Mechanistic characterization of the 5'-triphosphate-
dependent activation of PKR: Lack of 5’-end nucleobase
specificity, evidence for a distinct triphosphate binding
site, and a critical role for the dsRBD

REBECCA TORONEY,'® CHELSEA M. HULL, JOSHUA E. SOKOLOSKI,? and PHILIP C. BEVILACQUA?
Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

ABSTRACT

The protein kinase PKR is activated by RNA to phosphorylate elF-2a, inhibiting translation initiation. Long dsRNA activates PKR
via interactions with the dsRNA-binding domain (dsRBD). Weakly structured RNA also activates PKR and does so in a
5’-triphosphate (ppp)-dependent fashion, however relatively little is known about this pathway. We used a mutant T7 RNA
polymerase to incorporate all four triphosphate-containing nucleotides into the first position of a largely single-stranded RNA
and found absence of selectivity, in that all four transcripts activate PKR. Recognition of 5’'-triphosphate, but not the nucleobase
at the 5’-most position, makes this RNA-mediated innate immune response sensitive to a broad array of viruses. PKR was neither
activated in the presence of y-GTP nor recognized NTPs other than ATP in activation competition and ITC binding assays. This
indicates that the binding site for ATP is selective, which contrasts with the site for the 5’ end of ppp-ssRNA. Activation
experiments reveal that short dsRNAs compete with 5'-triphosphate RNAs and heparin for activation, and likewise gel-shift
assays reveal that activating 5'-triphosphate RNAs and heparin compete with short dsRNAs for binding to PKR’s dsRBD. The
dsRBD thus plays a critical role in the activation of PKR by ppp-ssRNA and even heparin. At the same time, cross-linking
experiments indicate that ppp-ssRNA interacts with PKR outside of the dsRBD as well. Overall, 5'-triphosphate-containing,
weakly structured RNAs activate PKR via interactions with both the dsRBD and a distinct triphosphate binding site that lacks
5’-nucleobase specificity, allowing the innate immune response to provide broad-spectrum protection from pathogens.
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INTRODUCTION (PAMPs) that distinguish certain RNAs as non-self, such as
long double-stranded stretches and absence of internal nucle-
oside modifications (Nallagatla and Bevilacqua 2008; Anderson
et al. 2010). The 5'-triphosphate (ppp) has been identified
as a PAMP for both RIG-I (Hornung et al. 2006; Pichlmair
et al. 2006) and PKR (Nallagatla et al. 2007). The structural
determinants of this activation are different for both
proteins: RIG-I recognizes the 5’-triphosphate of short
blunt-end dsRNA (Schlee et al. 2009), while PKR recog-

nizes the 5'-triphosphate of primarily ssRNA with short

Host recognition of molecular patterns in RNA serves as
an integral component of the innate immune response in
humans. A number of RNA sensors have been identified as
part of this response, including Toll-like receptors (TLRs),
retinoic acid-inducible gene 1 (RIG-I), and the protein
kinase PKR (Roy and Mocarski 2007). These sensors re-
spond to specific pathogen-associated molecular patterns
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stem—loops (Nallagatla et al. 2007). Because cellular RNA
is typically capped by 7-methylguanosine at its 5’ end, the
5’-triphosphate serves as the molecular pattern to identify
an RNA as potentially pathogenic.

PKR is typically activated by long stretches of dsRNA
that accumulate as intermediates of viral transcription and
replication, which allows PKR to phosphorylate its sub-
strate, elF2a, thereby disrupting GTP-GDP exchange and

RNA (2012), 18:1862—-1874. Published by Cold Spring Harbor Laboratory Press. Copyright © 2012 RNA Society.



Activation of PKR by 5'-triphosphate RNA

ultimately inhibiting translation initiation (Garcia et al.
2006). PKR activation, or autophosphorylation, is medi-
ated by the two tandem N-terminal dsRNA-binding motifs
(dsRBMs) that comprise PKR’s dsRBD (Fig. 1A; Green and
Mathews 1992). PKR autophosphorylation requires bind-
ing of two PKR monomers to dsRNAs of at least 33 bp,
which results in dimerization of the C-terminal kinase do-
mains and subsequent phosphorylation at Thr446 (Manche
et al. 1992; Bevilacqua and Cech 1996; Lemaire et al. 2008).
Given the requirement of 33 bp for activation of PKR by
dsRNA, activation by ppp-ssRNA with stem—loops as short
as 5 bp is surprising and suggests a distinct mechanism of
activation.

We previously identified and characterized the primary
RNA structural requirements for PKR activation by ppp-
ssRNA in vitro and in vivo and found that all three
phosphates in the triphosphate moiety are required for
activation, because ssRNA with 5’-end signatures of pp and
p did not activate PKR (Nallagatla et al. 2007). Moreover,
we showed that dsRNA constructs have no requirement for
this 5'-triphosphate for PKR activation, which is unlike
RIG-I. Additionally, we demonstrated that PKR activation
by ppp-ssRNA requires ~47 nt and is optimal when the
short stem—loops are placed near the middle of the RNA.
The mechanistic nature of the above RNA structural re-
quirements for ppp-ssRNA-mediated PKR activation has
remained unclear, however.
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FIGURE 1. Protein and RNA constructs used in this study. (A)
Schematic of PKR primary sequence. The N-terminal dsRNA binding
domain (dsRBD, also referred to as P20), composed of two tandem
dsRNA-binding motifs (dsSRBM 1 and 2), and the catalytic C-terminal
kinase domain are indicated. The positions of point mutations used in
this study are indicated. The double-mutant PKR (dmPKR) contains
both K60A and K150A mutations, and the K296R mutation in the
kinase domain renders PKR catalytically inactive. (B) Experimentally
determined secondary structure of ssRNA-47 (Nallagatla et al. 2007).
The starting nucleotide is indicated in boldface; G is shown, which is
typical of transcripts made from WT T7 polymerase, but RNAs were
also transcribed containing pppA, pppC, and pppU using mutant T7
polymerase. (C) Sequence of ssRNA-20. Secondary structure prediction
via free energy minimization (mFold) indicates that this RNA is
essentially completely unstructured. (D) Experimentally determined
secondary structure of ss-dsRNA (9,11) (Zheng and Bevilacqua 2004).

One parsimonious model states that the 5'-triphosphate
of ssRNA uses the known catalytic ATP-binding site. This
model assumes that there is only one triphosphate-binding
site within PKR, which would then serve two functions.
Given the dependence of PKR activation on protein di-
merization for both dsRNA and heparin activators (Lemaire
et al. 2008; Anderson et al. 2011), these functions would be
RNA 5’-triphosphate recognition in one protomer and ATP
binding for catalysis in the other. Supporting this economical
model, inspection of the crystal structure of the PKR kinase
domain with the ATP analog AMP-PNP bound in the catalytic
cleft reveals steric accessibility for extension of an RNA chain
from the 3'-hydroxyl of AMP-PNP (Dar et al. 2005; Toroney
2010). A second model assumes that two functionally distinct
triphosphate-binding sites reside within PKR.

