and re-save as unix-compatible tab delimited
files. The unix utilities mac2unix and dos2unix may be used for this purpose.
Alternatively, open each file in nano text editor, press Ctrl+O once for saving,
and keep pressing Esc+D until the file type shows neither [DOS format] nor
[MAC OS format] next to the file name. Hit the enter key to save.

8 The interaction file should contain four columns separated by blank spaces such
as tabs: purification (IP) names, bait protein names, prey protein names, and
quantitative data (spectral counts, number of unique peptides or intensities). No
blank spaces are allowed in the names. Associate each purification with a unique
name (defined by the user), and a bait may be associated to more than one
purification. SAINT will consider all purifications associated with the same bait
protein name to be “replicates” and generate scores representing the likelihood
of association across all replicates (see “Commentary” for bait naming
conventions when analyzing biological and technical replicates, or when looking
at baits analyzed under different conditions). The bait protein names and prey
protein names are defined by the user (SAINT does not have requirements for
these names), but it is important to ensure that there are no duplicate entries and
also that the data is consistent throughout the three SAINT input files. The initial
input file may not include zero observations, but preprocessing (explained
below) inserts them later wherever needed. Lastly, we recommend deleting the
quantitative data for the bait itself in its own purification as it is usually the
highest abundance in the purification and undermines the scores of other less
abundantly quantified interactors.

9 The bait file should contain three columns: purification (IP) names and bait
names (as defined in the interaction file), and target/control labels. As in the
other two files, duplicate entries interfere with the preprocessing and must be
avoided.

### Read the bait file

R> bait.dat = read.delim(“bait.dat”, header=F, sep=”\t”, as.is=T)

### Check duplicate purification names in the bait file

R> length(bait.dat$V1) == length(unique(bait.dat$V1))

### Check duplicate bait names in the bait file

R> length(bait.dat$V2) == length(unique(bait.dat$V2))

### Check whether there is missing bait name in the bait file

R> inter.dat$V2[!(inter.dat$V2 %in% bait.dat$V2)] ## Prints missing bait
names

Each row must provide unique information for a single purification. The pairing
between purification and bait names must be consistent with the interaction file.
The last column must contain one of the two letters, `T' for target data (which is
all the data except for the controls) and `C' for control data. For statistical
reasons, we recommend to treat each control purification as a different bait, not
as replicates of single control bait. For instance, we recommend setting the bait
names for control IPs in Figure 2 as “Ctrl1, Ctrl2, Ctrl3” instead of “Ctrl, Ctrl,
Ctrl”. In the former case, SAINT treats all controls as repeated measures of a
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single control pull-down, which may result in poor mean and variance estimates
for the false interaction distribution.

10 Using the free statistical software R, quickly check whether there are duplicate
names and that all names in the interaction file are in the bait file.

### Read the interaction file

R> inter.dat = read.delim(“inter.dat”, header=F, sep=”\t”, as.is=T)

### Check duplicate interaction names in the interaction file

R> inter = paste(inter.dat$V1, inter.dat$V2, inter.dat$V3, sep=” ”)

R> length(inter) == length(unique(inter)) ## If FALSE, there are duplicate
entries.

11 The prey file for spectral count data should contain three columns: prey protein
names (as defined in the interaction file), protein length, and prey gene names.
The file for intensity data should contain two columns: protein names and gene
names. Protein names in the first column must be unique, or redundant preys
will be removed in the saint-reformat command. Typically, we use as “protein
names” the identification or accession numbers as provided by the mass
spectrometry search engines. These names must include all preys appearing in
the interaction file, as if any protein is missing, the whole data reformatting
routine stops and SAINT alerts the user to fill in the missing protein names. The
second column (used for spectral count data only) is the protein length of preys
(in amino acids), which can optionally be used as a normalization factor for
spectral counts in the model (see command line information below). Instead of
protein length in amino acids, the user can use the molecular weight of the prey
protein instead, providing that the entire dataset is treated in a consistent
manner. The last column should contain additional gene identification
information for preys (we use the HUGO symbols for human proteins), which
are usually more intuitive than protein database names, and also enable
downstream mapping to gene centric databases. Note that the prey protein name
and prey gene name may be identical if no cross-reference is needed and/or the
protein names are intuitive.

Reformatting data
12 Once the input dataset is ready, the pre-processing routine “saint-reformat”

should be run first. As described in the “Commentary” section, when large
numbers of control runs are available, these can be reduced into n virtual
controls with the largest quantitative values. For example, to reduce the control
data into 5 controls, run the command line:

saint-reformat interaction.data prey.data bait.data 5

If no such data compression is necessary, run the same command without the last argument,
i.e.:

saint-reformat interaction.data prey.data bait.data

In either case, the command line reports three new files, interaction.new, prey.new, and
bait.new. These files are the preprocessed input files for SAINT analysis. If there are
inconsistencies between the input files (e.g. prey or bait names present in the interaction.new
file do not appear in prey.new or bait.new files), then saint-reformat quits preprocessing and
advises the user to rerun after filling in the missing items in those files.
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Basic Protocol 2
Running SAINT

Once the data has been prepared and reformatted as described in the Basic Protocol 1,
SAINT proper can be run. As discussed in the introduction and the Commentary, SAINT
utilizes different statistical models for different types of quantitative data and experimental
designs which are accessed by different arguments in the command lines. The meaning of
the different SAINT options is reviewed in this section.

