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Variational Bayes Analysis of a Photon-Based Hidden Markov Model for
Single-Molecule FRET Trajectories
Kenji Okamoto* and Yasushi Sako
Advanced Science Institute, RIKEN, Wako, Saitama, Japan
ABSTRACT Single-molecule fluorescence resonance energy transfer (smFRET) measurement is a powerful technique for
investigating dynamics of biomolecules, for which various efforts have been made to overcome significant stochastic noise.
Time stamp (TS) measurement has been employed experimentally to enrich information within the signals, while data analyses
such as the hidden Markov model (HMM) have been successfully applied to recover the trajectories of molecular state transi-
tions from time-binned photon counting signals or images. In this article, we introduce the HMM for TS-FRET signals, employing
the variational Bayes (VB) inference to solve the model, and demonstrate the application of VB-HMM-TS-FRET to simulated
TS-FRET data. The same analysis using VB-HMM is conducted for other models and the previously reported change point
detection scheme. The performance is compared to other analysis methods or data types and we show that our VB-HMM-
TS-FRET analysis can achieve the best performance and results in the highest time resolution. Finally, an smFRET experiment
was conducted to observe spontaneous branch migration of Holliday-junction DNA. VB-HMM-TS-FRET was successfully
applied to reconstruct the state transition trajectory with the number of states consistent with the nucleotide sequence. The
results suggest that a single migration process frequently involves rearrangement of multiple basepairs.
INTRODUCTION
Single-molecule fluorescence resonance energy transfer
(smFRET) is a powerful technique for investigating confor-
mational states of biomolecules without ensemble aver-
aging. In addition to static distribution of conformational
states (1–4), structural dynamics can be examined by statis-
tical analysis (1,5–7) or by tracing fluorescence time series
(7–9). Examination of the conformational dynamics of
biomolecules is critical to understanding many of the mech-
anisms behind life, such as molecular motors (10,11), enzy-
matic reactions (12,13), and signal transduction (14,15).
Furthermore, it is suggested that complicated processes at
molecular level, such as the memory effect, play important
roles in cellular activity (14,16–18).To observe such reac-
tions and elucidate the mechanisms behind them, it is
essential to measure dynamics experimentally by tracing
conformational changes in real-time with single-molecule
sensitivity. The time-resolved smFRET technique seems to
be one of few choices currently capable of achieving this.

Fluorescence signal from a single molecule is so weak
that stochastic fluctuation intrinsically involved in single
photon signals—the so-called ‘‘shot noise’’—is significant.
Although time-averaging of the signal is commonly used
to reduce such fluctuation, this degrades the time resolution
as a trade-off and prevents us from tracing the molecular
dynamics, which may have a timescale of milliseconds or
faster. It is therefore desirable to improve the time resolution
as well as the accuracy of smFRET measurements to
allow observation of various biomolecular dynamics. One
approach is to improve photon detection to enrich obtain-
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able information. The common single-photon counting
(SPC) measurement counts-up photons for individual time
bins with fixed duration. However, binning discards details
of the temporal distribution of photons and degrades infor-
mation to some extent. Imaging by camera works the
same way in principle, except that extra noise is added
during electric amplification. To extract information as effi-
ciently as possible, the time-stamp (TS) measurement has
been introduced (7,12,19–21). Because the TS signal
records the detection time of every single photon using
SPC detectors, information about photon distribution is
not degraded. Another important approach is through data
analysis based on statistics or information theory. In partic-
ular, because TS signals are not intuitively understandable,
data analysis is important to visualize its meaning. For
example, schemes for extracting a smoothed FRET trajec-
tory from a TS signal based on maximum-likelihood theory
(22) or Fisher information (23) have been proposed.

Single-molecule signals often show stepwise changes in
time series that are usually explained by proposing that
the molecule consecutively repeats transitions between a
finite number of states (NoS). As long as we assume such
stepwise dynamics, the problem exists as to how to resolve
states and detect transitions from signals. Early experi-
menters resolved states ‘‘by eye’’ but this cannot be very
reliable. In addition, the NoS is usually unknown and
must therefore also be guessed from experimental data.
Various statistical analyses have been proposed to resolve
the above problems. One approach is to find the change
points, a data point that is placed at the boundary between
states. Change point detection (CPD) for the TS signal using
maximum likelihood estimation, followed by applying the
Bayesian information criterion to decide the NoS, was
http://dx.doi.org/10.1016/j.bpj.2012.07.047
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FIGURE 1 Example of TS-FRET signals, illustrating the relationship