In the present study, we seek to provide insight into the
mechanism of 5'-triphosphate-dependent activation of PKR.
Our study supports the second model, with distinct tri-
phosphate-binding sites, wherein the catalytic ATP-binding
site has high specificity and binding affinity, while the
5’-triphosphate-binding site has lower specificity and
affinity. We see that ppp-ssRNA interacts with regions of
PKR outside of the dsRBD, but that this RNA and also
heparin require PKR’s dsRBD for strong activation. These
findings suggest that the dsRBD aids in recognition of
diverse PKR activators and reinforce the importance of the
dsRBD as a universal target for anti-viral therapeutics that
function by up-regulating PKR.

RESULTS

In this study, the designation “ssRNA” refers to an RNA that is
comprised of one strand; i.e., it does not contain a comple-
mentary strand. A ssSRNA may contain some secondary
structure and is numbered according to length in nucleo-
tides (see Fig. 1B,C). Similarly, “dsRNA” refers to RNA
composed of two strands and is numbered according to length
in base pairs. In one specific instance, “ss-dsRNA (9,11)” refers
to single-stranded RNA with a helical stem and unstructured
5'- and 3’-end tails of 9 and 11 nt, respectively (Fig. 1D).

Recognition of 5’-triphosphate-containing RNA lacks
specificity for the 5'-nucleobase

Previously, we established that PKR activation by 5'-
triphosphate-dependent ssRNAs has high selectivity for
the triphosphate moiety (Nallagatla et al. 2007). For exam-
ple, we showed that transcripts beginning with 5'-OH and
7-methyl-guanosine abrogate PKR activation, and tran-
scripts beginning with 5’-p and 5’-pp were also very poor
activators relative to the same RNA beginning with 5'-ppp.
Specificity of PKR activation for the identity of the base at
position 1 of the transcript has not been explored, however,
with all studies to date involving RNAs that begin with
pppG. Although RNAs transcribed in vitro by T7 polymerase
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typically require G in the first position for transcription
initiation (Milligan and Uhlenbeck 1989), bacterial and viral
RNAs are initiated by G or A, and even occasionally by C
(Bieger and Nierlich 1989; Luo et al. 2000; Cai et al. 2004).
Base specificity of PKR activation has implications for both
specificity regarding the structural nature of the triphosphate-
binding site in PKR and for the functional permissiveness of
PKR activation by non-self ppp-RNAs in innate immunity.
We used a mutant T7 polymerase containing a P266L
change, which reduces abortive cycling during transcription
owing to decreased affinity of the promoter binding site
(Guillerez et al. 2005). This variant should be more tolerant
to transcripts that start with nucleotides other than pppG,
typically required by wild-type T7 polymerase (Milligan and
Uhlenbeck 1989). We transcribed four versions of ssRNA-47
(Fig. 2A), which we have previously characterized as a strong

5’-triphosphate-dependent activator of PKR (Nallagatla et al.
2007), with pppG-, pppA-, pppC-, and pppU-starting nu-
cleotides. We generated linearized plasmid templates for
each of the four starting nucleotides and, in an effort to
verify insertion of the correct starting nucleotide, transcribed
each RNA in the presence of [y-*PJATP or [y-"*P]GTP
(Fig. 2A). Because the radiolabel is located on the
v-phosphate, a band should only be visible when the labeled
nucleotide is inserted at the first position. We observed
preferential incorporation of [y->*P]ATP and [y->*P]GTP at
position 1 where expected (Fig. 2A, lanes 2,5), and limited
misincorporation of these nucleotides in transcripts starting
with the other three nucleotides.

These RNAs were then tested for activation of PKR. We
observed PKR activation of similarly high potency for
ssRNA-47 with all four 5'-NTPs (Figs. 2B,C). For example,
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FIGURE 2. All ssRNA-47 5'-triphosphate-starting nucleotides activate PKR. (A) Verification
of starting nucleotide identity. RNA was transcribed from DNA templates coding for starting
the transcript with pppG, pppA, pppC, and pppU, in the presence of [y-">P]JATP or
[y->*P]GTP. The expected starting RNA nucleotide based on template (nt. 1: pppX) is
indicated. Percent incorporation was calculated by normalizing the counts at the indicated
mobility “ssRNA-47” to the counts from the pppA lane for [y->*P]ATP incorporation, or the
pppG lane for [y-**P]GTP incorporation. 7 M urea gel is shown. (B) Activation of PKR by
ssRNA-47 with pppG, pppA, pppU, and pppC. RNA concentrations were 0.31, 0.63, 1.3, 2.5,
5.0, and 10 wM for pppG- and pppA-ssRNA-47; 0.15, 0.31, 0.63, 1.3, 2.5, 5.0, and 10 uM for
pppU-ssRNA-47; and 0.15, 0.31, 0.63, 1.3, 2.5, and 5.0 pM for pppC-ssRNA-47. Phosphor-
ylation activities are provided under the gels and were normalized to the dsSRNA-79 lane in the
top gel. (C) Graphical representation of phosphorylation activities from panel B as a function
of RNA concentration. (D) Activation of PKR by A-ssRNA-47 and G-ssRNA-47 are both
dependent on a 5’-triphosphate. RNAs starting with 5'-triphosphate were generated by in vitro
T7 transcription, while RNAs starting with 5-OH-G and 5'-OH-A were chemically
synthesized. Phosphorylation activities are provided under the gel and were normalized to
the dsRNA-79 lane. For both panels B and D, 10% SDS-PAGE gels are shown, with the
position of phosphorylated PKR (p-PKR) indicated.
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pppG-ssRNA-47 activated maximally
(88% the level of activation by the long
79-bp activator dsRNA-79) at 5 pM,
with a bell-shaped dependence on RNA
concentration, as observed previously
for this RNA (Nallagatla et al. 2007).
Maximal activation intensities for RNAs
starting with A and U were similar as
for G, but their bell-shaped activation
profiles were shifted to even lower RNA
concentrations (~1.25 pM RNA), im-
plying higher affinity (Fig. 2C). Potent
activation of PKR by pppA-ssRNA-47
and pppG-ssRNA-47 is consistent with
the known prevalence of viral tran-
scripts containing 5'-G or 5'-A (see
Discussion).

