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Characterization of the Adaptation Module of the Signaling Network in
Bacterial Chemotaxis by Measurement of Step Responses
Junhua Yuan and Howard C. Berg*
Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts
ABSTRACT The bacterial chemotaxis network features robust adaptation implemented by negative integral feedback. Here,
we show that the adaptation module can be characterized by measurement of the response to simple step-addition and removal
of a chemoattractant. Themethod does not rely on a particular form of the receptor module, and thus can be used to characterize
other integral feedback networks.
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Cellular networks often exhibit modular structures (1). For
example, the bacterial chemotaxis network, which enables
cells to detect and respond to chemical stimuli (2,3), is
composed of a receptor module that senses changes in
the environment and generates the network activity, and
an adaptation module that allows the cells to maintain a
steady-state activity independent of ambient conditions
(4). The adaptation module for wild-type Escherichia coli
was characterized recently by measurements of responses
to a set of temporal exponential ramps of chemoattractant
(4). Here, we developed a simpler method for characterizing
the adaptation module that employs simple step-addition
and removal of chemoattractant. Because of its simplicity,
this method can be easily applied to systematic studies of
the adaptation module in a variety of E. coli mutants and
in other bacteria. Moreover, the method does not rely on
a particular functional form of the receptor module (i.e.,
on the specific way that module output depends on input);
therefore, it should be applicable to the study of adaptation
modules in other cellular networks.

In the E. coli chemotaxis signaling network, binding of
chemical ligands by membrane receptors modulates the
activity of an associated histidine kinase, CheA, which
phosphorylates the response regulator, CheY. A phospha-
tase, CheZ, dephosphorylates CheY-P. The activity of the
receptor-kinase complex (the network activity, a) also is
affected by the level of receptor methylation, m (a increases
with m). Adaptation is mediated by receptor methylation
and demethylation, by CheR and CheB.

Although other models have been developed to under-
stand the precision and kinetics of adaptation in bacterial
chemotaxis, e.g., by Meir et al. (5), our purpose here
was to characterize the adaptation module, F(a), in the
systems-level scheme proposed by Tu et al. (6). In this
model, three dynamical variables are utilized to describe
the chemotaxis network: the ligand concentration [L], the
receptor-kinase activity a, and the methylation level m,
corresponding to the network input, output, and memory,
respectively. The dynamics of these variables are described
with the equations a ¼ G([L], m), and dm/dt ¼ F(a). The
timescale for ligand binding and kinase response is much
shorter than that for receptor methylation and demethyla-
tion, so the dependence of a on [L] and m can be described
by an algebraic equation, whereas the temporal dynamics
of m can be described by a differential equation. From
the network’s perfect adaptation to aspartate, dm/dt should
depend explicitly only on a, according to the linear integral
feedback model described previously (7). Following Tu
et al. (6), the receptor-kinase activity is expressed with a
two-state model,

Gð½L�;mÞ ¼ 1

ð1þ expð ftð½L�;mÞÞ;

where the total free energy ft is the sum of ligand-dependent
and methylation-dependent parts,

ft ¼ Nð fLð½L�Þ þ fmðmÞÞ;

where N is the number of receptor homodimers (binding
sites) in an allosteric cluster, and the energies are in units
of kT. In the Monod-Wyman-Changeux model (8), which
has been shown to describe the receptor module success-
fully (9–13),

fLð½L�Þ ¼ lnð1þ ½L�=K1Þ � lnð1þ ½L�=KAÞ;

and fm(m) ¼ a(m0 � m). In these equations, a is the free-
energy change per added methyl group, m0 is the methyla-
tion level where fm crosses zero, and KI and KA are
the ligand dissociation constants for inactive and active
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receptors, respectively. During the adaptation process in
a step response, [L] is constant, and m changes, so

da

dt
¼ va

vm
� dm

dt

¼ aNað1� aÞ � dm

dt
:

Thus, the rate of change of the receptor methylation level
can be calculated from the adaptation process if a is mea-
sured as a function of time:

dm

dt
¼

�
da

dt

�

ðaNað1� aÞÞ;

with a ¼ 2 and N ¼ 6 determined previously in the charac-
terization of the aspartate receptor module in wild-type
cells (4). By plotting dm/dt versus a during adaptation to
a simple step response, we can reconstruct the adaptation
module, F(a).

