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Abstract
This work considers two specific estimation techniques for the family specific proportional
hazards model and for the population-averaged proportional hazards model. So far, these two
estimation procedures were presented and studied under the gamma frailty distribution mainly
because of its simple interpretation and mathematical tractability. Modifications of both
procedures for other frailty distributions, such as inverse Gaussian, positive stable and a specific
case of discrete distribution, are presented. By extensive simulations, it is shown that under the
family specific proportional hazards model, the gamma frailty model appears to be robust to frailty
distribution misspecification in both bias and efficiency loss in the marginal parameters. The
population-averaged proportional hazards model, is found to be robust under the gamma frailty
model misspecification only under moderate or weak dependency within cluster members.
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1. Introduction
In family studies correlated failure times arise frequently in the form of ages at onset or ages
at diagnosis for a disease. Many diseases such as coronary heart disease or cancer, are
known to be correlated within families due to common genetic and environment factors that
contribute to the occurrences of the disease. For the same reason, family studies have been
frequently used in discovering novel genes or characterizing candidate genes for their
involvement in diseases.

In our work we will focus on population-based case-control studies, where a number of
cases and controls are sampled randomly from a well-defined population and an array of risk
factors is collected on the cases and controls and their relatives [1]. We refer these cases and
controls as probands to indicate that they are the index subjects because of whom the
families are ascertained.

Our work is motivated by a recent breast cancer study conducted at the Fred Hutchinson
Cancer Research Center [2]. In this study, the cases were incident breast cancer cases
ascertained from a set of geographically defined, population based cancer registries in the
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United States. The controls were selected by random digit dialing, and matched with cases
based on age at diagnosis and country of residence. Each subject (case or control proband)
was asked to enumerate all their first-degree (mother, sister, daughters) and second-degree
(aunts and grandmothers) female blood relatives. For each relative enumerated, the
interviewer asked for the birth year, vital status, death year, history and type of cancer, and
laterality (if breast cancer). Blood samples were collected on the probands to determine the
presence or absence of BRCA1/2 mutations. One of the study objectives was to estimate the
effects of BRCA1/2 mutation and other risk factors on the age at breast cancer diagnosis. It
was also desired to estimate the baseline hazard function for obtaining absolute risk for a
woman given her risk profile.

Case-control family studies, involve a cluster structure with potential correlations between
the outcomes within a cluster. There are two main approaches for dealing with the
dependence induced by the cluster effects: the conditional (or family-specific) model [3, 4]
and the marginal (or population-averaged) model [5, 6]. In the conditional model, the hazard
function takes into account the cluster effects and is used to compare between the risk of
failure of members within the same cluster (family). Extensive reviews and discussions on
the shared frailty models can be found in [7] and [8], and references therein. In the marginal
approach, the risk of failure does not take into account the cluster effects. It represents the
averaged hazard in the population and is used to compare the risk of failures of members in
the population.

Estimation in the frailty model, has received much attention under various frailty
distributions, including gamma [9–11], positive stable [12], inverse gaussian [11, 13],
compound Poisson [13] and log-normal [14, 15]. Among many frailty distributions
considered, gamma, or equivalently the Clayton-Oakes model [16, 17], is most commonly
used due to its appealing interpretation and mathematical convenience. Despite its
popularity, it is of concern that misspecification of gamma frailty distribution may invalidate
the inference. Model diagnostic procedures, for cohort data, have been developed for that
purpose [18–22]. However, in reality it may not be always easy to check the goodness-of-fit
of the model because there is a lack of sufficient data to distinguish between various models.
Hence, it is of practical importance that one should first examine to what extent the
misspecification of the frailty distribution may affect the regression coefficients and baseline
hazard function estimation in terms of bias and efficiency.

Some work has been done on the misspecification of frailty distribution in cohort family
studies. It is found by simulation [23] that the regression coefficient estimates under the
assumed gamma frailty model appeared to be minimally affected when the true frailty
distribution is inverse Gaussian or positive stable. However, they did not study the effect of
misspecified frailty distribution on the hazard functions. Hsu et al. [4] studied, under cohort
and case-control settings, how the misspecification of the frailty distribution affects the
estimation of the fitted marginalized hazard function for individuals with a particular risk
profile. They assumed gamma distribution when the true distributions were inverse
Gaussian, positive stable and specific case of the discrete distribution. They showed that the
gamma distribution appears to be robust to frailty distribution misspecification and that the
biases are generally 10% and lower, even when the true frailty distribution deviates
substantially from the assumed gamma distribution. Note that both works concentrated on
wrongly assuming gamma frailty model.