We also used synthetic versions of
5'-A-ssRNA-47 and 5’'-G-ssRNA-47,
which contain bona fide 5'-OHs, to test
whether ssSRNA-47 starting with a nucle-
otide other than G still activates PKR
in a 5'-triphosphate-dependent fashion.
As shown in Figure 2D, both 5’-A-ssRNA-
47 and 5'-G-ssRNA-47 have similar 41-
and 54-fold triphosphate dependence
for activation, with the value for 5'-G-
ssRNA-47 in agreement with an earlier
study (Nallagatla et al. 2007). Thus, the
specificity of PKR activation for 5'-
triphosphate does not depend on 5'-
nucleobase identity.

Activation by pppC-ssRNA-47 was
within at least approximately two-thirds
the maximum value of the other three
RNAs, although its profile was shifted to
higher RNA concentration. In summary,
potent activation of PKR by ppp-ssRNA
containing different bases at the 5’-position
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suggests that the binding site for the 5’-triphosphate of
ssRNA is permissive and that PKR-mediated contacts are
primarily to the triphosphate moiety of the 5'-nucleotide
rather than the nucleobase.

Recognition of ATP has specificity for the nucleobase:
Activation competition experiments

The parsimonious model for the 5'-triphosphate-dependent
activation of PKR is that the 5'-triphosphate binds in the
ATP active site. This model is supported by steric accessi-
bility at the active site for chain extension off the 3'-hydroxyl
of ATP and by the observation that the major contacts
between ATP and amino acids at the active site that

activation by dsRNA-79, which does not require a 5'-
triphosphate (Nallagatla et al. 2007), and by pppG-ssRNA-
47 were challenged with each of the four NTPs. As shown
in Figure 3, B and C, for each RNA activator, only ATP was
able to compete effectively with PKR activation (up to
~10-fold inhibition). (Note that these plots, which are in
the background of 100 wM ATP, are consistent with the Ky
value for ATP of ~19 pM obtained by ITC; see below.)
Because dsRNA-79 has no triphosphate dependence for
activation, the observed inhibition is reflective of unlabeled
ATP competing out radiolabeled ATP from the active
site. Thus, the catalytic site is specific for ATP not only
for chemistry, but also for binding. Given the apparent
tolerance of PKR for different activating 5'-triphosphate

are necessary to position the phos-
phates for catalysis occur to the ribose
sugar and triphosphate rather than the
base (Johnson et al. 1996; Niefind et al.
1999; Dar et al. 2005; Toroney 2010).
Moreover, potent activation by pppA-
ssRNA-47 would seem to suggest po-
tential binding of this RNA into the
ATP-binding site.

The results presented here on PKR
activation by ss-RNA-47s starting with
any of the four triphosphate nucleo-
tides, and the reported 5'-triphosphate-
dependent activation of PKR by several
different ssRNAs with G as the starting
nucleotide (Nallagatla et al. 2007) sug-
gest that if the ATP active site also serves
as the 5'-triphosphate-binding site for
ssRNA, then the active site NTP may
also be permissive to GTP. To test this
notion, we performed a PKR activation
assay in which all of the ATP (unlabeled
and [y-"*P]ATP) was replaced with GTP
and [y-P]GTP. In contrast to the
parsimonious model, we observed com-
plete abrogation of activation in the
presence of GTP only (Fig. 3A, first
two sets of lanes), suggesting that the
ATP-binding site has high nucleotide
specificity for chemistry. Furthermore, we
showed that a radiolabeled y-phosphate
of a 5'-triphosphate activator is not
transferred to PKR (SR Nallagatla and
PC Bevilacqua, unpubl.), suggesting that
the 5'-triphosphate end of ssRNA can-
not fill the ATP-binding site. It thus ap-
pears that PKR has separate triphosphate-
binding sites—one with base specificity
and one without.

To probe these two models further,
activation assays were performed in which
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FIGURE 3. The ATP binding site has high specificity: activation assays. (A) Only ATP supports
PKR phosphorylation. Activation of PKR by dsRNA-79 using [y-"*P]GTP or [y->P]ATP as the
phosphate source. RNA concentrations are provided. In the “y-GTP” lanes, activation assays were
performed as per standard assay conditions (see Materials and Methods) with the following
exceptions: 100 WM GTP was used instead of ATP, and 0.1 or 1.5 wCi/pL [y->*P]GTP was
added instead of 1.5 wCi/pL [y->*P]JATP. In the “y-ATP” lanes, standard assay conditions
were used. (B) NTP-competition assays reveal that only free ATP competes with ATP for
activation. PKR activation by dsRNA-79 or pppG-ssRNA-47 was assayed in the presence of
increasing concentrations of unlabeled ATP, GTP, CTP, and UTP. The concentrations of
dsRNA-79 and pppG-ssRNA-47 were 0.1 and 2.5 wM, respectively. The concentrations of each
NTP were 0.1, 0.5, 1, and 2 mM. (All of these are added concentrations and are in the
background of 100 wM ATP.) The “no-RNA” and “no-competitor-NTP” lanes are included as
negative and positive controls, respectively. Phosphorylation activities were normalized to the
“no-competitor-NTP” lane in the middle gel. For both A and B, a 10% SDS-PAGE gel is
shown, with the position of phosphorylated PKR (p-PKR) indicated. (C) Graphical
representation of phosphorylation activities from panel B.
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groups on RNA (Fig. 2B), the lack of competition for NTPs
other than ATP provides further evidence that PKR
contains two separate triphosphate-binding sites.

A similar specificity of strong inhibition by ATP but not
the other NTPs was seen for activation by ssRNA-47 (Fig.
3B,C). This observation suggests that the same, specific ATP-
binding site is used for this activator. We do note slight
(~40%) inhibition of activation by GTP and CTP at their
highest concentrations of 2 mM; this inhibition did not
occur in the presence of dsRNA-79 (Fig. 3C). Weak in-
hibition by GTP and CTP in the presence of pppG-ssRNA-
47 but not dsRNA-79 suggests that these other NTPs can
compete very weakly for pppG-ssRNA-47’s triphosphate-
binding site and that ssSRNA-47 binds rather weakly to PKR.
Failure of GTP, CTP, and UTP to potently inhibit activation
by pppG-ssRNA-47 suggests that 5'-triphosphate binding at
this putative second triphosphate-binding site is strength-
ened relative to free NTPs, probably through tethering of the
triphosphate to PKR via the remainder of the RNA. In-
teractions of the remainder of the RNA with PKR are
explored below in more depth.

Recognition of ATP has specificity for the nucleobase:
ITC experiments

In this section, we further explore the specificity of ATP
recognition by turning from activation competition exper-
iments to isothermal titration calorimetry (ITC) experi-
ments. To investigate further the nature of triphosphate
binding, ITC was used to determine the thermodynamics of
NTP binding to PKR. To prevent coupling of binding with
enzymatic activity, a catalytically inactive mutant of PKR,
K296R, was used (Fig. 1A). Binding was to K296R in the
absence of RNA, with injections of each of the four
individual NTPs in 18-fold excess over protein. As shown
in Figure 4A, the titration curve for GTP revealed a very
weak interaction that was barely noticeable in comparison
to titration against buffer, and UTP and CTP titration
curves were essentially equivalent to the buffer titration. In
contrast, titration of ATP revealed a strongly exothermic
interaction.