We used fluorescence resonance energy transfer (FRET)
between CheZ-CFP and CheY-YFP as an indicator of the
receptor-kinase activity (14). We measured FRET as a func-
tion of time during a step-addition and removal of 0.05 mM
a-methyl-DL-aspartate (MeAsp) to cells of E. coli wild-
type strain RP437 (15), as shown in Fig. 1. The measure-
ments were carried out at room temperature using a setup
described previously (4,14). Fluorescence signals from a
field of ~400 cells were filtered by an eight-pole low-pass
Bessel filter (3384, Krohn-Hite) with a cutoff frequency
of 0.4 Hz and sampled at 1 Hz. Because the change of
the FRET value, DFRET, is proportional to the change of
receptor-kinase activity, Da, and a is defined to lie in the
range of 0 to 1, we converted the FRET values to a by
measuring the full range of DFRET, which corresponds to
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FIGURE 1 Responses of cells of E. coli wild-type strain RP437

to step-addition and removal of 0.05 mM MeAsp, showing the

receptor-kinase activity as a function of time. (Arrows) Times

of addition and removal of attractant.
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the receptor-kinase activity changing from 0 to 1. This
was done by measuring the DFRET values when adding
and removing a large concentration of attractant. The
peak FRET level after removal of attractant saturates at
[MeAsp] > 0.1 mM, and this saturated peak FRET level
was used as the FRET value corresponding to a ¼ 1 (5).

From the step response, we calculated da/dt during the
adaptation process: for each data point, da/dt was calculated
by fitting a segment of 31 data points centered on the one
discussed here, with a linear function and extracting the
slope. We then calculated the dm/dt values and plotted
them as a function of a, as shown in Fig. 2. Values for kinase
activities a less than the steady-state activity a0 were derived
from the response to the addition of attractant, whereas
values for activities a > a0 were derived from the response
to the removal of attractant. The data are inherently noisy
when a is close to 0 or 1, corresponding to the situation
in which a is not sensitive to m. This reconstruction of
F(a) is similar to the result obtained in the exponential
ramp experiments (4), showing a sharp transition at activity
~0.75 and a shallow negative slope near the steady-state
receptor-kinase activity a0: F

0(a0) ¼ �0.0090 5 0.0012.
Data were analyzed using custom scripts in MATLAB
(The MathWorks, Natick, MA).

We measured the responses of cells of wild-type E. coli
to three rounds of step-addition and removal of MeAsp,
with step sizes of 0.02, 0.1, and 0.5 mM, respectively, and
reconstructed F(a) using these step responses, as shown
in Fig. 3. The results from all three data sets collapse,
with similar slopes of F(a) near a0: F

0(a0) ¼ �0.0099 5
0.0013, �0.0086 5 0.0012, and �0.0085 5 0.0012 for
step sizes of 0.02, 0.1 and 0.5 mM MeAsp, respectively.
This further validates our method.

The simplicity of our method allows it to be applied
in systematic studies of the adaptation module, for example,
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FIGURE 2 Adaptation function F(a), showing the rate of change

of the receptormethylation level as a function of receptor-kinase

activity, calculated for the experiment of Fig. 1, involving the

step-addition and removal of 0.05 mM MeAsp.
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FIGURE 3 Adaptation function F(a) reconstructed from re-

sponses of cells of strain RP437 to step-addition and removal

of MeAsp with various step sizes: 0.02, 0.1, and 0.5 mM MeAsp

(blue dots, red squares, and green circles, respectively). All

three functions collapse to a single curve, showing the insensi-

tivity of this reconstruction to the step size.
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to explore the unexplained sharp transition of F(a) at ~a ¼
0.75, using various E. coli mutants.