Materials
• Installed SAINT software and reformatted input data

• R package (http://cran.r-project.org/)

As explained earlier, different versions and options are available depending on the data type
and experimental design.

For spectral count data with control purifications, SAINT uses the three input files and
five additional arguments specifying the type of statistical model to be used. The
command line for running SAINT in this mode is:

saint-spc-ctrl interaction.new prey.new bait.new 2000 10000 0 1 1

(different arguments, or “options”, are defined below; the default values are listed
here)

2 If the user wishes to provide a seed for the random number
generator, this should be specified before the command line, as
follows:

GSL_RNG_SEED=123 saint-spc-ctrl interaction.new prey.new
bait.new 2000 10000 0 1 0

where the example seed 123 can be any integer number. Including
the random seed ensures identical scoring results for the same
dataset analyzed at different times or on different computers. If the
seed is omitted, SAINT scores may change by a few decimal points
on different runs of the same dataset.

Options:

a. The argument 2,000 is the number of sampling iterations
for the burn-in period of Markov chain Monte Carlo
(MCMC). We found this number to be sufficient in most
instances, though higher values can be used for more
robust inference.

b. The argument 10,000 indicates the number of sampling
iterations in MCMC for actual inference. Once again,
while we have found this number to be appropriate, higher
values can be used.

c. The lowMode option (0 off – default; 1 on) indicates
whether SAINT should take into account the presence of
weak and strong interactions for each prey, so that it does
not penalize the weaker interactions as severely. In the
default (off) set-up, low count interactions tend to be
penalized if the same prey has an extremely high count
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interaction with one or more other bait(s). When the
dataset consists of only a few baits or densely
interconnected baits, we recommend turning this option on
(alternatively, the user can explore the option of analyzing
each bait separately against the control data). When turned
on, the “lowMode” option applies by default to preys with
interactions in 100 counts or more. This default value can
be increased or decreased in the source code (_LM_ in the
header file).

d. The minFold option (0 off; 1 on - default) determines
whether to enforce a minimum fold separation rule
between true and false interaction distributions. When
turned on, the model assumes that the mean value of the
true interaction distribution is at least ten fold higher than
that of the false interaction distribution, where the latter is
estimated from the control purifications. While turning on
this option is more stringent, there are cases (particularly
when some of the true interactors are also common
contaminants) where turning off this option is useful. We
recommend turning off this option only if the overall
quality of the dataset is high, and in particular, if the
purifications of the baits and controls are truly matched.
The ten fold requirement can be adjusted in the source
code, by changing _fold_ variable at the top of the header
file in SAINTspc-ctrl folder (v2.3.3 or later uses five fold
by default).

e. The normalize option (0 off; 1 on - default) determines
whether to divide spectral counts by the total spectral
counts in each purification. Like minFold, turning on this
option is usually more conservative for scoring, as the
control runs typically have less identifications than the bait
runs; again, turning off this option should only be
performed with data of high quality. Note, however, that
the normalization option may artificially boost scores
associated with baits in which not much interactions are
detected, especially in the datasets where many of the other
baits interact with one another and share many common
preys. We therefore recommend to always have a visual
inspection of the results to identify problematic cases.

3 For intensity data analysis with controls, the general preparation of
the input files (inter.dat, bait.dat, prey.dat) is identical as described
above for the spectral count model with controls, with one
exception: the protein length is not required as it will not be utilized
for normalization. Also note that the options “lowMode”,
“minFold” and “normalize” options were developed to
accommodate the Poisson model of count-based data. The
probability model from intensity data is much more adaptive
(Gaussian model) and seems to work well without these additional
parameters. The command line(s) with and without seed for the
random number generator are:

saint-int-ctrl interaction.new prey.new bait.new 2000 10000
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GSL_RNG_SEED=123 saint-int-ctrl interaction.new prey.new
bait.new 2000 10000

where the two numbers at the end of the command line are the
number of sampling in the burn-in and main iterations.

4 For spectral count data without control data, the files are prepared in
the same manner (with the exception that the bait file lacks the
column C / T). However, SAINT incorporates different arguments,
which are defined in the command line(s) as:

saint-spc-noctrl interaction.new prey.new bait.new 2000 10000
0.2 0.1 0 1

GSL_RNG_SEED=123 saint-spc-noctrl interaction.new
prey.new bait.new 2000 10000 0.2 0.1 0 1

Options:

a. The argument 0.2 (first option term after the number of
sampling iterations) specifies the frequency threshold
`fthres'. All preys with non-zero spectral counts in greater
than (100×fthres)% of the purifications will be considered
as zero probability interactions. Thus the example
command above will remove all interactions for preys
appearing in 20% of the purifications.