The ATP titration curve presented in Figure 4B using
initial concentrations of 40 uM K296R and 720 pM ATP
was best fit to a two-site binding model. (Fitting these data
to a one-site model [not shown] in which all of the param-
eters floated gave n = 0.55 and a poor fit to injections where
[ATP]/[K296R] = 1.5, while fitting to a one-site model with
n forced to 1, gave a poor fit to all injections.) The first site
had a K4 of 19 £ 1.8 pM and n = 1.32 £ 0.30, suggesting
a 1:1 stoichiometry of K296R to ATP (Fig. 4B), as expected
based on the crystal structure of PKR (Dar et al. 2005). This
Ky is similar to that seen for ATP binding to other kinases
such as PKA and MAPK (Armstrong et al. 1979; Setyawan
et al. 1999), and in agreement with a value from Cole and
coworkers of 20 * 2 puM, measured for ATP binding to
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K296R using competition fluorescence anisotropy experi-
ments (Lemaire et al. 2006). The second site was tighter in
affinity (Kg = 3.9 £ 1.4 pM) but with a small binding
stoichiometry of n = 0.11 * 0.09 (Fig. 4B). Given the high
affinity at both sites as determined by ITC and the lack of
binding with the other three NTPs, it seems unlikely that one
of these two sites is representative of the proposed non-
specific triphosphate-binding site, which the preceding data
suggest is much weaker binding than the catalytic site (Fig.
3C, bottom panel). One possible explanation for the two-site
fit involves the different conformers of Mg>"-coordinated
ATP, namely, the “open” conformer, in which the metal ion
only coordinates the phosphate, and the “macrochelated”
conformer, in which the metal ion is coordinated to the
phosphate and the base (Sigel 1987). Interestingly, the
macrochelated form represents ~10% of the ATP popula-
tion at physiological salt conditions and could thus represent
the “site 2” observed by ITC titration (Fig. 4B; Sigel 1987).
(Specificity of the ATP-binding site was also probed by a
series of fluorescence competition and pulse-chase stopped-
flow experiments involving the fluorophore mant-ATP and
the competitors ATP, GTP, and UTP, and confirmed
specificity for ATP [Toroney 2010].)

In sum, the results from PKR competition assays and
ITC suggest that two triphosphate-binding sites exist on
PKR and that they are quite different: a catalytic tri-
phosphate binding site that binds ATP with both high
specificity and high affinity, and a 5'-nucleotide triphos-
phate-binding site that is non-specific to 5'-nucleobase
identity and low affinity.

Binding of 5’-triphosphate RNA and heparin
requires the dsRBD

We previously demonstrated that the magnitude of PKR
activation by ppp-ssRNA is dependent on the presence and
positioning of a short ~5-bp stem-loop, thus implicating
a role for the dsRBD in PKR activation (Nallagatla et al.
2007). The optimal placement of this stem—loop was ~20—
45 nt from the 5’ end of ppp-ssRNA. Additionally, ppp-ssRNA
activators displayed certain similarities to dsRNA activators,
such as a requirement for length (~47 nt of single-stranded
RNA vs. ~33 bp of double-stranded RNA) and a bell-shaped
dependence on RNA concentration (Nallagatla et al. 2007).
Despite these similarities, distinct differences in the 5'-end
requirements of ppp-ssRNA and dsRNA exist—requiring
and not requiring a 5'-triphosphate, respectively—suggesting
potential mechanistic disparities between these two classes of
activators. Indeed, ssSRNA displays coarse structural similarity
to a non-RNA activator of PKR, the polyanion heparin,
which has been shown to bind basic residues near the active
site in the kinase domain (Fasciano et al. 2005a). To elucidate
the mechanism of activation of PKR by ppp-ssRNA, we
sought to elucidate the role, if any, of the dsRBD in such
activation.
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FIGURE 4. The ATP binding site has high affinity: ITC experiments. ITC titration curves for NTP binding to K296R. (A) GTP (green trace), UTP
(blue trace), and CTP (orange trace) binding to K296R. Titration of each NTP into buffer is included (black traces). NTP traces are offset from
buffer traces by ~0.1 pcal/sec in raw data (upper panels) for clarity. Legends are provided in plots. (B) ATP binding to K296R (red trace).
Titration of ATP into buffer is included (black trace). ATP titration curve is fitted to a two-site binding model (see Materials and Methods), and
thermodynamic parameters are provided to the right of the plot. The major contribution is with site 1 (n = 1.32 £ 0.09) and a K4 of 19 = 1.8 pM.
Note that uncertainty in AH is due to the lack of a good lower baseline, which is common with micromolar K4 experiments. However, this does
not affect the Ky value because that is mainly based on the slope of the transition region.

We first performed PKR competition assays, in which  effectively competed with both RNA activators (sixfold
three activators—canonical dsRNA (dsRNA-79), pppG-  inhibition for dsRNA-79 and 26-fold for ppp-ssRNA-47),
ssRNA-47, and heparin—were competed by either short,  while ppp-ssRNA-20 had no effect on dsRNA-mediated
20-bp dsRNA “dsRNA-20" or short unstructured 20-nt  activation and only a small ~20% effect on ppp-ssRNA-47-
ssRNA with a 5'-triphosphate “ppp-ssRNA-20" (Figs. 1B, = mediated activation. For dsRNA-79, these results are
5). Both competitor RNAs have been demonstrated to bind  consistent with the well-established model of long dsRNA
PKR but not activate (Bevilacqua and Cech 1996; Nallagatla  interacting with the dsRBD, which drives binding of
et al. 2007). As shown in Figure 5, A and B, dsRNA-20 multiple PKR molecules (Fig. 5A). Short dsRNA competes
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FIGURE 5. PKR activation by ppp-ssRNA and heparin is inhibited by dsRNA, but not by short
ppp-ssRNA. RNA-competition assays. (A) Competition for dsSRNA-79-mediated PKR activation
by short dsRNA and ssRNA. PKR activation by dsRNA-79 was assayed in the presence of
increasing concentrations dsRNA-20 and ppp-ssRNA-20. The concentration of dsRNA-79 was
held constant at 0.1 wM, and concentrations of dsSRNA-20 and ppp-ssRNA-20 were 0.1, 1, 2.5, and
5 wM. (B) Competition for ppp-ssRNA-47-mediated PKR activation by short dsRNA and ssRNA.
PKR activation was assayed as in A, with the concentration of ssRNA-47 held constant at 2.5 M.
(C) Competition for heparin-mediated PKR activation by short dsRNA and ssRNA. PKR
activation was assayed as in A, with the concentration of heparin (average molecular weight of
6 kDa) held constant at 75 pg/mL, and concentrations of competitor RNAs at 0.1, 1, 2.5, 5, and 10
WM. For all panels, 10% SDS-PAGE gels are shown, with the position of phosphorylated PKR (p-
PKR) indicated. The “no-RNA” and “no-competitor” lanes are included as negative and positive
controls, respectively. Activation in the absence of added RNA was negligible. Phosphorylation
activities are provided under the gels and were normalized to the 0.1 uM competitor lane for each
set of competitors; activities were normalized in this manner because in some cases the presence of
competitor at low concentrations appeared to stimulate the reaction.