While family-specific hazard function is useful in genetic counseling, population-averaged
marginal hazard functions are also of interest from the public health perspective for devising
effective strategies for preventing diseases and treating the general population. Under the
frailty model, the population-averaged hazard functions can be obtained by integrating out
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the frailty. However it may likely be affected by the frailty distribution assumption, as the
integrated function involves not only the regression coefficients but also the dependence
parameter. To overcome this undesired property, Hsu et al. [5] proposed a population-
averaged marginal hazard frailty-based model for the case-control study design, while the
marginal hazard functions are free of the frailty distribution. They showed by simulations,
that the efficiency gain by the proposed method, in contrast to the generalized estimating
equation approach, is most pronounced with high degree of correlation and with large family
size.

Both works, [3, 5], only considered the gamma frailty distribution with scale and shape
parameters θ−1. Hence, the main goals of this work are: (1) extending and applying the
estimation procedures of [3, 5] for different frailty distributions for case-control family data;
and (2) studying the bias and particularly the efficiency loss of gamma frailty distribution
misspecification on the regression estimates and marginal hazard functions. We investigated
the following frailty distributions: inverse Gaussian, positive stable and a specific case for
the discrete distribution. The discrete distribution is such that the frailty variate takes one of
only two possible values, 1 − θ or 1 + θ, where the constraint (1 + θ + 1 − θ)/2 = 1 is set to
allow for a unique identification of the baseline hazard function. Each distribution is a
function of a parameter which quantifies differently the heterogeneity in risks among
families and allow for a unique identification of the baseline hazard function. Each frailty
distribution yields a different association between survival times of cluster (family)
members. Table 1 gives the density functions (f), the first and second moments (μ1, μ2),
Laplace transforms (ϕ) and cross-ratio (C) for the above distributions. We use here the
popular cross ratio function [16] as a measure of dependency for bivariate survival times
when comparing between the distributions. Hougaard [7] provides a comprehensive review
of the properties of the various frailty distributions.

The rest of the article is organized as follows. In Section 2 we provide the conditional
modeling approach along with an estimation procedure based on [3]. Simulation results for
this modeling are presented in Section 3. Section 4 consists of the marginal modeling
approach and an estimation procedure based on [5], and its simulation study is presented in
Section 5. A data set of a case-control breast cancer family study is being analyzed under the
above two models, in Section 6. A discussion is provided in Section 7.

2. Conditional modeling - notation and the model under consideration
Let T and C be the failure and censoring times, respectively, and let Z be a p × 1 vector of
covariates. We assume that the failure time support is [0, τ], for some time point τ < ∞.
Denote the random effect by ω. We postulate the Cox proportional hazards model [24] for
the effects of Z and ω on the failure time T for each individual. Under this model, the
conditional hazard function given the vector of covariates Z and the frailty variate ω is
defined by

(1)

where  is an unspecified baseline hazard function and βc is a p × 1 vector of unknown
regression parameters.

In what follows, we derive the marginal hazard and joint survival function based on model
(1). Denote the Laplace transform function by ϕθ(s) = E{exp(−sY)}, for a random variable
Y, where θ is the parameter of the distribution of Y. Now, consider a family of size m and

let T = (T1, ..., Tm)T and . Assume that the covariates’ effect is subject
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specific, namely P(Ti ≤ t|ω, Z) = P(Ti ≤ t|ω, Zi) for i = 1, . . . , m and also assume that the
family frailty variate ω is independent of . Then, under model (1), the multivariate
survival function of T given Z, becomes

(2)

where ,  and θ is the parameter of the frailty
distribution. Also, we get the marginal survival function for each family member, for
example, Sm(t1|Z1) = Sm(t1, 0, ..., 0|Z) = ϕθ{H1(t1)} for the first subject. By some algebra,
we express the marginal hazard function, λm(ti|Zi), in terms of the conditional hazard
function, as follows

(3)

where U is determined by the frailty distribution and Hi(t). It is well known that proportional
hazards model for λc generally does not yield a proportional hazards model for λm unless
the frailty distribution is positive stable.