between TS and SPC signals. (A) The TS-FRET signal records arrival times

of every single photon on the donor (green) and the acceptor (red) detector

channels. (Inset) Experimental observables t, Dt, and r. (B and C) The SPC

signals are made by binning photons with a fixed time period. (D) The time

bin-based FRET trajectory (blue) is calculated from the SPC signals. The

true FRET trajectory (purple) changes stepwise, showing the typical feature

of single-molecule signals. (Color online.)
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proposed by Watkins and Yang (24) while Ensign and Pande
(25) proposed CPD for SPC signals based on Bayesian
inference. They both treated the intensity signal on a single
detection channel, which is applicable to the donor-quench-
ing type of FRET measurements. It has been shown that the
hidden Markov model (HMM) approach can treat SPC-
based FRET signals using maximum likelihood estimation
and the Bayesian information criterion (26,27). The HMM
was also applied to TS-intensity signals to analyze intercon-
version between two states (28) or multiple stepwise decay
of clustered fluorophores (29). Another approach resolves
transitions between two states from the TS-FRET signals
by maximizing likelihood (30). Analysis of the local
equilibrium state, proposed by Baba and Komatsuzaki
(31), is a generic approach that may be suitable for smFRET
systems, too.

In this article, we propose the use of variational Bayes
(VB) inference to solve the HMM for TS-FRET signals.
The advantage of VB is that it allows us to choose the
optimum model from among various models, where, in
the context of this article, difference of model means a
difference in NoS. In 2009, Bronson et al. (32) proposed
the VB-HMM approach to treat time-binned FRET signals
by assuming a Gaussian distribution for the FRET effi-
ciency. That approach, however, cannot make full use of
the richer information that TS measurements can provide.
It is not straightforward to apply the HMM to TS signals
because time intervals between data points are not uniform,
whereas the common HMM assumes uniform intervals.
Here, we expanded the VB-HMM to treat TS-FRET signals
(VB-HMM-TS-FRET). We also derived VB-HMM models
for TS-intensity signals (VB-HMM-TS), SPC-based inten-
sity (VB-HMM-PC), and FRET (VB-HMM-PC-FRET)
signals, and used the TS-based intensity CPD (24) for
comparison. By comparing results of these analyses, applied
to several sets of data generated by Monte Carlo simulation,
the accuracy and robustness of what to our knowledge is our
new VB-HMM-TS-FRET model is demonstrated. Finally,
we demonstrate the application of the developed analysis
to experimental data. Time-stamped smFRET signals were
acquired from spontaneous branch migration of single
Holliday junction (HJ) DNA. VB-HMM-TS-FRET analysis
was successfully applied and was able to reconstruct FRET
trajectories corresponding to the state transitions.
THEORY

Background

Photon emission from a fluorescent molecule is a stochastic
process. Even if the average intensity appears to be con-
stant, the temporal distribution of photons is uneven
(Fig. 1 A). Using SPC detectors, such as photomultiplier
tubes or avalanche photodiodes, which can detect individual
photons, the absolute times, tn, at which the n

th photon is de-
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tected can be recorded for all photons by TS measurement.
When the experimental observable xn for the nth photon is
defined as xnhDtn¼ tn – tn�1, it is known to obey the expo-
nential distribution

pðxnjIÞ ¼ Iexpð�IxnÞ; (1)

where the intensity I is the average number of photons per
second. Detected photons are often accumulated into time
bins and plotted as a time series of intensity, which, in this
article, we call the SPC signal (Fig. 1 B). In the SPC signal,
the nth data point xn represents the photon count in a bin and
obeys the Poisson distribution

pðxnjmÞ ¼ mxn

xn!
expð�mÞ; (2)

where m is the average count per bin.
In two-color FRET experiments, spectrally separated

photon counts are detected (Fig. 1 C) and the time series
of the FRET efficiency, E, is calculated from these
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(Fig. 1 D). Such smFRET signals typically show a stepwise
trajectory. This can be interpreted as that the sample mole-
cule remaining in one of the possible states in a plateau
region and instantaneous transition occurs. Under the
assumption of such dynamics, we must divide the trajectory
into short periods and assign each to an appropriate state
(23,26,27,32). In the following, we briefly introduce what
to our knowledge is a new scheme to treat TS signals by em-
ploying VB and the HMM. The details of the derivation can
be found in the Supporting Material.
Variational Bayes to solve HMM