In an effort to provide further insight
into the role of the dsRBD, we consid-
ered the mechanism of PKR activation
by the known activator heparin, a sul-
fated glycosaminoglycan (Hovanessian
and Galabru 1987). Because ssRNA and
heparin are both non-dsRNA polyanion
activators, we thought that they might
have similar mechanisms of activation.
Heparin has been shown to bind clus-
ters of basic amino acids at the entrance
to the kinase active site that are non-
overlapping with the dsRBD, suggesting
a primarily electrostatic as opposed to
structure-based mechanism of activa-
tion (Fasciano et al. 2005a). Further-
more, it has been shown that heparin
can activate a truncated version of PKR
that does not contain the dsRBD, al-
though the extent of activation was
strongly diminished relative to full-
length PKR (Patel et al. 1994; George
et al. 1996; Fasciano et al. 2005a). We
thus anticipated that ppp-ssRNA acti-
vators might compete for activation by
heparin while short dsRNA would not
compete; indeed, such a result would
suggest that the 5'-triphosphate-bind-
ing site overlaps with the cluster of basic
residues that serve as the binding site
for heparin.

We thus performed competition as-
says in which PKR activation by a con-
stant concentration of heparin (average
MW 6 kDa) was challenged with in-
creasing concentrations of dsSRNA-20 or
ppp-ssRNA-20. In contrast to the above
expectations, ppp-ssRNA-20 was unable
to compete with heparin for activation,
while dsRNA-20 was a potent inhibitor
of heparin-mediated activation of PKR

with this interaction, hence leading to inhibition, while
ssRNA either does not bind to the same part of PKR as
dsRNA or cannot effectively compete with longer dsRNA.

Competition of ppp-ssRNA-47 by dsRNA-20, on the
other hand, was surprising. In fact, dsSRNA-20 competes
more effectively with ssRNA activator than dsRNA activa-
tor, sixfold and 26-fold, respectively. This finding suggests
that ppp-ssRNA-47 makes critical contacts with the dsRBD,
most likely through its short stem—loop. The fact that ppp-
ssRNA-20 is at best a poor competitor for ppp-ssRNA-47,
despite the fact it contains a 5’-triphosphate, may be due to
absence of the short stem—loop in ssRNA-20. This notion is
also consistent with the above inability of NTPs to compete
for ppp-ssRNA-47.
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(Fig. 5C). Lack of inhibition by ppp-ssRNA-20 indicates
that either the 5'-triphosphate does not share a binding site
with heparin, or that heparin binds more tightly than this
particular RNA. Even more surprising, heparin-mediated
activation of PKR is strongly inhibited by dsRNA-20 (up to
7.7-fold inhibition). This observation suggests an impor-
tant role for the dsRBD in activation of PKR by both
heparin and ppp-ssRNA.

The 5’'-triphosphate-binding site is located
outside the dsRDB

Results so far indicate that 5’-triphosphate-containing
ssRNAs do not interact with the ATP-binding site, but do
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interact, at least in part, with the dsRBD. Our next step in
defining the mechanism of 5'-triphosphate-dependent PKR
activation was to investigate where the ppp-ssRNA physi-
cally associates with PKR. We transcribed ppp-ssRNA-47
(Fig. 1B) in which all uridines were replaced with
4-thiouridine, termed “ppp-4thioU-ssRNA-47.” This RNA
was radiolabeled at the 5’ end and cross-linked to PKR via
exposure to 365 nm light (see Materials and Methods).
Several different forms of PKR were investigated: full-
length (wtPKR), P20 (dsRBD only), and a mutant PKR
with two point mutations in the dsSRBD, K60A and K150A
(dmPKR) (Fig. 1A). It has been shown previously that these
two changes abrogate binding to dsRNA (Green and
Mathews 1992; Green et al. 1995; Heinicke et al. 2009).

As shown in Figure 6 and Supplemental Figure 1, ppp-
4thioU-ssRNA-47 cross-links to wtPKR in a protein-,
4-thioU-, and UV-dependent fashion, confirming interaction
of this activator with PKR. Surprisingly, there is at most
very weak cross-linking between 4thioU-ssRNA-47 and
P20. To confirm that the cross-links between this RNA
and PKR were outside of the dsRBD, we conducted cross-
linking on dmPKR. As shown in Figure 6, we observe
strong, UV-dependent interaction of ppp-4thioU-ssRNA-
47 with dmPKR, which supports the notion that ppp-
ssRNA-47 interacts with a region of PKR outside the
dsRBD. Given the above support for interaction of
ssRNA-47 with the dsRBD, poor cross-linking to the
dsRBD is most likely because the quantum vyield of
cross-links between PKR and 4thioU-ssRNA-47 is low:
There are several AU base pairs in the short stem region of
ssRNA-47, which are likely broken due the thio group on
the Watson—Crick face.

To further evaluate the role of the dsRBD in interacting
with various PKR activators, we performed EMSA compe-
titions, with P20 pre-bound to radiolabeled 20 bp dsRNA