b. The next argument `fzero' determines the proportion of
zero spectral count data to be included in the estimation of
the false interaction distribution. To explain this, let us call
N the total number of purifications. For instance, consider
0.1 (or 10%) and set T = N × 0.1, i.e. 10% of the total
number of purifications. This option tells the software that,
if a prey has M non-zero spectral counts (M < T), then use
(T–M) zero data for estimation. Using additional zero data
helps the model learn the fact that preys appearing in fewer
baits are likely specific interactors, not frequent flyers. In
rare circumstances, the user may want to consider all non-
detection as zero data, particularly in smaller datasets with
no controls (.e.g 10 baits or less), `fzero' can be specified
as any number greater than the `fthres' parameter above. In
most applications, we recommend users to set this value so
that (fzero×N) ~ 5 in general.

c. The variance modeling option (0 off - default; 1 on) must
be specified to determine whether the variance parameter
should be included in the model. This argument tells the
software whether to use a generalized Poisson distribution
with a dispersion parameter, instead of a plain Poisson
distribution with mean parameter only. The recommended
value is 0 unless there are at least three replicate
purifications for all baits.

d. The normalize option (0 off; 1 on) determines whether to
divide spectral counts observed for a prey by the total
spectral counts for all preys detected in a purification. If
there is a significant variation in the number of possible
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interactors across baits, the recommended value is 0.
Otherwise, the recommended value is 1.

Sorting interactions—All the routines explained above generate multiple output files in
various formats. The main output file is reported in the “unique_interactions” file in the
RESULT folder. This file has the list of all unique bait-prey pairs with the corresponding
probability scores in the column called “AvgP”; AvgP is simply the average of all individual
SAINT probabilities (iProb) for a given prey across all replicates of a given bait. The file
also contains a column called “MaxP”, which reports the largest probability (iProb) of a
bait-prey pair across all replicate purifications.

5 To select high confidence interactions, open the unique_interactions file in a
spreadsheet using software such as Microsoft Excel, and sort the data in a
decreasing order of AvgP.

6 Choose a desired threshold and select all interactions passing the threshold
(typically a SAINT probability threshold between 0.7 and 0.9, or even higher
depending on the desired stringency of filtering). The selection of the threshold
can be assisted by plotting a ROC-like curve (e.g. a curve that plots the number
of protein interactions passing the filter that are known interactions vs. the total
number of interactions passing the filter, for a range of probability filters) based
on protein interaction data annotated in the existing protein interaction databases
(or in compendiums of interactions such as iRefWeb (Turner et al., 2010) or
PSICQUIC (Aranda et al., 2011)).

7 To analyze the probability scores for each replicate, open “interactions” file,
which expands the unique_interactions file by listing every purification-prey
pairs instead of bait-prey pairs. In this file, the user can look at iProb column for
the probability score in the individual replicates.

8 In the same folder, SAINT reports a matrix-formatted output file as well, where
the preys and the purifications/baits are listed in the rows and columns of the
data matrix respectively, along with their raw quantitative data and the
probability scores (matrix_form file). To select all interactions with the posterior
probability greater than or equal to 0.8:

R-CODE: selecting high-confidence interactions

### read data and remove self-self interaction

d = read.delim(“unique_interactions”, header=T, as.is=T)

d = d[d$Prey != d$Bait,]

### run the following three lines if interested in bait-to-bait interaction only

bait = unique(d$Bait)

id = d$Prey %in% bait.

d = d[id,]

### select high confidence interactions (0.8 and above)

d = d[d$AvgP >= 0.8,]

### write out the resulting table to a file

write.table(d, “filtered_interactions”, sep=“\t”, quote=F, row.names=F)
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Support Protocol 1: Visualization of network—This script generates the final report
for table view as well as network visualization in Cytoscape (Shannon et al., 2003). Here we
describe how to generate the input file for Cytoscape and how to utilize the quantitative data
to improve visualization.

Materials
Software

• Cytoscape (http://www.cytoscape.org/)

• R package (http://cran.r-project.org/)

1. If needed, create a node attribute file by listing a unique list of proteins combining
baits and preys, and format each row as follows:

R-CODE: creating node attribute file

d = read.delim(“filtered_interactions”, header=T, as.is=T)

prot = unique(c(d$Bait, d$Prey))

nprot = length(prot)

type = rep(“prey”, nprot)

type[prot %in% d$Bait] = “bait”

nodeAttr = data.frame(Protein=prot, Type=type)

write.table(nodeAttr, “nodeAttr.txt”, sep=“\t”, quote=F, row.names=F,
col.names=F)

2. Open Cytoscape and import network data from the “filtered_interactions” file by
selecting “Network from Table” under File menu (Figure 3). Select file name, set
source and target interactions to bait (Column1) and prey (Column2) columns,
respectively. Click on “Show Text File Import Options” in the “Advanced” box to
ensure that the delimiter is set to Tab. In the preview box, click on the unselected
columns to import them as edge attributes. Click Import button at the bottom.

3. Import prey attribute data from a text file by “Attribute from Table (Text/MS
Excel)” under the FILE menu.

4. (OPTIONAL) Click on the VizMapper tab on the left and choose “Nested
Network” as the visualization style.