2.1. Conditional modeling - the likelihood function
Consider a matched case-control family study where one case proband is matched in age
with one control proband (age of disease onset for cases and age at censoring for controls),
and an array of risk factors is collected on the case and control probands and their relatives.
Each matched set contains one case family and one control family, and there are a total of n
matched sets. For each family member i of family k we define Xki = min(Tki, Cki) and δki =
I(Tki ≤ Cki), k = 1, ..., 2n, i = 0, ..., mk, where i = 0 corresponds to the proband. Furthermore,

define Xk = (Xk1, ..., Xkmk), δk = (δk1, ..., δkmk) and . In addition, we
associate with family k an unobserved frailty variate ωk, k = 1, ..., 2n, which induces
dependence among family members. We assume ωk k = 1, . . . , 2n are independent identical
distributed according to a known distribution with unknown parameter θ. This work centers
on the estimation of βc,  and θ.

In what follows, we review the construction of the likelihood function for case-control
family study as presented in [3], so that this paper will be self contained. We make the
following common assumptions: (1) Given ωk, the failure times of the family members are

independent. (2) Conditional on  and ωk, the censoring times are independent of the
failure times and noninformative for ωk, βc and . (3) The frailty ωk is independent of

. (4) The effect of covariates on the failure time is subject specific. Then, the
likelihood function can be written as

The last factor f(Zk|Zk0) is the conditional distribution of the covariates. It does not contain
information on βc,  and θ and will therefore be ignored. In what follows we treat each
of the other two factors, separately.
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The likelihood function of the probands’ data, , is a retrospective
likelihood for the usual case-control study and it can be replaced by the conditional logistic
regression model [25] where cases and controls are matched on age. Hence, under the
hazard function (3) it can be written as

(4)

where without loss of generality we let the first n families to be the case families, and the kth
case family k = 1, ..., n be matched with the (n + k)th control family. Note that Zk0 and
Z(k+n)0 are the respective covariate vectors of the case-proband and control-proband of the
kth matching set and log(Uk0) and log(U(n+k)0) are of these same individuals, respectively.
Table 2 presents Uj0, j = 1, ..., 2n for each frailty distribution discussed in this work.

The likelihood function  is a function of the relatives’ data
conditional on the probands’ data. As noted in [3], this likelihood would be greatly
simplified if the family members were independent. This motivates us to consider the joint
distribution of the relatives given the unobserved frailty variate ωk and (Zk, Zk0, Xk0, δk0).
Namely, we consider

(5)

Based on (1) and assuming the frailty variates  are known, the right-hand side of (5)
can be fitted by using the usual partial likelihood function with offset term log(ωk).
Specifically,

(6)

where R(t) is the risk set consists of all the relatives who are at risk at time t.

2.2. Conditional modeling - an estimation procedure
The following is a summary of the estimation procedure of [3] which is extended to fit any

frailty distribution. If  and  were known, an estimator of βc can be easily
obtained by maximizing the product of  and  by the usual stratified Cox proportional

hazards model with the offset terms log(Uk0) and log(ωk). Since  and  are

unknown, we need to estimate them from the data. The estimators  are defined as

 after replacing the unknown parameters by their estimates. For  we use the
posterior mean E(ωk|Xk, δk, Zk, Xk0, δk0, Zk0) that can be written bas a function of the dkth

and (dk + 1)th order differentiations of the Laplace transform ϕθ where .

Specifically, let , and note

. Hence, we get
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In Table 3 we present the posterior mean for each frailty distribution of Table 1. For
simplicity of presentation, we assume that there is only one relative for each proband.
However, the posterior mean for other family sizes can be obtained similarly.

For estimating the baseline hazard function, we use a Breslow-type estimator with jumps

only at the observed failure times of the relatives. Namely, given the estimators  and

, a Breslow-type estimator at time t is defined as a step function with jump-size at
time s by

(7)

Finally, the estimation of the dependence parameter is done based on a pseudo likelihood
function consists of the marginal distribution of the relatives’ data given the probands’ data

and . For simplicity of presentation, we consider the case in which each proband has
only one relative. The general case can be derived similarly.