(Fig. 7). These binding-competition experiments comple-
ment the activation-competition experiments described
above (Fig. 5), but also extend them because it is possible
to use actual activators as competitors in the EMSAs. As
expected based on previous studies characterizing interac-
tion with short dsRNAs of various length (Bevilacqua
and Cech 1996), P20 binds to trace amounts of 5'->2P-
radiolabeled dsRNA-20 in two distinct complexes (Fig. 7,
lane 3). A long classical dsRNA activator, dsRNA-40,
competes completely for binding to both complexes, as
revealed by loss of complexes 1 and 2, and by gain in free
p*dsRNA-20 (Fig. 7, lanes 4,5). Moreover, in agreement
with our activation assays (Fig. 5), we find that ppp- or OH-
ssRNA-20 is unable to displace dsRNA-20 from P20, as
revealed by absence of gain of free p*dsRNA-20. We do
note, however, that ppp- or OH-ssRNA-20 appears to induce
conversion of complex 1 into complex 2, indicating some
type of rearrangement (Fig. 7, cf. lane 3, where complex 2
represents only ~10% of bound product, to lanes 6-9, where
complex 2 represents ~50%—60% of products). This suggests
that short, purely single-stranded RNA is capable of making
contacts with the dsRBD, albeit contacts non-productive for
activation. This effect is 5'-triphosphate-independent (Fig. 7,
cf. lanes 6,7 to 8,9), further supporting the notion that the 5’'-
triphosphate binding site is not located within the dsRBD.
Next, we find that two different 5'-triphosphate-de-
pendent activators, ssSRNA-47 and ss-dsRNA (9,11), com-
pete with dsRNA-20 for binding to both P20 complexes.
This is revealed by loss of complex 1 and especially complex
2, and by gain in free p*dsRNA-20 (Fig. 7, lanes 10-13).
These observations are consistent with the dsRNA-20
competition experiments in Figure 5B, which suggested
that the dsRBD plays a critical role in PKR activation by
ppp-ssRNA. This binding competition, in contrast to the
rearrangement of complexes induced by non-activating
ssRNAs, is in agreement with a role
for the small stem-loops of 5'-triphos-
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FIGURE 6. Photochemical cross-linking reveals interaction of ppp-ssRNA-47 with PKR
regions outside the dsRBD. 4thioU-substituted ppp-ssRNA-47 was incubated with wild-type
PKR, P20, or dmPKR and exposed to 365-nm light for 0, 10, 20, or 30 min and analyzed by 7%
denaturing (7 M urea) PAGE. The positions of free RNA and cross-linked products are
indicated. Protein dependence of cross-linked products was confirmed by the absence of
products upon irradiating 4-thioU-ppp-ssRNA-47 in buffer alone (first three lanes).

9-nt and 11-nt single-stranded tails
(Fig. 1D; Zheng and Bevilacqua 2004;
Nallagatla et al. 2007), competes more
effectively for P20 than ssRNA-47,
which has less double-stranded charac-
ter (Fig. 1) (Fig. 7, compare gain of
~50% free p*dsRNA-20 in lane 11 to
~75% free p*dsRNA-20 in lane 13). It
is worth noting that the effects here are
not simply due to ionic strength, be-
cause ssRNA-20 offers no competition
at its highest concentration, which is
effectively equal to the concentration of

-

poree
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FIGURE 7. Competition for P20 binding by dsRNA, ssRNA, and heparin by EMSAs. A
trace amount of p*dsRNA-20 was incubated with P20 in the presence of various unlabeled
competitors and analyzed by 10% native PAGE. Top strand (TS) dsRNA-20 was 5'->*P-
labeled and annealed to excess unlabeled bottom strand (BS). Formation of annealed
p*dsRNA-20 duplex was confirmed by the microshift of p*TS in the presence of BS (lane
2). A no-competitor mobility shift was detected upon addition of 3 uM P20, with slight
formation of a second complex (lane 3). In the remaining lanes, 3 pM P20 bound to trace
p*dsRNA-20 was challenged with either unlabeled RNA or heparin competitor. Compet-
itor RNA concentrations were 5 and 10 wM, and heparin concentrations were 10, 100,
1000, and 2000 pg/mL. Mobility of p*dsRNA-20, free and bound to P20 complexes, is

indicated.

phosphate in the lower concentration lanes for ssRNA-47
and ss-dsRNA (9,11).

Finally, we observe that heparin can also compete with
dsRNA for binding (Fig. 7, lanes 14-17). This result
corroborates our activation competition assays, wherein
activation by heparin was effectively competed by dsRNA-
20 (Fig. 5C), and further supports a key role of the dsRBD
in activation of PKR by heparin. This interaction with the
dsRBD appears to be dependent on the heparin concen-
tration: At very low heparin concentrations (10 wg/mL),
heparin behaves like short, non-activating ssRNAs, pro-
moting conversion of complex 1 to complex 2 (Fig. 7, lane
14), while at higher concentrations, heparin competes out
dsRNA-20 for P20 binding, resulting in free p*dsRNA-20.
Overall, the EMSA competition studies provide strong
support for a general role of the dsRBD in PKR activation
by both classical dsRNA as well as non-dsRNA activators of
ppp-ssRNA and heparin.

DISCUSSION

Surveillance of foreign RNA by PKR and other components
of the innate immune response is a critical first line of
defense against viral infection. While long stretches of
double-stranded RNA have been recognized as a molecular
signature for PKR activation, recent studies indicate that
PKR can be activated by a multitude of additional RNA
structural elements, including short coaxially stacked helices,
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Pichlmair et al. 2006), suggesting that
the 5'-triphosphate is a widespread sig-
nal for the innate immune system. We
sought to better define the interaction
of PKR and ppp-ssRNA by characterizing
the 5’-triphosphate-binding pocket via
a variety of functional and biophysical
assays.

The simple “one-triphosphate site”
model is one in which the catalytic
binding cleft in the kinase domain serves
as a common site for binding both ATP for catalysis and the
5'-triphosphate of ssRNA for activation. This model is
suggested by the fact that PKR and RIG-I, which also
contains an ATP-binding cleft, are both able to bind
a common RNA ligand despite lacking sequence and
structural homology. An alternative is the “two-triphos-
phate site” model, in which the 5'-triphosphate-binding
site is located either elsewhere in the kinase domain or in
the dsRBD and is separate from the catalytic ATP site. The
data provided herein support the two-triphosphate site
model. There is low specificity for the 5'-nucleobase in 5’'-
ppp-ssRNA-mediated activation of RNA (Fig. 2), but high
specificity for ATP, because neither GTP, CTP, nor UTP
can compete efficiently for ATP in activation (Fig. 3).
Moreover, ATP is the only NTP that gives detectable heat
of binding to PKR (Fig. 4). An early study observed ATP
and GTP competition for photo-affinity labeling of PKR at
a site proposed to represent either the catalytic site or
a secondary allosteric regulatory site (Bischoff and Samuel
1985). The ATP specificity at the catalytic site presented
herein supports the possibility that these investigators may
have probed the secondary triphosphate site. Indeed,
selectivity at the PKR catalytic site for ATP is consistent
with the behavior of most kinases (Shugar 1996; Smith
et al. 2012). This binding specificity likely serves as
a selective pressure to avoid catalysis by GTP, which could
have detrimental consequences for PKR regulation in the cell.
Conversely, lack of nucleobase selectivity for the proposed
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5'-triphosphate site allows for activation of PKR by 5'-
triphosphate RNA activators that start with any of the four
nucleotides. Indeed, bacterial and viral RNAs can begin
with A, C, or G (Bieger and Nierlich 1989; Luo et al. 2000;
Cai et al. 2004), suggesting that lack of specificity at this
nucleobase position allows a broad immune response. In
particular potent activation of PKR by pppA-ssRNA-47
supports recognition of the highly conserved pppA present
in influenza A, B, and C viruses (Moss et al. 1978;
Desselberger et al. 1980), consistent with the 5'-triphos-
phate dependence of PKR activation by influenza B virus
(Dauber et al. 2009).