Compared to the exponential ramp method (4), which
requires a specific form of G([L], m) (linear dependence
of fL([L]) on ln([L]) and linear dependence of fm on m),
our method is not restricted to a specific form of G([L], m).
In fact, during a step response of step size [L0], a ¼
G([L0],m), so m can be calculated from a:m¼G�1([L0], a),
where G�1 is the inverse function of G([L0], m). During the
adaptation process,

da

dt
¼ vGð½L0�;mÞ

vm
� dm

dt

¼ gð½L0�;G�1ð½L0�; aÞÞ � dm

dt
;

where the function g([L], m) is the derivative of G([L], m)
with respect to m. Therefore, the rate of change of receptor
methylation level can be calculated if a is measured as a
function of time:

dm

dt
¼

�
da

dt

�

gð½L0�;G�1ð½L0�; aÞÞ

or
dm

dt
¼ vG�1ð½L0�; aÞ

va
� da

dt
:

We can then reconstruct F(a) by plotting dm/dt versus a.
Because of this generality, we expect this method to be
applicable to the studies of other biological networks that
feature integral feedback.
ACKNOWLEDGEMENTS

We thank Yuhai Tu and Tom Shimizu for their interest and suggestions.

This work was supported by National Institutes of Health grant No.

AI016478.
REFERENCES and FOOTNOTES

1. Hartwell, L. H., J. J. Hopfield,., A. W. Murray. 1999. Frommolecular
to modular cell biology. Nature. 402 (Suppl.):C47–C52.

2. Sourjik, V. 2004. Receptor clustering and signal processing in E. coli
chemotaxis. Trends Microbiol. 12:569–576.

3. Hazelbauer, G. L., J. J. Falke, and J. S. Parkinson. 2008. Bacterial
chemoreceptors: high-performance signaling in networked arrays.
Trends Biochem. Sci. 33:9–19.

4. Shimizu, T. S., Y. Tu, and H. C. Berg. 2010. A modular gradient-
sensing network for chemotaxis in Escherichia coli revealed by
responses to time-varying stimuli. Mol. Syst. Biol. 6:382–396.

5. Meir, Y., V. Jakovljevic, ., N. S. Wingreen. 2010. Precision and
kinetics of adaptation in bacterial chemotaxis. Biophys. J. 99:2766–
2774.

6. Tu, Y., T. S. Shimizu, and H. C. Berg. 2008. Modeling the chemotactic
response of Escherichia coli to time-varying stimuli. Proc. Natl. Acad.
Sci. USA. 105:14855–14860.

7. Yi, T. M., Y. Huang, ., J. Doyle. 2000. Robust perfect adaptation in
bacterial chemotaxis through integral feedback control. Proc. Natl.
Acad. Sci. USA. 97:4649–4653.

8. Monod, J., J. Wyman, and J. P. Changeux. 1965. On the nature of allo-
steric transitions: a plausible model. J. Mol. Biol. 12:88–118.

9. Sourjik, V., and H. C. Berg. 2004. Functional interactions between
receptors in bacterial chemotaxis. Nature. 428:437–441.

10. Rao, C. V., M. Frenklach, and A. P. Arkin. 2004. An allosteric model
for transmembrane signaling in bacterial chemotaxis. J. Mol. Biol.
343:291–303.

11. Mello, B. A., and Y. Tu. 2005. An allosteric model for heterogeneous
receptor complexes: understanding bacterial chemotaxis responses to
multiple stimuli. Proc. Natl. Acad. Sci. USA. 102:17354–17359.

12. Keymer, J. E., R. G. Endres, ., N. S. Wingreen. 2006. Chemosensing
in Escherichia coli: two regimes of two-state receptors. Proc. Natl.
Acad. Sci. USA. 103:1786–1791.

13. Mello, B., and Y. Tu. 2007. Effects of adaptation in maintaining high
sensitivity over a wide dynamic range of backgrounds for Escherichia
coli chemotaxis. Biophys. J. 92:2329–2337.

14. Sourjik, V., A. Vaknin, ., H. C. Berg. 2007. In vivo measurement by
FRET of pathway activity in bacterial chemotaxis. Methods Enzymol.
423:365–391.

15. Parkinson, J. S. 1978. Complementation analysis and deletion mapping
of Escherichia coli mutants defective in chemotaxis. J. Bacteriol.
135:45–53.
Biophysical Journal 103(6) L31–L33


	Characterization of the Adaptation Module of the Signaling Network in Bacterial Chemotaxis by Measurement of Step Responses
	Acknowledgements
	References and Footnotes