5. In the pull-down menu, choose “Layout” → “Cytoscape Layouts” → “Edge-
Weighted Spring Embedded” → “Spec”. This operation reorganize nodes based on
the degree of connectivity between proteins additionally weighted by the
quantitative strength of each interaction (Figure 4).

6. (OPTIONAL) Different node sizes and colors can be selected for the baits and
preys using the prey attribute information in the Visual Mapping Browser tab.
Additionally, the edge thickness may be mapped to indicate the quantitative
information for each bait-prey interaction.

7. Make adjustments to optimize the visibility of nodes to complete visualization of
the network. Export the graph into pdf file if needed (“File” → “Current Network
View as Graphics”). Note that the resulting pdf file can be further refined in
graphic software such as Adobe Illustrator.
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Alternate Protocol 1: Running SAINT through ProHits interface: virtual machine
GUI: SAINT may also be run without the unix / command line interface, using the ProHits
graphical user interface (Liu et al., 2010). In this case, the search results (Mascot, X!
Tandem, SEQUEST or other search engines via the Trans Proteomic Pipeline) can be
uploaded directly to ProHits and all tables for SAINT can be generated, and options
selected, through ProHits. Alternatively, SAINT can be run on pre-generated bait.dat,
prey.dat and inter.dat files (this enables the user to avoid using the command line-based
Linux system). ProHits/SAINT may be run on a Mac OS X or PC Windows using a virtual
machine package available at ProHitsMS.com (installation instructions, user manuals and
instructional videos are also available at ProHitsMS.com; also see accompanying protocol
by Liu et al., 2010).

To run SAINT from the ProHits VM, download and install the software package on your
computer, and set-up projects and user privileges (as described in Liu et al., 2010). The key
steps to enter your data in ProHits and analyzing it with SAINT are described here. Steps A-
E are used for running SAINT from mass spectrometry search results; if using predefined
SAINT-compatible files, skip to the end of section C.

Materials
Hardware

A computer running OS X (we tested 10.6.8) or Windows (XP or 7) with at least 50 GB
free disk space.

Software
• Virtual machine software (VirtualBox for Mac OS X from

https://www.virtualbox.org/ or VMware Player for Windows PC from
http://www.vmware.com/products/player/overview.html)

• ProHits Lite VM VirtualBox version (CentOS57_ProHits_VirtualBox for Mac OS
X or CentOS57_ProHits_win for Windows PC) from http://prohitsms.com/

• Mass spectrometry search results, generated by Mascot (*.dat), X!Tandem (*.xml),
SEQUEST (*.tar.gz) or the Trans-Proteomic Pipeline (PeptideProphet and
ProteinProphet *.xml files are both required).

1. Create baits, experiments and samples within a “Project” (the “Project” should be
predefined)

ProHits is organized in a hierarchical fashion. A “bait” (e.g. tagged protein) can be
associated with several experiments (e.g. different biological replicates or growth
conditions), and each “experiment” can be associated with several samples (e.g.
technical replicates, or different fractions from the same experiment). The essential
point is that the user will need to create as many “samples” as MS/MS database
search results files (each file needs to be associated to a single “sample”). ProHits
can handle search results from gel-based workflows in a dedicated module (e.g. if
tracking by molecular weight is desired), or search results from any kind of
workflow in the “gel-free” sample creation.

Create a new sample by selecting “Create New Entry”, and select “Add Gel-free
sample” on the left menu of the ProHits Analyst (within the selected project).
Follow the navigation steps to create and annotate the desired baits, experiments
and samples. It is highly recommended to utilize ProHits as an electronic notebook,
and provide detailed annotation of the experiments.

2. Transfer .MS/MS search results to each sample
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ProHits has an upload function which enables import of search results generated by
the search engines Mascot (Perkins et al., 1999) (*.dat), X!Tandem (Craig and
Beavis, 2004) (*.xml) and SEQUEST (Yates et al., 1995) (*.tar.gz). Results from
these and other search engines may also be imported after running the data through
the TPP pipeline. In this case, both pep.xml and prot.xml (the output from TPP's
PeptideProphet and ProteinProphet tools) files need to be uploaded.

Under the “Create New Entry” menu item, select “Upload Search Results”, and
click on the upload icon in the Options column next to the desired sample. Select
the type of result file to be uploaded and browse the computer hard drive to retrieve
the file. Click “Submit” to complete the upload.

3. Run SAINT

Once the desired number of samples and negative controls is uploaded, select “Run
SAINT” under the “Multiple Sample Analysis” section of the left menu bar. This
opens a new page where the data can be viewed at the level of baits, experiments or
samples (see Figure 5). Select the desired files from the left box and use the arrow
buttons to transfer to the right box. By default, SAINT considers each sample
separately even when using the bait or experiment level view. To force collapsing
at the level of the bait or experiment (e.g. when looking at technical replicates or
different fractions from the same bait), select the desired option under the right
hand box. Note that - while ProHits enables the user to prefilter the files (e.g. to
remove common contaminants) prior to running SAINT - this is not recommended
for most applications (filtering to remove low quality protein identifications, e.g.
those above 1% FDR, is however recommended).