We have previously shown that 5'-triphosphate-medi-
ated activation of PKR is dependent on the characteristics
of the downstream RNA structure, such as length and
presence and positioning of short stem-loops (Nallagatla
et al. 2007). Activating 5'-triphosphate RNAs interact with
PKR outside the dsRBD (Fig. 6), raising the question of
whether the dsRBD still plays a role in recognition of 5'-
triphosphate activators. Surprisingly, we find that the
dsRBD plays important roles in binding and activation of
PKR by both ppp-ssRNA and heparin (Figs. 5, 7). Despite
extensive structural differences between canonical dsRNA,
5’-ppp-ssRNA, and heparin, all three require interactions
with the dsRBD for optimal activation. Given that PKR
activation has a bell-shaped dependence on concentration
of ppp-ssRNA (Fig. 2) and heparin (Anderson et al. 2011;
data not shown), the dsRBD may drive dimerization of
PKR on ppp-ssRNA and heparin as well, although these
non-dsRNA activators also take advantage of additional
contacts outside the dsRBD. Indeed, a clear mechanistic
basis for the bell-shaped dependence of PKR activation on
heparin concentration has been elusive (Anderson et al.
2011). We are continuing work to define the specific PKR
residues involved in these non-dsRBD-mediated contacts.

It has been demonstrated that PKR recognizes the 5'-
triphosphate of influenza B viral RNA in human cells
(Dauber et al. 2009), and other studies have shown that
PKR mediates the anti-proliferative action of heparin treat-
ment for atherosclerosis (Fasciano et al. 2005b). As such,
defining regions of PKR that contact disparate activators,
such as key regions of PKR’s dsRBD, may facilitate construc-
tion of therapeutic RNAs capable of activating PKR during
viral infection or may provide insight into the mechanism of
heparin therapeutics.

MATERIALS AND METHODS

Sequences of RNA and protein
sSRNA

ssRNA-47: Different versions of ssRNA-47 were prepared, start-
ing with various 5’-end nucleotides, which are indicated in
parentheses.

5'-(pppG; ppPA, pppC, pppU, pppA, OH-G, OH-A)GGCACCAA
CUCAAGUAUACCUUUUAUACAACCGUUCUACACUCAA
CG

ssRNA-20:
5'-GGCACCAACUCAAGUAUACC

dsRNA

Top strands (TS) are provided below; the bottom strand is the
Watson—Crick complement to the top strand. Double-stranded
RNAs were prepared by annealing equimolar concentrations of
the two strands.

dsRNA-79TS (Zheng and Bevilacqua 2004):

5'-GGGUUUUCCCAGUCACGACGUUGUAAAACGACGGCCA
GUGAAUUCGAGCUCGGUACCCGGGGAUCCUCUAGAGU
CGACC

dsRNA-20 (Bevilacqua and Cech 1996):
5'-GGGUUCCCUGGUUUCGGUCU

dsRNA-40 (Heinicke et al. 2010):

5'-GGACCUGUGCGUGAUCCCUGGAGCAUCCUCUGUUAC
GUCC

ss-dsRNA
ss-dsRNA (9,11) (Zheng and Bevilacqua 2004):

5'-GGGAGAGAGGUCACUGACUAAGUUGGUGAAAUCUUGA
UUUAUCAGUGACAAGAAGGAAGG

(Single-stranded tails of 9 and 11 nt are underlined.)

Protein

To generate K60A and K150A point mutations in PKR, which are
known to abrogate dsRNA binding (Green and Mathews 1992;
Green et al. 1995; Heinicke et al. 2009), site-directed mutagensis
(QuikChange, Agilent Tech) was performed on pET28a-wtPKR
using the following primers: K60A, 5'-CCAGAAGGTGAAGGTA
GATCAGCGAAGGAAGC-3' and K150A, 5'-CAGGTTCTACT
GCACAGGAAGCAAAACAATTGG-3’, where the mutated co-
don is in bold. To generate the double mutant (dmPKR), point
mutations were made sequentially, starting with K60A.

RNA preparation

As described previously, dsSRNA-79 was prepared by transcribing the
two strands of pUCI9 separately and later annealing (Zheng and
Bevilacqua 2004). Wild-type (pppG-) ssRNA-47 (first nucleotide is
G) was prepared in vitro by a standard T7 run-off transcription
from a linearized pUC19 plasmid (BstU1 digested) containing a T7
promoter, as previously described (Nallagatla et al. 2007). However,
because WT T7 polymerase very strongly favors RNAs that start
with a G (Milligan and Uhlenbeck 1989), a different strategy had to
be used to get transcripts to begin with the other 5'-triphosphate
nucleotides. The QuikChange site-directed mutagenesis kit was used
to generate plasmids with mutations at the first templating position.
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In an effort to obtain pppA-, pppC, and pppU-ssRNA-47, plasmid
sequences were verified by dideoxy sequencing following maxipreps
and were digested as per the pppG-ssRNA-47 template. For each
RNA, 0.2 pwg/pL linearized plasmid was combined with 40 mM Tris
(pH 8), 25 mM MgCl,, 2 mM DTT, 1 mM spermidine, 3 mM each
NTP, and 1 pM T7 polymerase containing a P266L mutation
(Milligan and Uhlenbeck 1989; Guillerez et al. 2005).

Transcription reactions were incubated for 4 h at 37°C and
quenched by addition of one volume of 95% (v/v) formamide
loading buffer (FLB). RNA was purified by fractionating on a
polyacrylamide denature gel (7 M urea, 1X TBE). The transcript
was identified by UV shadowing, excised from the gel, and eluted
overnight at 4°C in 1X TEN,s,. The RNA was ethanol-precipitated,
resuspended in 1X TE buffer (pH 7.5), and stored at —20°C. RNA
concentration was determined spectrophotometrically.

To verify the identity of the starting nucleotide as pppG-,
pppA-, pppC-, or pppU- in ssRNA-47, these RNAs were also
transcribed in the presence of trace amounts of ['y-32P]ATP or
[y->*P]GTP. Because the radiolabel is on the y-phosphate, a band
should only be observed when the radioactive nucleotide is
incorporated in the first position of the transcript.

RNAs starting with a bona fide 5'-OH (A-ssRNA-47 and
G-ssRNA-47) were chemically synthesized by Dharmacon.

Protein preparation

Full-length PKR, K296R (catalytically inactive mutant), and P20
(dsRBD of PKR) containing N-terminal Hiss tags were purified
from Escherichia coli BL21(DE3) Rosetta cells (Novagen) as
described (Bevilacqua and Cech 1996; Matsui et al. 2001; Zheng
and Bevilacqua 2004). Briefly, cells were lysed by sonication, and
protein was purified by FPLC with a Ni**-NTA column (Invitrogen)
followed by dialysis in a protein storage buffer (PSB) consisting of
10 mM Tris (pH 7.6), 50 mM KCl, 2 mM MgCl,, 10% glycerol, and
7 mM B-mercaptoethanol.