Let  and , 1 be the respective survival and
density functions of the relative given its probands’ disease status, δk0, and age at onset or
age at censoring tk0, of the kth family. Also, let  be the contribution of family k to the

likelihood function . Then, for each k = 1, ..., 2n we get

Table 4 presents log  under each distribution listed in Table 1. The proposed estimator of
θ, denoted by , is the value of θ which maximizes  after replacing βc and  by their
estimates. It should be noted that under the gamma frailty model the cross-ratio is constant
and equals θ + 1. Therefore, under this specific frailty model, it is easier to estimate the
dependence parameter by using a stratified Cox regression model [3] instead of using the
above likelihood approach.

The following is a summary of the above estimation procedure of , under the
conditional proportional hazards model (1):

1.
Set initial values for  by fitting a Cox proportional hazards model assuming
independence among relatives, and let θ be the value corresponds to independence
among family members.
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2.
Given  obtain  and .

3.
Given  and  and , obtain  and  by fitting a Cox model with the

offset terms  and .

4.
Given  obtain  by maximizing the pseudo likelihood function based on

.

5. Iterate between Steps (2)-(4) until convergence is reached with respect to all the
parameters.

As mentioned, [3] presented the above estimation procedure under the gamma frailty model
with expectation 1 and variance θ. By simulation study they showed that the method
performs very well under finite sample sizes, in terms of bias. In addition, [4] studied the
effect of frailty distribution misspecification in terms of bias under the assumed gamma
distribution. Hence, they only estimated the parameters under the gamma model. The
performance of the above estimation procedure under other frailty distributions, and, more
importantly, the bias and efficiency loss under the misspecification of the gamma model will
be studied, by simulation, in the next section.

3. Conditional modeling - a simulation study
We conducted a simulation study for matched case-control family study design under the
conditional hazard function (1), and each of the frailty distributions of Table 1, where each
proband has one relative. To allow for comparability across various frailty models, we used
a fixed value of the Kendall's τ coefficient of concordance [26] as a measure of dependency
of survival times within a family. We set τ to be 0.33 or 0.45 corresponding to moderate and
strong dependency, respectively, between paired failure times. Since the results are similar
for these two values of Kendall's τ , results of τ = 0.33 are omitted. Table 5 provides the
Kendall's τ coefficient in terms of the frailty distribution's parameter and the parameter
value under τ = 0.45, for each distribution.

We assumed one covariate such that Z ~ Bernoulli(0.5). For sampling n = 500 matched case-
probands with control-probands, we generated N = 20,000 independent failure times T|Z, ω
~ Exponential (ωexp(βcZ)) and N independent censoring times C ~ Uniform(0, b). Taking b
= 0.3 or 3 yields 60%-80% (high censoring rates) or 30%-40% (medium censoring rates)
censoring rate, respectively. As expected, the censoring rates can vary under different frailty
distributions. Evaluation of the observed times and the case/control status of each subject,
yields N1 case-probands and N2 control-probands, N1 + N2 = N. Finally, we randomly
selected n cases out of the N1 case-probands and matched each case with one control-
proband. For each selected proband (case and control), its relative data were generated,
given the observed frailty value. The regression coefficient was chosen to be β = log(2) =
0.693. We used 1000 simulated data sets for each configuration. Note that instead of
presenting simulation results for different sample sizes, we present simulation results for
different censoring times since the efficiency in survival analysis is mostly determined by
the number of events in the sample.

In order to compare between the marginalized hazard function under the true frailty
distribution versus the misspecified frailty distribution we used Λm(t|Z) = −log ϕθ{H(t)},
presented in Table 6 for the various frailty distributions.

The simulation results are summarized in Tables 7-9. Table 7 provides means and standard
errors of the estimates of the conditional cumulative baseline hazard function at t = 0.05, 0.1,
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0.15 and 0.2, for each frailty distribution, under the true frailty distribution and under the
misspecified gamma model. Tables 8-9 provide the estimates of the regression coefficient
and of the marginalized hazard function for Z=0 and Z=1 when the censoring rate is heavy
(68%-80%) and moderate (30%-40%), respectively. Each case was studied under the true
frailty distribution and under the misspecified gamma model. For each frailty model we
present the true parameter values (first row); the empirical means (and standard errors in
parentheses) under the true frailty distribution (second row) and under the misspecified
gamma model (third row); the mean squared error (MSE) (×100) under the true frailty
distribution (fourth row) and under the misspecified gamma model (fifth row), and the
relative efficiency (RE) which is the variances’ ratio of the true model to the misspecified
model (sixth row).