Once all the desired files have been selected, the button “Generate Report” is used
to bring up a new navigation window in which the control runs can be specified,
the names of the files modified (SAINT will automatically group files with the
same bait name), and desired options selected (see Figure 6). After this is done, the
button “Generate SAINT Compatible Files” instructs ProHits to retrieve the prey
length from its internal protein database, and generate the three files required to run
SAINT (prey.dat, bait.dat and inter.dat). ProHits will provide the option to
download the files on the user's hard drive, or to run SAINT directly within
ProHits.

Selecting “Run SAINT Directly” will open a new panel enabling to select the
SAINT parameters (as defined above, Figure 7). If using ProHits to run SAINT
from previously generated files, this navigation panel enables to upload the files
and select the parameters. “Run SAINT” instructs ProHits to begin the analysis.

4. Explore SAINT results

SAINT results can be explored via the “SAINT Report” link from the “Multiple
Sample Analysis” left hand menu. This will bring up a list of all SAINT analyses
performed in this project. In the option column, the download icon enables the user
to directly download the SAINT report folder. The “page” icon lists all the samples,
controls and options used for SAINT analysis to facilitate tracking and ensure
transparent reporting (Figure 8). Note that SAINT can be re-run on the same files
using different options by selecting the “rerun” icon.

Lastly, the SAINT results can be visualized, and further analyzed using the “graph”
icon. This opens up a new window, called “SAINT comparison”, which displays
the results as a table, with baits in columns and hits in rows. By default, the table
displays the maximal SAINT score for each prey across all baits, and is unfiltered.
To filter the results, select “Click to apply filters” towards the top of the page.
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Select the desired SAINT score (either average SAINT - AvgP - or maximal
SAINT value - MaxP), and other filters, as desired. Click on the “Go” button to
apply the desired filter sets (Figure 9). It is also possible to manually remove
entries from the final report by clicking the check boxes located in the table and
pressing “Go”. The selected entries will be greyed out (note that a list of manually
removed entries is provided in the exported Excel files for transparent reporting of
the data). Lastly, it is possible to check which interactions have previously been
deposited in the BioGRID interaction (Stark et al., 2011) database by clicking on
the selected types of interactions in the “BioGRID overlap” panel and pressing
“Go”. Interactions reported in BioGRID will be marked by stars or triangles in each
cell.

5. Report SAINT results

ProHits facilitates the visualization of the SAINT filtered results by enabling direct
graphical visualization in Cytoscape Web (Lopes et al., 2010) (Figure 10). Filtered
data can also be downloaded either in a “table” format (very similar to the
unique_interaction file generated by SAINT as described above), or as a matrix
format (which is essentially the same view as displayed in the ProHits SAINT
Comparison page). In either case, the filters applied and the manually removed
interactions will be listed at the top of the report, to facilitate reporting. Lastly, the
data analyzed by SAINT can also be prepared for submission to interaction
databases by selecting the “Export to PSI-MI” button. This will open a new
navigation window where you will be prompted to fill in the information to prepare
the PSI-compatible files.

GUIDELINES FOR UNDERSTANDING RESULTS
Analysis of TIP49 dataset

Using the command line version of the software, we illustrate a SAINT analysis of the
TIP49 dataset for an example of spectral count data with control purifications. This human
PPI dataset was generated for key protein complexes involved in chromatin remodeling
(Sardiu et al., 2008), namely Prefoldin, hINO80, SRCAP, and TRRAP/TIP60 complexes.
The dataset consists of 27 baits (35 purifications) and 1207 preys with 5521 unfiltered
interactions.

1. Compressing control samples with different number of replicates—While 35
negative control purifications were included in the dataset, we reduced the control
purification data into 9 virtual negative controls, each taking the largest spectral counts from
respective replicate purifications for each prey (at this step, we performed this control
reduction without using the saint-reformat option).

2. Reformatting the input files—We next performed data preprocessing (saint-reformat)
on the TIP49 dataset. Figure 2 shows the interaction, bait, and prey data before and after this
step. In saint-reformat, we specified K=5 to get the 5 largest spectral counts from the
controls, resulting in further data reduction (for more stringent filtering; can be waived by
K=9). A notable change in the interaction file is that interactions are reordered by pairing
replicate observations for the same bait-prey pair, and more importantly, that zero counts are
inserted in the data (Figure 2a). For the bait file, note that the control purifications were
reduced to a smaller set as specified, by taking the largest five spectral counts in control
purifications for each prey (Figure 2b). The prey file was not modified since it changes only
if there are duplicate entries in the file.
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3. Running SAINT—Following saint-reformat, we ran SAINT with 2,000 burn-ins and
10,000 main iterations. We did consider all combinations of lowMode, minFold, and
normalize options. Figure 11 shows the comparison of the probability estimates between
every combination of options, where the biggest difference is made when minFold options is
turned on and off.