The HMM approach has been successfully applied to repro-
duce the state transition trajectories from stepwise FRET
trajectories (26,27,32). Generally, provided the experi-
mental data are given as a time series X¼ {x1,.,xN}, where
N is the total number of data points, every single data point
should be assigned to one of states. The latent variables, Z¼
z1,.,zN and zn ¼ {zn1,.,znK}, are defined to represent the
state transition trajectory so that znk is equal to 1 if the mole-
cule belongs to the kth state at the nth time step, and 0 other-
wise, where K is the assumed NoS. In the HMM, a simple
Markov chain model is often assumed, i.e., which state
the molecule resides in at the nth time step depends only
on the state at the (n�1)th time step. The joint probability
distribution over both the observables and the latent vari-
ables can then be written as

pðX;ZjQ;MÞ ¼ pðz1jQ;MÞ �
YN
n¼ 2

pðznjzn�1;Q;MÞ

�
YN
m¼ 1

pðxmjzm;Q;MÞ;
(3)

whereQ andM represent a set of parameters and the model,
respectively.

In 2009, the VB inference was introduced to solve the
HMM for the FRET time series (32). VB evaluates the
evidence, which is given by marginalizing parameters and
the latent variable from the joint probability as

pðXjMÞ ¼
X
Z

Z
dQpðQÞpðX;ZjQ;MÞ; (4)

where p(Q) is the prior probability distribution for Q. After
we obtain a set of data X, we must find the optimum set
for the latent variable and the parameters to maximize
this evidence. This can be achieved by following a pro-
cedure similar to the expectation-maximization-algorithm
(26,27,33) (see details in Section S1.1 in the Supporting
Material). The evidence can be compared among different
models because it depends only on X and M. The VB treats
and optimizes the probability distributions for parameters
instead of their quantities and implicitly includes a penalty
against decreasing Shannon’s entropy (32). Therefore, VB
can find the optimum NoS without additional procedures,
such as Akaike or Bayesian information criterion.
Formalism for the TS signals

In this article, we applied the VB-HMM to the TS signals
(see details in Sections S1.2 and S1.3 in the Supporting
Material). The common HMM assumes that the time
interval between data points is uniform so that the probabil-
ities of transition can be represented by the constant matrix
A. However, because the time intervals vary in the TS
signals, the transition probabilities between data points
also change. Therefore, we use the transition rates ki and
the probabilities kij(i s j), which designate the destination
of the transition, rather than the A-matrix. The value ki
must be sufficiently small compared with the photon emis-
sion rate, Ii, for the i

th state to be detected. The lower bound
of photon sampling interval accessible by the TS measure-
ment is typically ~1 ms, which is limited by the response
speed of detectors. The transition probability distribution
should then be rewritten with dependence on x as

p
�
znj
��zn�1;i; xn�1;k; k; I

�¼
�

expð� kixn�1Þ ði ¼ jÞ
kijf1� expð� kixn�1Þg ðisjÞ :

(5)

Further mathematical details are described in Section S1.2
in the Supporting Material.

The emission probability of the TS signal can be written
as the exponential distribution (Eq. 1). To treat the TS
signals of two-colored smFRET experiments, we introduce
another variable to distinguish the detection channels,

rn ¼
�
0 ðdonorÞ
1 ðacceptorÞ; (6)

as depicted in the inset of Fig. 1. Now the observable is not
a scalar but a vector, written as xn ¼ {Dtn, rn}. A new
parameter E, which represents the FRET efficiency, is also
introduced. The emission probability for TS-FRET signals
can be factorized and becomes

pðxnjI;EÞ ¼ pðrnjEÞ � pðDtnjIÞ; (7)

¼ Ernð1� EÞ1�rn � Iexpð�IDt Þ: (8)
n

Formalism for the SPC signals

To compare the TS-based analysis with the SPC-based anal-
ysis, we also formulate the VB-HMM for the SPC signals
(see details in the Sections S1.4 and S1.5 in the Supporting
Material). As described in Eq. 2, the observable xn in the
SPC measurements is the number of detected photons
Biophysical Journal 103(6) 1315–1324
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within a bin and the emission probability distribution is
the Poisson distribution. For SPC signals, we employed
the A-matrix for transition probabilities.

SPC-FRET signals are composed of two channels of SPC
detection. The observable may be xn ¼ {dn, an}, where dn
and an are photon counts on the donor and the acceptor
channels, respectively, and both have a Poisson distribution.
The likelihood function then becomes

pðxnjm;EÞ ¼ pðdnjm;EÞ � pðanjm;EÞ; (9)

ð1� EÞdnEan
time (s)
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applied for this simulation. Full-length data are shown in Fig. S1 in the

Supporting Material.
¼
dn!an!