As expected, we see that the estimation procedures which we extended for inverse Gaussian,
positive stable and the discrete distributions perform very well. When we used the gamma

distribution when the true frailty distribution is not, the bias in  is moderate for inverse
Gaussian, substantial for positive stable, and very small for discrete, under heavy censoring
(60%-80%). Under moderate censoring rate (30%-40%), the bias becomes substantial for
inverse Gaussian and remains the same for positive stable and the discrete distributions. In
general,  is underestimated for inverse Gaussian but overestimated for positive stable.
Under the inverse Gaussian distribution, the standard errors that we get under
misspecification of the frailty distribution are lower than those under the true distribution.
Whereas, the standard errors we get for the positive stable distribution are higher under the
misspecified gamma model than under the true distribution. Under the discrete distribution,
the differences between the standard errors are relatively low. This can be explained by the
fact that the variances are functions of the mean estimates.

Table 8 indicates that the bias in  under misspecification of the frailty distribution is
relatively small for all the three distributions (up to 10%). The most surprising results are
that for the inverse Gaussian and the positive stable distributions there is no efficiency loss.
The RE is higher than 1 and could be of 1.532 for the positive stable distribution. Under the
discrete distribution we observed some efficiency loss (RE around 0.7). In Table 9, which
consists of lower censoring rate, the bias is again small under all the frailty distributions (up
to 11% for the inverse Gaussian and up to 8% for the positive stable and the discrete
distributions), similar to the case of high censoring. Moreover, for the inverse Gaussian and
positive stable distributions, there is even a gain in efficiency while using the misspecified
gamma model: RE up to 3.388 for the inverse Gaussian distribution and up to 1.612 for the
positive stable distribution. In contrast, under the discrete distribution, we observed
efficiency loss (RE around 0.6), which is probably due to the lack of fit of the continuous

gamma approximation for the discrete frailties. The bias and efficiency losses in  in both
censoring rates were quite minimal under all the frailty distributions investigated in this
work (up to 4% and RE around 0.8). For the inverse Gaussian distribution with the high

censoring rate, there is a gain in efficiency in  (RE equals 1.146). These results suggest
that the gamma frailty model can serve as a good practical choice in real data analysis if the
marginal parameters are of primary interest since the “price” to be paid in bias is small, and
the efficiency loss is minimal, if any.

4. Marginal modeling - notation and the model under consideration
Now we focus on the multivariate survival model proposed by [5], with the marginal hazard
function following the Cox proportional hazards model. Under this model, the marginal
hazard function, given the vector of covariates Z, is defined by
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(8)

where βm and  are the marginal regression coefficient vector and the unspecified
marginal baseline hazard function, respectively. The conditional hazard function, under a
multiplicative effect of ω on the hazard function, takes the form of

(9)

The relationship between α and λm can be derived as follows. Write

 and .
Then, we get

where F(·) is the cumulative distribution function of the frailty variate. Let .
Hence, the function α should satisfy the constraint

(10)

Note that based on (10), α(t) can be written as  as long as the inverse function 
exists. Table 10 presents the “baseline” function α(t) for the frailty distributions gamma,
inverse Gaussian and positive stable of Table 1. Hence, α* can be deduced easily. In the
case of the discrete distribution, there is no close analytical form of α(t). Hence, we will not
consider this distribution under the marginal modeling.

4.1. Marginal modeling - the likelihood function
As in [5], assume that the effect of covariates on the age at onset is subject specific. Then,

similarly to (4), the likelihood is partitioned into  where

 and .

The likelihood function  of the probands’ data, is a retrospective likelihood for the usual
case-control study. Assume cases and controls are one-to-one matched and there are n
matched sets. Then,  can be replaced by a conditional logistic regression model of [25]

(11)

where without loss of generality, the first n families are the case families and the kth family,
k = 1, . . . , n, is matched with the (k + n)th control family.