4. Visualization—Taking the results from the analysis with lowMode=off, minFold=on,
and normalize=on, we used the R scripts in the previous section to generate Cytoscape input
files for network visualization.

COMMENTARY
Background Information

Here, we will review key features in the experimental design that influence the selection of
model parameters such as control purification and replicate analyses, and address issues
related to specific types of datasets. The following considerations apply to both count and
intensity data, but for simplicity, we will use spectral count-based scoring as an example.

Control purifications—In terms of scoring, control data provide direct quantitative
evidence for non-specific binders. Therefore, an interaction can be regarded as statistically
significant if the quantitative evidence for the interaction is stronger than that in the control
purifications. Recently, examples of datasets incorporating such control data have been
generated, e.g., for chromatin remodeling complexes, such as the TIP49 data that we used
above (Sardiu et al., 2008) and the human protein phosphatase PP2A system (Glatter et al.,
2009; Goudreault et al., 2009). These datasets include several to tens of control purifications
representing a robust background of non-specific interactions, which allow the statistical
model to identify representative quantitative distributions for non-specific (false) and
specific (true) interactions in purifications of real baits. Each putative interaction is
referenced against the two (true and false) distributions, and the probability that the
interaction is from the true interaction distribution is reported as the score.

For meaningful scoring, experiments should be designed with a sufficiently large number of
`relevant' control purifications to identify as many non-specific binders as possible. In
control data, however, some non-specific binders are captured inconsistently across different
control purifications. Given these two facets of control data, the optimal strategy can be
phrased as (i) design controls that appropriately represent the source of non-specific binders
in the purification of real baits, (ii) generate a sufficiently large number of control samples
to learn the consistency of non-specific binding, (iii) select for analysis those control
purifications showing the highest degree of consistency in the detection of contaminants.
Another point to consider in the design and implementation of negative controls is that each
batch of purifications (defined here as purifications performed at the same time, and/or using
the same set of reagents) may retrieve a different subset of non-specific interactors. It is
therefore important to perform negative controls in parallel to bait purifications. How many
controls are optimal for SAINT analysis? For SAINT modeling to be accurate, three to five
appropriate control purifications are minimally required. Perhaps counter intuitively,
however, a very large number of control runs do not necessarily offer a perfect solution. For
example, if a prey is detected in a small proportion of controls (meaning that in some
controls it will have a quantitative value of 0), the false interaction distribution will be
underestimated, mistakenly allowing such contaminants to be scored as specific binders. To
address this, SAINT provides a routine to select a fraction of consistent control data with the
function “saint-reformat” (detailed in the protocol above). Using this function, the user can
extract the K largest spectral counts / intensities from the control data for each prey when
the data have more than K controls (default K=5, arbitrarily chosen based on experience).
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Replicate analyses—Another important aspect of the experimental design is the number
of biological replicate purifications for baits. Replicate purifications can improve the
robustness of scoring for an obvious reason: they allow the assessment of the reproducibility
of high confidence interactions, which cannot be evaluated in experiments with a single
purification per bait. In addition, the best replicate design is a perfectly balanced design in
which every bait is analyzed with the same number of replicates. Regardless of the scoring
metric chosen, the imbalance in the number of replicates creates a bias for or against the
baits with more replicates, depending on how the evidence is summarized from replicates.
For instance, SAINT scores (AvgP) tend to be more generous for the interactions with fewer
replicates, which is intuitive since more replicate purifications will reveal irreproducible
preys that are usually assigned low probability scores. On the other hand, the specificity of
scores will be higher for the baits associated with more replicates. SAINT computes, in
addition to the standard SAINT scores (AvgP), individual probability (iProb) values for each
sample, as well as the MaxP value (the largest iProb). In some challenging datasets for
which multiple biological replicates were available, we have found that taking the best n
iProb (e.g. best 2 of 3; best 3 of 4) enabled more sensitivity for the detection of the less
reproducible interactions (for example, interactions with are condition-dependent). We are
suggesting to always thoroughly inspect the dataset, and to select the most appropriate
scoring method.

There are two broadly defined types of replicates in AP-MS experiments: technical
replicates and biological replicates. Here, we use the term “technical replicate” to indicate
the case where a single purification is performed on a biological sample and MS analysis is
performed multiple times. By contrast, we use “biological replicate” for the case where
generation of the biological material, purification and MS analysis are done independently.
In our experience, the lack of reproducibility in AP-MS data is more often associated with
the preparation of biological material (e.g. cell growth and lysis) and purification (e.g.
immunopurification, elution, tryptic digest) than from the LC-MS/MS analysis. For this
reason, we recommend that the reproducibility of interactions should be monitored at the
level of biological replicates. For biological replicates, the most stringent approach is to
make sure that these are as different from each other as would real baits and controls be
(using a standardized protocol). For instance, cells can be grown/harvested on different days,
purifications performed in different batches, mass spectrometry done separately, using a
randomized order for the loading of the samples (see Figure 12). The latter is important for
minimizing the possible carry-over issues in LC-MS/MS (i.e. detection, in the current
sample, of proteins from the preceding sample when both samples were analyzed using the
same LC column).