A dsRNA-binding deficient double mutant of PKR (dmPKR)
was also purified in a similar fashion, with the following
modifications to ensure removal of nucleic acids from the
prep. The mutations in dmPKR are K60A in dsRBM1 and
K150A in dsRBM2, which have been shown previously to
interfere with binding of dsRNA even as single mutations
(Green and Mathews 1992; Green et al. 1995; Heinicke et al.
2009). After sonication of cells containing overexpressed
dmPKR, 5% polyethyleneimine (PEI) was added dropwise to
the cleared cell lysate for a final concentration of 0.025% PEI.
The lysate was then spun down at 20,000 rpm (Beckman) for 30
min, and the supernatant was collected. The protein was
ammonium sulfate precipitated by slowly adding solid ammo-
nium sulfate to the supernatant to a final percentage of 60%
(w/v) followed by stirring for 30 min at 4°C. After centrifuging at
11,500 rpm for 30 min, the supernatant was decanted, and the
pellet was redissolved in 50 mM sodium phosphate (pH 8.0), 700
mM NaCl, 5 mM imidizole, 7 mM BME, and 0.1 mM PMSF.
Purification of dmPKR via FPLC and Ni**-NTA then proceeded
as described above.

The P266L mutant T7 polymerase was also prepared from E. coli
ENS0134T BL21 cells (provided by Marc Dreyfus of Laboratoire de
Genetique Moleculair) and purified on a Ni-NTA (Invitrogen)
column, as described previously (He et al. 1997; Guillerez et al. 2005).
Protein concentrations were determined spectrophotometrically.
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PKR activation assays

The ssRNA-47 RNAs containing each of the four starting
nucleotide triphosphates were tested for their ability to activate
PKR autophosphorylation. Activation assays were identical to
those conducted with canonical dsRNA activators. PKR was first
dephosphorylated by treatment with A-PPase (NEB) for 1 h at
30°C, followed by addition of freshly made phosphatase inhibi-
tor, sodium orthovanadate (Matsui et al. 2001). Next, 15 wCi of
['y-32P]ATP (Perkin-Elmer), 0.8 wM dephosphorylated PKR,
and RNA at various concentrations were incubated in 20 mM
HEPES (pH 7.5), 4 mM MgCl,, 50 mM KCl, and 100 uM ATP
(Ambion) for 10 min at 30°C. To determine specificity for the
catalytic ATP-binding site, 15 wCi of [y->*P]GTP and 100 puM
GTP were added instead of [y->*P]ATP and ATP. All reactions
were quenched by addition of SDS loading buffer. Samples were
heated for 5 min at 95°C and loaded on 10% SDS-PAGE gels
(Pierce). After electrophoresis, gels were exposed to a storage
PhosphorImager screen, and labeled band intensities were quan-
tified on a PhosphorImager (Molecular Dynamics). A back-
ground value averaged from different portions of the gel was
subtracted from each band before normalization. The 5’-triphosphate
dependence for activation was calculated by first subtracting
the amount of phosphorylation in the absence of added RNA
from the bands in the presence of a 5’'-triphosphate-containing
RNA and the presence of a non-5'-triphosphate-containing
RNA, and then dividing the resultant values (Nallagatla et al.
2007).

PKR activation competition assays

Two PKR activation competition assays were conducted: NTP-
competition assays and RNA-competition assays. In the NTP-
competition assays, each of the four NTPs was tested for its ability
to compete for triphosphate-binding sites during PKR activation
by dsRNA or ppp-ssRNA. Activation assays were conducted as
described above, with the following exceptions: Various concentra-
tions of ATP, CTP, GTP, and UTP (all complexed with equimolar
Mg**) were incubated along with other reaction components (see
above). In the RNA-competition assays, the PKR activator, dsRNA,
ssRNA, or heparin was competed by short dsSRNA or ssRNA. In the
RNA-competition assays, the activating RNA or heparin was held
constant while competitors were added in a range of concentrations.
All gels were run and analyzed as above.

Isothermal titration calorimetry

ITC was used to obtain thermodynamic parameters for binding
of NTPs to K296R. Data were collected using a MicroCal Auto-
iTCy09 (GE Healthcare). The sample cell contained 40 wM K296R
in PSB, while the syringe contained 720 uM ATP, GTP, CTP, or
UTP dissolved in PSB as 100 mM stocks and diluted with
further PSB. Titrations were performed at 30°C and involved 19
2-pL injections into the 200-wL sample cell (Sokoloski and
Bevilacqua 2012). An ATP titration curve was fitted to a model
for two binding sites using MicroCal Origin software (Version
7.0) with the average value of the last three points of the sat-
urated portion of the curve used to baseline-correct the inte-
grated data.
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UV cross-linking

To induce cross-links between RNA and protein, the photo-
reactive nucleotide analog 4-thio-UTP was fully incorporated into
ppp-ssRNA-47 at all uridine positions. This transcript was then
5'-32p_end-labeled, and 1 nM RNA was incubated with 4 M
wtPKR, P20, or dmPKR in 10 mM Tris (pH 7.6), 50 mM KCl, and
2 mM Mg(OAc),»4H,0 in a 20-pL reaction volume. Cross-
linking reactions were immediately placed directly on the surface
of a handheld UV lamp (UVP model UVGL-25), which had been
turned upside-down and covered with Saran Wrap. Reaction
samples were irradiated with 365-nm light (Mineralight lamp
multiband UV-254/365). At various time points, 3-uL aliquots
were quenched with 2X FLB. Samples were then fractionated on
a 7%, 1X TBE, 7 M urea denaturing gel for 45 min, and the gel
was dried and exposed to a PhosphorImager screen overnight.

Electrophoretic mobility shift assays (EMSAs)

To analyze binding to P20, excess protein (3 wM) and trace
amounts of 5'->*P-end-labeled dsSRNA-20 (~2 nM) were incubated
along with various unlabeled competitor RNAs or heparin and
1 mg/mL herring sperm DNA, 10 mM NaCl, 25 mM HEPES (pH
7.5), 5 mM DTT, 0.1 mM EDTA, 5% glycerol, 0.1 mg/mL bovine
serum albumin, and 0.01% NP-40 for 30 min at 22°C (Bevilacqua
and Cech 1996). Samples were then fractionated on 10% 0.5X TBE
native gels (29:1 cross-link) for 2.5 h at 16°C. Gels were dried and
exposed to storage Phosphorlmager screens overnight.

SUPPLEMENTAL MATERIAL

Supplemental material containing controls for cross-linking ex-
periments is available for this article.
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