� mdnþan expð�mÞ: (10)

NUMERICAL EXPERIMENTS

To evaluate our analysis methods, we generated a fluores-
cence signal time series by simulating a molecule repeating
transition among states. The model we used included three
states, each of which was characterized by the average
intensity, Ii, or the FRET efficiency, Ei. Photons are emitted
at a constant rate but are stochastically distributed. The
average lifetimes of states are defined by li. Total signal
length T is fixed at 10 s. Several analysis methods were
applied to determine the likeliest NoS, to estimate the
parameters and to reproduce the state transition trajectory.

In summary, we performed two sets of simulations:
First, we generated the intensity signal on a single

detector channel, simulating the single-color FRET
measurements, which detect the decrease in donor
fluorescence. The intensity ratio is defined by a parameter
Iratio h I2/I3 ¼ I1/I2, which regulates the discrimination
between states. The purpose of this simulation was to
compare the performance and the efficiency of our
VB-HMM-TS method with other photon-based analyses.
We employed the CPD method as an alternative, which
is the only other TS-based analysis method previously re-
ported to our knowledge (24). We also used our VB-
HMM-PC method with a few bin sizes to explore the
difference between the TS and the SPC measurements.

Second, we assumed two-color FRET measurements and
simulated dual-channel fluorescence signals. In this case,
states were not characterized by the intensities but the
FRET efficiencies, which are defined as E1 ¼ 0.5 � DE,
E2 ¼ 0.5, and E3 ¼ 0.5þ DE with a parameter DE. Because
there are, unfortunately, no previously proposed methods
capable of treating the TS-FRET signals, we used only VB-
HMM-FRET methods. In addition, we applied VB-HMM-
TS/PC analyses to the donor signal extracted from the
dual-channel signal. Conceptually, TS/PC-FRET analyses
appear to be superior to TS/PC analyses because the number
of photons dedicated to the analysis is larger, roughly double,
in the FRET signals. However, firm conclusions may not
be straightforward, because the quantity being evaluated is
Biophysical Journal 103(6) 1315–1324
qualitatively different, i.e., intensity analysis detects changes
in the photon density whereas the FRET analysis detects
changes in the ratio of photon numbers between channels.

Details of definitions and procedures are described in
Section S2.1 in the Supporting Material.
RESULTS

Examples of analyses

Fig. 2 shows an example simulation and analysis set for the
case of a single-channel intensity signal. With Iratio ¼ 0.5,
the simulated states had intensities I ¼ 2500, 5000, and
10,000 and lifetimes l ¼ 20, 10, and 5 ms, respectively.
In Fig. 2 A, the simulated time series is represented in
SPC-style with a bin size of 1 ms (dashed), 5 ms (solid),
and 10 ms (gray) (the full-length data are shown in
Fig. S1 A in the Supporting Material). Red crosses represent
individual photons and indicate that information on the
temporal distribution of photons is available. This time
series was analyzed by VB-HMM-TS, CPD, and VB-
HMM-PC with three bin sizes. Each analysis examined
the likelihood of from 2- to 6-state models and decided
the likeliest NoS. For this example data, the NoS was cor-
rectly assigned as three by all analysis methods (the result-
ing inference scores are shown in Fig. S2). Fig. 2 B shows
the state transition trajectories (the full-length data are
shown in Fig. S1 B). The correct answer, which is the simu-
lated data, is plotted by red crosses. Blue and green crosses
are assignments by TS-based analyses, VB-HMM-TS and
CPD, respectively. VB-HMM-PC results are represented



1.0

0.8

0.6

0.4

0.2

VB-HMM
 TS
 PC (1ms)
 PC (5ms)
 PC (10ms)

 CPD-MLE

N
oS

 a
cc

ur
ac

y

VB-HMM Analysis for smFRET 1319
by gray (1 ms bin), dashed (5 ms bin), and light gray (10 ms
bin) lines, respectively. One can see that all analysis
methods reproduced the simulated trajectory quite well.
The photon-based accuracy for reproducing the trajectory
with this data was the highest with the VB-HMM-TS
method at ~90%. Reasons for the principal errors include
time lags for state transitions and missing short-lived states.
For example, CPD did not detect the short-lived peak at
~4.7 s and both VB-HMM-TS and CPD resulted in a slight
delay on the rising edge immediately after 4.68 s. SPC-
based analyses reproduced the trajectories well with a small
bin of 1 ms, whereas higher errors result with larger bins of 5
or 10 ms. Once the NoS is correctly inferred, the accuracy of
parameter estimation seems reasonable, as discussed later.