If technical replicate data is available, we suggest that these should be merged into a single
virtual sample before running SAINT. If all baits have the same number of technical
replicates, one can simply sum spectral counts or intensities. This results in increased
quantification values overall, which is especially useful for obtaining a higher SAINT score
from low spectral counts. If some baits have more technical replicates than others, we
recommend averaging spectral counts or intensities across all baits, treating missing data as
zero values, and rounding up the average to the nearest integer (rounding “up” prevents data
loss). In the case of fractionated samples (for example by SDS-PAGE), it is recommended
that each of the fractions (by opposition to only selected fractions, e.g. gel bands) be run in
the mass spectrometer to prevent bias and that the results of all fractions be summed up prior
to SAINT analysis.

Another important question is how many biological replicates should be generated for each
bait. Even though it is desirable to generate multiple replicates for each bait, time and cost
considerations often limit this in real life scenarios, especially in large-scale studies. Our

Choi et al. Page 15

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



own studies now include two or three true biological replicates per bait analyzed. A last note
regarding the biological replicates: before using SAINT, the quality of replicates should be
manually examined (e.g. using ProHits software (Liu et al., 2010), or a pairwise scatter plot
of spectral counts or intensities between biological replicates). In the SAINT analysis,
including a clearly defective sample (lower bait or prey abundance, or detection of high
amounts of contaminant proteins) has negative effects, including “dilution” of the signal and
loss of bona fide interactions. If such a case is detected, we suggest that the defective
purification be replaced by a new biological replicate. This also applies to negative control
runs; in particular, negative controls in which the previous bait analyzed is detected in
significant amounts due to carry-over issues should be avoided to involve penalizing true
interactors in the remainder of the dataset.

Note that if the goal of an experiment is not just to find interaction partners for a specific
bait, but rather to identify differentially-regulated interactors (e.g. after the cells expressing
the bait have been subjected to some treatment), the samples purified under different
conditions should not be considered as biological replicates, but as completely different
experiments. Another special case is when different purifications of the same bait are
performed using multiple epitope tagging strategies or affinity purification conditions. In
this case, we recommend running separate analysis for each type of purification (using
matched controls in each case) and taking the union or the intersection for the selected
interactions, as appropriate.

Small or interconnected datasets: implementation of new “options”—In
contrast to the ideal cases described above where multiple baits are analyzed using the same
experimental conditions, real datasets are often generated for a small collection of baits, and
even for a single bait. SAINT is still applicable to this kind of datasets. We recently
demonstrated that SAINT can distinguish true interactions in the case of human phosphatase
PP5 and the “frequent-flier” chaperone HSP90 (Skarra et al., 2011), showing that it is able
to identify true interactions even for the proteins frequently identified in controls if
quantitative data is stronger in real bait purifications. While appropriate negative control
experiments and sufficient replicate purifications are always important for scoring any
dataset, these are absolutely critical for careful scoring of “frequent-fliers” in smaller
datasets.

While SAINT (with proper controls and replicates) performs well for one bait, or a small
number of baits which do not share many interaction partners, we also observed that the
previously published version (v2.2.3 or earlier) was underscoring some true interactions for
preys associating with two or more baits in the dataset in very different abundances: in such
cases, only the interactions with stronger quantitative data were assigned high probability.
This occurred frequently when the baits were “interconnected”, which happens when the
dataset is generated for a specific biological function, or even a protein complex. This
underscoring happens because the statistical model built in SAINT has a `black-and-white'
classification scheme, ignoring the possibility of weak and strong bona fide interactions.
Thus SAINT identifies weak interactions as non-specific identifications and only considers
the strong interactions as bona fide interactions. This can be addressed by running SAINT
analysis for each bait separately for this type of datasets (or running SAINT separately on
subsets of baits, when such subsets can be clearly defined). As discussed in the protocol
section, we also implemented a new option `lowMode' so that the distribution representing
true interactions more accurately captures lower abundance interactions. In datasets
consisting of baits that are interconnected but have very different characteristics, e.g.
different number of interactors per bait, both strategies (lowMode option or separate SAINT
analysis) may need to be explored.
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Although we previously employed SAINT successfully in small datasets, such as the one
surrounding PP5 and HSP90, the standard SAINT scoring also has features that are not
optimal for datasets with few baits, e.g. single bait datasets. When each prey has interactions
with only a few baits, SAINT has insufficient data to estimate the true and false interaction
distributions robustly. In this case, SAINT not only borrows statistical information from the
population of proteins (all other proteins in the data), but also activates an explicit rule that
the mean of the true interaction distribution be 10 times greater than the mean of the false
interaction distribution (note that this is not the same as looking at the ratio of observed
counts between real purifications and controls). This measure was an empirically optimized
feature in the original version of SAINT (for spectral count data only), which effectively
removed many spurious interactions on the low spectral count range that were assigned high
probability just because control data had many zero counts. However, this threshold rule can
also remove real interactions with large spectral counts in small datasets, which is why we
included here another new option, `minFold', that can enable the user to turn off this feature
when analyzing small datasets.