In principle, we can follow the estimation procedure of Section 2.2 to obtain estimators of
βm,  and θ with the conditional model (9) and the appropriate α(t). However, α(t) has a
complicated structure and does not factor in the form as in the Cox model. Thus we can not
use standard statistical packages for estimating βm and . Alternatively, we use an
estimation procedure that is based on the innovation theorem. The following is an extension
of [5] to address any frailty distribution.
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Let Nk(t) = (Nk1(t), ..., Nkmk(t)) and Yk(t) = (Yk1(t), ..., Ykmk(t)) be the event and at-risk
processes where Nki(t) = δkiI(Xki ≤ t) and Yki(t) = I(Xki ≥ t), and let  denote the entire
observed history up to time t, that is

which includes the history of relatives up to time t, and the history of probands up to time τ ,
the end of the study. By the innovation theorem [27] we get that the  stochastic intensity
process of Nki(t) is given by replacing ωk by its conditional expectation with respect to the

history . Namely , and the function αki(t) depends on t
only up to t−, beside , as shown in Table 10. Hence, we get [28]

(12)

For writing the likelihood (12) explicitly for each frailty distribution, note that for any given
t ∈ [0, τ]

where  and . In Table 11 we present  for
each of the investigated frailty distribution and for simplicity of presentation, we assume one

relative for each proband. Finally, we get  explicitly, for each frailty distribution, by
plugging the functions αki(t) and  for all t ∈ [0, τ].

4.2. Marginal modeling - an estimation procedure
We start with the baseline hazard function. The structure of the  stochastic intensity
process suggests a Breslow-type estimator for the cumulative baseline hazard function

estimator denoted by . Specifically, the intensity function  can be expressed as

 as evident from Tables 10-11. Then,

where in  and  we replace all the unknown parameters by their estimates. Note
that  involves  of the probands’ observation times, Tk0, that can be greater than
time t. Therefore, an iterative procedure is required.

Estimation of the dependence parameter θ and the regression coefficient βm is

straightforward once we know . We construct a profile likelihood based on  in

(11) and (12) by replacing  with , so  and  are those the values that maximize the
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profile likelihood. The final estimates of  and (βm, θ) are given by iterating between 

and  until convergence is reached with respect to all the parameters.

Hsu et al. [5] presented and studied the above estimation procedure only under the gamma
frailty model. The performance of the above estimation procedure under other frailty
distributions was not examined. More importantly, the efficiency loss under the
misspecification of the gamma model is not clear. These will be studied, by simulation, in
the next section.

5. Marginal modeling - a simulation study
We conducted a simulation study for matched case-control family study design under the
marginal hazard function (8). Table 12 provides the frailty distribution parameter value
corresponds to τ = 0.33 and 0.45. In Figure 1 we present the Kendall's τ coefficient as a
function of the dependence parameter θ for the conditional model (1) and the marginal
model (8) under various frailty distributions. From these figures we see that under these
three frailty distributions, for the same strength of Kendall's τ , the marginal modeling
requires higher variability of the frailty variate, when compared to that of the conditional
model. Moreover, this variability increases in τ. This is an important fact for understanding
the following simulation results and for comparing them to those of the conditional
modeling.

For sampling under (8) and (9), write , so if U ~ Uniform(0,

1), we get , given that A−1 exists. Table 13 provides the inverse
function A−1 for each frailty distribution, under . The rest of the sampling scheme is
similar to that of Section 3.

Tables 14-16 provide results of τ = 0.45 and 30%-50% censoring rate, τ = 0.33 and
60%-80% censoring rate, and τ = 0.33 and 30%-40% censoring rate, respectively. It is
evident that the estimation procedures for all the three distributions, when they are true,
perform very well in terms of bias with respect to all the parameters. Under high dependence

(τ = 0.45) and low censoring rate (30%-50%), the bias in  due to misspecification of the
frailty distribution is very substantial for all the distributions (Table 14). Therefore, the MSE
and the RE are omitted. Similar results were observed for high censoring rate (60%-80%)
with τ = 0.45, and hence these results are not shown. For moderate dependence (τ = 0.33)