An example of two-color TS-FRET simulation and
analytical results is shown in Fig. 3. With DE ¼ 0.1, the
same intensity I ¼ 10,000 and lifetime l ¼ 100 ms were
given to all states. In Fig. 3 A, green and red lines show
the SPC representation of donor- and acceptor-signals of
simulated data with a 5-ms bin, respectively. The blue lines
above these are the FRET efficiencies E ¼ IA/(IA þ ID)
calculated for each bin, where IA and ID are the donor and
the acceptor intensities, respectively. Trajectories using
1-ms bins are plotted together as light-colored lines (the
full-length data are shown in Fig. S3 A). All the TS- and
the SPC-based analyses gave the highest score at the NoS
of three, which is the correct answer (the variational lower
bounds are shown in Fig. S4). Fig. 3 B shows the state trajec-
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FIGURE 3 Example results of analyses of a dual-channel FRET signal.

(A) The SPC-signals with 5-ms time bins (donor, green; acceptor, red)

are converted from the simulated TS signal (not shown). The FRET trajec-

tory (blue) is calculated from the SPC trajectories. Light-colored lines are

plots using 1-ms time bins. (B) The state transition trajectories. The original

simulated data (red), the results of VB-HMM-TS-FRET (blue), and VB-

HMM-TS (light blue) assign a state to each photon. The results of VB-

HMM-PC-FRET (dashed gray) and VB-HMM-PC (light gray) only with

1-ms bin are shown. VB-HMM-TS/-PC analyses treat only the donor

photons. DE ¼ 0.1, I ¼ 10,000, and l ¼ 100 ms were applied to all states.

Full-length data are shown in Fig. S3.
tory of Fig. 3 A from simulation and analytical results (the
full-length data are shown in Fig. S3 B). Red dots represent
the simulation-data photon by photon. Assignments by TS-
based analyses are plotted by blue (TS-FRET) and light-blue
(TS) dots, respectively. For SPC-based analyses, the results
for 1-ms bins were plotted by dotted gray (PC-FRET) and
solid light gray (PC) lines. The accuracy of the inference
of photon-based state trajectory was higher when using
TS-/PC-FRET models (>90%) than TS/PC models (~82–
85%). It can be seen in Fig. 3 D that the FRET analyses
can trace the transient stay of state 2 just before 7 s, but
the intensity analyses missed this state. Once the NoS is
guessed correctly, the accuracy of the parameter estimation
appears to be quite good, as shown below.
Statistics of one-channel TS intensity signals

In Fig. S5, we summarize the performance of analytical
methods evaluated from 1000 iterations of simulation-anal-
ysis cycles. Some representative results for six sets of l with
Iratio ¼ 0.5 are shown in Fig. 4. Because the representations
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are summarized in Fig. S5.
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in Fig. 4, panels A and B, were not created from states but
from the whole signals, their horizontal axes are represented
by the value l3.

Fig. 4 A shows the accuracy, which is defined as the prob-
ability that the number of states was correctly guessed as
three. VB-HMM-TS maintained nearly 100% accuracy
over the whole range of l, even down to a few milliseconds.
VB-HMM-PC, with the smallest bin, was similar but drop-
ped at very small l. VB-HMM-PC caused more errors with
larger bin sizes, as one may expect. CPD seems to be erro-
neous and even worse than VB-HMM-PC with large bin
sizes, whereas it makes use of richer information in the
TS signal than that of the SPC signal.

Fig. 4 B shows the reproducibilities of the state transition
trajectory. The fraction of photons assigned the correct
state was calculated only from the trajectories for which
the NoS were correctly guessed as three, and the average
is plotted with error bars designating the standard deviation.
Among the methods, the best results were given by
VB-HMM-TS and VB-HMM-PC with a 1-ms bin. To
achieve 90% reproducibility, which corresponds to the result
shown in Fig. 2, several tens of photons per state are needed
when Iratio ¼ 0.5. CPD follows these and was almost
equivalent when l was large enough. The reproducibility
of VB-HMM-PC was degraded with larger bins, as may
be expected.

Generally, although the accuracy of the NoS guess and/or
the trajectory reproducibility is good, the accuracy of the
parameter estimation also appears to be fairly reliable.
Fig. 4 C shows the accuracy of estimation for the parameters
l. Surprisingly, VB-HMM-TS gives almost perfect results
once the NoS is correctly guessed.
HMM-TS-FRET again shows almost perfect results. Overall, the FRET

analyses are superior to the intensity-based analyses. Error bars designate

the standard deviation. Further results are summarized in Fig. S6.

Statistics for two-channel time-stamped FRET
signals

The statistics of VB-HMM analyses of two-channel TS-
FRET simulation are summarized in Fig. S6. Some repre-
sentative results with DE ¼ 0.1 are shown in Fig. 5.