Lastly, we discovered that the normalization of quantitative measures, especially the practice
of dividing spectral counts and intensities by the total sum within each purification, can
affect the results significantly, especially when control purifications yield smaller total
abundance compared to the purification of real baits. Such a normalization procedure
inflates quantitative values in the controls relative to more abundant purifications of real
baits, and therefore winds up decreasing the real signal. The same is true for the baits with
fewer interactors, for which on average the scores will be boosted. To enable a more flexible
scoring, we therefore also included a third new option called `normalize' so the users can
choose whether or not to use normalization based on total spectral counts (this feature has
not been implemented for intensity data yet).

When control purifications are not available—In the absence of control
purifications, whether each protein is binding specifically or not to a bait is best indicated by
how often the protein co-purifies across all purifications, i.e. frequency-based specificity.
The frequency information was successfully utilized to filter the data in combination with
quantitative data and reproducibility information in recent studies (Breitkreutz et al., 2010;
Sowa et al., 2009). In these datasets, it was expected that bona fide interactions of a prey
occur with a specific subset of baits, whereas non-specific binders are generally captured in
random sets of purifications with high frequency. However, an obvious limitation to the
experimental design lacking controls is that the frequency can be accurately estimated only
when there are many baits (typically >20) and filtering based on frequency only works well
when the target network is sparse. This limitation applies to all scoring methods that do not
take controls into account, including CompPASS and SAINT (without controls) (Behrends
et al., 2010; Breitkreutz et al., 2010; Choi et al., 2011; Sowa et al., 2009). Moreover, it is
difficult to estimate true and false interaction distributions for many preys that appear with
just a few baits, since there is no direct information equivalent to control data to represent
non-specific binding. Hence in practice it is important to guide the model with user-
specified parameters such as the optimal frequency cutoff for removing frequently appearing
contaminants and the reproducibility of interactions over replicates.

Reporting SAINT results—With the implementation of these different options in
SAINT, it is important to provide information about the selected parameters when reporting
SAINT analysis results. This is necessary since the same scoring results need to be
reproduced if one wishes to reanalyze published datasets. When reporting the results, we
recommend that the user provide the following information. First, because the scores depend
of the exact dataset composition, a list of all baits and control samples included in the
analysis must be provided. The details concerning the search engine parameters and
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database used for searching should be provided as in every mass spectrometry experiment
(Taylor et al., 2007). It should also be described how spectral counts were computed (e.g.
using all or unique peptides only, see below). Second, the SAINT software version should
be specified (e.g. SAINT-v.2.3.1): a future user should be able to track all the changes made
since the specified version from the software development log file. Third, the user should
report all modeling options including:

(i) lowMode/minFold/normalize options in the spectral count data analysis with
controls

(ii) frequency and normalize options in the spectral count data analysis without
controls

Last, but not least, is the description for the handling of control data, especially if there was
any compression of controls over technical replicates before data formatting routine, or
whether controls were reprocessed during the data formatting routine (saint-reformat).

Transparency in reporting the data is critical (Orchard et al., 2007). In addition to the
selected cut-off for SAINT, a user may want to apply additional filtering, e.g. based on a
minimum number of unique or total peptides detected for a prey; the exact parameters used
for filtering should be reported in the manuscript. Lastly, if manual exclusion is performed,
the list of the proteins removed manually should also be provided.

In this protocol, we described the critical steps for data preparation and key features that
influence the statistical model and the final confidence score in SAINT. After all, SAINT
computes the confidence scores solely based on quantitative data and does not explicitly
incorporate relevant biological or biochemical information, and therefore it is crucial to have
the data generated from appropriate experimental design to allow unbiased, reproducible,
and statistically powerful scoring.
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Figure 1.
Choosing the appropriate version and optional arguments in SAINT.
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Figure 2.
Illustration of input data in the TIP49 dataset.
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Figure 3.
Importing the SAINT result files into Cytoscape for the analysis of the TIP49 dataset.
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Figure 4.
The network visualization of the TIP49 dataset in Cytoscape.
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Figure 5.
Select samples to analyze using the ProHits interface.
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Figure 6.
Define controls and samples and select parameters for file preparation.
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Figure 7.
Select SAINT options and initiate analysis within ProHits.
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Figure 8.
Tracking of the SAINT analysis parameters in ProHits.
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Figure 9.
Graphical user interface to explore SAINT results.

Choi et al. Page 28

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 10.
Automated Cytoscape generation of SAINT results from ProHits.
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Figure 11.
Comparison of probabilities using different options in the TIP49 dataset.
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Figure 12.
Ideal design of an AP-MS experiment with negative controls and biological replicates.
Hypothetical experiment involving the purification of four different baits (colored circles)
and a negative control (grey circle). Each of the biological replicate experiments is
performed for each of the baits in a single batch. Different biological replicates are
performed on batches of cells harvested at different times, and for which purification and
proteolysis is done on different days. Notice the randomization of the loading order of the
samples on the mass spectrometer to help preventing bias (e.g. carry-over).
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