Fig. 5 A shows the accuracy of the NoS guess. Overall,
dual-FRET analyses (solid lines) are superior to single-
channel intensity analysis (dashed lines). This indicates
that, although the quantity used to evaluate statistics is qual-
itatively different as mentioned above, VB-HMM analyses
make use of the richer information of the two-color FRET
signals. Among FRET analyses showing similarly good
performance, TS-FRET and PC-FRET with 1-ms bin seem
to be superior at small l with DE ¼ 0.2 (see Fig. S6 A).
To achieve >90% accuracy of the NoS guess with
DE ¼ 0.1, several hundreds of photons per state is required,
whereas a few tens of photons are sufficient when DER 0.2
can be expected.

Fig. 5 B shows the reproducibility of the state transition
trajectory. Again, overall, dual-channel FRET analyses
gave better results than single-channel intensity analyses.
Biophysical Journal 103(6) 1315–1324
For this set of analyses, PC-FRET with a 1-ms bin appears
to be the best, while TS-FRET is similar.

During estimation of parameters, the accuracies seem to
depend on the NoS accuracy and the results appear to be
good, except at small l (see Fig. S6, E–J). For estimation
of the state lifetime, l, TS-FRET analysis was again almost
perfect in all cases (Fig. 5 C and Fig. S4, I and J). PC-FRET
with a 1-ms bin was almost equivalent except that an error
can be seen at small l.
smFRET measurement of spontaneous branch
migration of Holliday junction

Holliday junction (HJ) is a four-way junction structure of
DNA, which is comprised of four DNA strands and arises
in homologous and site-specific genetic recombination
(34–36) or DNA repair (37). Movement of the crossover
junction along DNA is termed ‘‘branch migration’’ (Fig. 6 A)
and is a key mechanism in genetic processes. Although
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branch migration is thought to be driven by the protein
complex RuvAB in vivo (38,39), it can also take place
spontaneously because branch migration of homologous
DNAs is an isoenergetic process, which does not alter the
number of hydrogen bonds. Spontaneous branch migration
has been observed in vitro by biochemical (40) and single-
molecule experiments (41,42).

The molecular mechanism of spontaneous branch migra-
tion is not fully understood yet. However, a persuasive
model has been suggested: two HJ conformations exist in
equilibrium, namely, stacked and extended (43). HJ is
FIGURE 6 (A) Schematic of branch migration of the Holliday junction.

‘‘D’’ (donor) and ‘‘A’’ (acceptor) represent fluorescent labels. (B) Time

series of fluorescence intensities from the donor (green) and the acceptor

(red), respectively, acquired by smFRETobservation of spontaneous branch

migration. (C) Compensated intensity IC (yellow) and (D) FRET efficiency

EFRET (purple) calculated from fluorescence intensities. (E) Variational

lower bounds given by VB-HMM-TS-FRET analysis. The maximum lower

bounds were obtained with the NoS of three. IC and EFRET trajectories re-

constructed from the VB-HMM-TS-FRET result are overlaid (blue) in

panels C and D, respectively. (Color online.)
stabilized in the stacked conformation in the presence of
multivalent cations such as Mg2þ. However, once HJ
occasionally switches to the extended conformation, it can
migrate by rearrangement of basepairs around the crossover
point until it switches back to the stacked conformation
(40). Because basepair rearrangement is a stochastic pro-
cess, branch migration is a one-dimensional random-walk
process. It had been suggested that the base rearrangement
takes place with single bases (40), but hops over multiple
basepairs were recently observed (42). To investigate the
details of HJ conformational dynamics, both single-mole-
cule observations in real-time and exact analysis of those
data are necessary.

We prepared double-fluorescence-labeled HJs and
conducted smFRET measurement of spontaneous branch
migration. HJs were immobilized on a coverslip surface
by avidin-biotin coupling and observed by a confocal micro-
scope system. Our HJ was designed so that the branch could
migrate between three different positions. See details in
Subsections S2.2–2.3 in the Supporting Material.

PC representations of example fluorescence signals from
a single HJ are shown in Fig. 6 B while raw data were
acquired by TS measurement. Green and red lines are fluo-
rescence signals of the donor and the acceptor, respectively,
with a 5-ms time bin. The compensated intensity IC, which
is defined by Eq. S60 in the Supporting Material, is plotted
as a yellow line in Fig. 6 C. Because IC is constant except for
fluctuations caused by shot noise, we can say that variations
in the fluorescence signals are caused by FRET changes, not
by photochemical effects such as blinking. The FRET
trajectory was also calculated using Eq. S59 in the Support-
ing Material and plotted as a purple line in Fig. 6 D. Step-
wise changes in the FRET trajectory can be seen.

VB-HMM-TS-FRET analysis was applied to these data.
The resulting variational lower bounds are plotted in
Fig. 6 E. The maximum lower bounds were obtained
when NoS was three, which corresponds to that expected
from our HJ according to its sequence. IC and EFRET trajec-
tories were reconstructed from the VB-HMM-TS-FRET
result, which gave the maximum lower bound, and are
overlaid on Fig. 6, C and D, as blue lines. The reconstructed
IC is almost constant, again, and EFRET exhibits stepwise
changes.

We collected nine similar experimental data sets,
including that of Fig. 6, and analyzed these by VB-HMM-
TS-FRET in the same manner. All data and analysis results
are shown in Fig. S12. Some were assigned more than three
states, some of which were transient dark states and obvi-
ously seem likely to be caused by blinking. Apart from
such blinking states, the reproduced trajectory of the
FRET efficiency showed transitions among the three states.
Estimated parameters for the three major states are summa-
rized in Table S1 in the Supporting Material. Histograms of
the FRET efficiency made from EFRET trajectories with a
5-ms bin (green) and stepwise trajectories reproduced by
Biophysical Journal 103(6) 1315–1324
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analysis (blue), respectively, are shown in Fig. 7. Whereas
the green histogram shows one broad distribution, from
which it is hard to resolve states, the blue histogram shows
three distinct peaks.
DISCUSSION

We have shown that VB-HMM analyses have the ability to
guess the NoS, reproduce the state transition trajectory, and
estimate parameters with great accuracy.

We expected that the ultimate time resolution of single-
molecule measurements could be achieved by photon-by-
photon detection and analysis. The time resolution may be
defined with the average number of photons detected during
a single stay of the state, because information in the TS
signals is governed by the temporal photon distribution
and is independent of the absolute time. Here, we focus
on the minimum photon number required to achieve 90%
trajectory reproducibility, at which almost 100% NoS
accuracy is achieved. For single-channel intensity signals,
~100 photons are required with an intensity ratio Iratio of
0.5 between adjacent states. When Iratio of 0.25 is expected,
a few tens of photons are sufficient. This is smaller than the
previously reported CPD, which required a few hundred
photons per state to resolve two states with Iratio of 0.5
(24). For dual-channel FRET signals, ~1000 photons are
required to resolve DE ¼ 0.1 and a few hundreds of photons
are sufficient if DE R 0.2.

The results shown in Fig. 5 and Fig. S6 suggest that it is
desirable to perform FRET dynamics measurements with a
double fluorescently labeled target and simultaneous two-
color TS detection.

Together with TS-based analyses, for the first time to our
knowledge we also derived Poisson-based VB-HMM-PC
methods, the performance of which crucially depends on
bin size. When bins are too large, the quality of analysis
is degraded, as shown in Figs. 4 and 5 (see also Fig. S5
and Fig. S6). We found that the errors in estimation of the
FIGURE 7 Histograms of the FRET efficiency created from nine sets of

smFRET time series. (Green histogram) Constructed from the FRET

trajectories with a 5-ms bin, calculated directly from the fluorescence

signals, forms a single broad peak. Individual states are not distinguishable.

(Blue histogram) Constructed from the VB-HMM-TS-FRET results, in

which three distinct distributions are clearly shown. (Color online.)
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NoS were often overfitting. Artifactual intermediate states,
which arose when the state transitions occurred in the
middle of a time bin (32), might cause those over-fit errors.
Because a longer time bin is more likely to include a transi-
tion, the bin size must be set short enough to avoid such
artifactual overfitting. To see how small bins should be,
Figs. 4 C and 5 C (see also Fig. S5, G–H, and Fig. S6, I–J)
are replotted in Fig. S7 so that the state lifetime l is normal-
ized as the ratio to the bin size. It indicates that the accuracy
of analysis depends on the ratio rather than on the bin size
itself and the bin size must be smaller than, for example,
half of l. If time resolution of PC detection or the camera’s
frame rate is insufficient to it, one may have to seriously
consider switching to the TS measurement.

Our results show that VB-HMM-PC performs equiva-
lently to VB-HMM-TS methods or even slightly better for
FRET analysis, as long as the bin size is appropriately
defined. One may prefer to use an SPC-based analysis
because of this advantage. However, even so, it is still desir-
able to acquire the TS signal, because it is difficult to decide
the optimum bin size in advance of conducting experiments
and a measurement with an inappropriate bin size will affect
the analytical result, as discussed above. After the TS data
are obtained, the SPC data can be easily constructed with
an arbitrary bin size and, furthermore, the use of TS-based
analysis frees one from worrying about binning.

Some research groups have reported the application of the
HMM to analyze smFRET signals (26,27,32). They also
evaluated their analytical schemes using simulated data
sets and showed good performance. They treated SPC-
based FRET trajectories and gave quite large parameters
DE R ~0.2 or even ~0.4, and small dispersion, down to
~0.02. The required number of photons per bin to keep
dispersion under 0.1 or 0.02 at E ¼ 0.5, was ~24 or >600,
respectively (44). In addition, they simulated the photon
counts or the FRET value for every bin, which can avoid
the generation of artifactual intermediate states mentioned
above, whereas the TS signals were converted into SPC
signals in our simulation. Finally, they successfully
analyzed trajectories composed of states having lifetimes
of at least tens of bins, which includes thousands of photons.
In summary, our VB-HMM-TS/PC-FRET methods have
accuracy and time resolution at least comparable to theirs.

We considered two other factors that may affect the
quality of the analyses. The first was the total signal length
T, which was fixed to 10 s in the simulations described
above. Because the number of observed transitions is deter-
mined by T, analyses may lack reliability with shorter T. To
verify dependence on T, we conducted another set of simu-
lations, as described in Section S2.1.2 in the Supporting
Material. The results indicate, as shown in Fig. S8 and
Fig. S9, that the trajectory must be long enough so that every
state appears at least seven times in average under our simu-
lation conditions. The second factor considered was noise.
Photon-counting signals generally contain intrinsic dark
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counts and background counts, both of which are indistin-
guishable from the signal photon counts and cause difficulty
in resolving states by lowering signal contrast. A detailed
discussion on noise is provided in the Section S2.1.3 in
the Supporting Material. The results of another set of
simulations, shown in Fig. S10 and Fig. S11, indicate that
analysis was barely affected at the noise levels in our exper-
imental condition, which was typically <5% of signals.

The VB-HMM analyses developed were applied to exper-
imental data obtained from smFRET measurement of spon-
taneous branch migration of HJ DNA. VB-HMM-TS-FRET
was successfully applied and NoS estimated to be three,
which was consistent with the NoS that the HJ sequence
is designed to exhibit, except for the obvious blinking states
detected in some cases. Transitions between the states can
be examined in detail from the reproduced FRET trajecto-
ries. Transitions between states 1 and 3, which correspond
to a 2-bp migration hop, can be seen as often as transitions
to state 2, which may be a 1-bp migration, whereas transi-
tions from state 2 are always expected to be a 1-bp hop.
This means that a 2-bp hop can occur frequently, as indi-
cated in a previous report (42).
CONCLUSION

We have shown that VB-HMM-TS-FRET is a robust and
accurate method to analyze smFRET trajectories, as long
as a sufficient number of signal photons are supplied. Our
results clearly suggest that dual-channel detection is prefer-
able for smFRET experiments to the donor-only detection
configuration. We compared TS- and SPC-based analyses
and VB-HMM-PC-FRET also showed good performance
when the bin size was appropriate. However, we conclude
that VB-HMM-TS-FRET is preferable because of the
following three points:

1. There is no necessity to decide the size of time bins.
2. The quality of analysis is equivalent to the best results of

VB-HMM-PC-FRET under optimal conditions.
3. Estimation of the parameter l is almost perfectly accurate.

The time resolution of TS-based analysis actually
depends on the photon rate. The fluorescence emission rates
of common dyes are still far from the limitation of SPC
detectors, whereas the frame rate may comprise another
bottleneck in camera imaging. If photon emission rates are
improved, for example by engineering brighter fluorophores
or suppressing photochemical reactions (45), the time reso-
lution automatically improves.

One of the advantages of the VB-HMM approach is flex-
ibility. That is, by applying a generic derivation procedure, it
is relatively easy to change or expand the model in question.
For example, introduction of simultaneous multiparameter
measurements, such as fluorescence spectrum, fluorescence
lifetime, polarization, and so on, into single-molecule exper-
iments has been proposed (10,46–48). If the enriched infor-
mation does not affect the transition probability distribution,
we simply have to modify the emission probability distribu-
tion to a multivariate. For example, we added a term of
likelihood for photon color to that on the time interval
(see Eq. S39 in the Supporting Material) or photon counts
(see Eq. S53 in the Supporting Material) to treat FRET
information. Statistics that are based on enriched informa-
tion will improve the accuracy of inferences and finally
the time resolution of measurements.
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