with high censoring rate, the bias in  under misspecification of the frailty distribution is
relatively small for the inverse Gaussian distribution (up to 7%) and more substantial for the
positive stable distribution (Table 15). For the inverse Gaussian distribution there is no
efficiency loss (the RE is around 1.3). Under lower censoring rate (30%-40%) and moderate
dependence (τ = 0.33), the bias is small under both frailty distributions (up to 2% for the
inverse Gaussian and up to 10% for the positive stable distribution) (Table 16). Moreover,
for the inverse Gaussian and positive stable distributions, there is even a gain in efficiency
while using the misspecified gamma model (RE around 1.25 for the inverse Gaussian
distribution, and around 2.3 for the positive stable distribution). The bias in βm is quite
minimal for the high and moderate dependence in both distributions (up to 4%). The
difference in the results between the high dependence (τ = 0.45) and the moderate
dependence (τ = 0.33) can be explained by the fact that the variability in the frailty variate
for high dependency is much greater than that of the moderate dependence. So, as expected,
under high variance of the frailty variate, the effect of misspecification of the frailty
distribution can not be negligible.
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These results suggest that, only in cases of moderate dependence, using the gamma frailty
model with models (8) and (9) can serve as a good practical choice in real data analysis if
the marginal parameters are of primary interest, since the “price” to pay in terms of bias
could be substantial under strong dependence.

6. Example - A case-control family study of breast cancer
We now apply the above two models and methods of estimation, to the breast cancer study
mentioned in the Introduction. Various risk factors were measured on probands and their
relatives. For illustrative purposes we consider age at first fullterm pregnancy as the
covariate and the relatives of the probands being the mothers. The covariate takes the value
of 1 if a women experienced first live birth before age 20, and 0 otherwise. The following
analysis is based on 437 breast cancer case probands matched with 437 control probands and
a total of 874 mothers. The number of mothers who had breast cancer was 70 among the
case families and 35 among the control families. The number of women whose first live
birth occurred before age 20 was 142 among the probands and 181 among the mothers. For
estimating the standard errors, we used the bootstrap approach using case-family and its
matched control-family as the sampling unit, and 200 bootstrap samples.

Tables 17 and 18 summarize the results of the parameter estimates for each frailty
distribution under the conditional and marginal modeling, respectively. In Table 17, the

regression coefficient  describes the effect of age at full-term pregnancy conditional on the
family frailty variate. Therefore, this model allows for the comparison of the breast cancer
risks of women in the same family. Specifically, our results imply that women who had first
full-term pregnancy before age 20, has about half the risk of developing breast cancer,
compared with her relative without full-term pregnancy before age 20. The estimated
regression coefficients under the various frailty distributions are very similar except for the
positive stable distribution which yielded a slightly higher covariate effect. In Table 18, the

regression coefficient  describes the effect of age at full-term pregnancy in the general

population, and therefore is expected to be lower than . The results are also very similar
for all the distributions and the covariate effect is indeed slightly lower from the one we
observed for the conditional modeling. The cumulative baseline hazard estimates are similar
under all the distributions, and are also similar to the results of the conditional modeling.

In both tables, we can not compare the estimates of the dependence parameter θ directly
because they quantify differently the risk among families for each distribution. However, we
can see that under both models, the estimates of θ correspond to moderate dependency
between paired failure times and therefore, the results provided by the marginal model can
also be regarded as reliable results.

7. Discussion
In this work, we focused on case-control family setting and considered the two estimation
procedures of [3] under the family specific proportional hazards functions, and of [5] under
the population averaged proportional hazards functions. We presented these estimation
procedures for different frailty distributions, such as inverse Gaussian, positive stable and a
specific case of a discrete distribution.

We showed, by simulations, that when the conditional hazard function follows a Cox
proportional hazards model multiplied by the frailty variate, the gamma frailty model
appears to be robust to frailty distribution misspecification in terms of bias and efficiency
loss in the marginal parameters. Considering the mathematical convenience of the gamma
distribution, we conclude that the gamma frailty can be a useful choice in a real data analysis
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when the marginal parameters are of primary interest and the true underlying distribution is
unknown.

However, in the population-averaged proportional hazard model, our results suggest that,
only in cases of moderate dependence, the gamma frailty model could serve as a useful
choice, if the true frailty distribution is unknown, since the “price” to be paid in terms of
bias could be too high. Another disadvantage of this modeling approach is the lack of unique
representation of the baseline function α(·) under some frailty models, such as the discrete
model discussed in this work.

The main difference between the conditional and the marginal modeling, in terms of the
frailty distribution, is that for the same strength of Kendall's τ, the marginal modeling
requires higher variability of the frailty variate in compare to that of the conditional model.
This explains the observation that the marginal modeling was found to be robust to the
gamma frailty model misspecification only under moderate or weak dependency, since
under very high variance of the frailty distribution, the effect of frailty distribution
misspecification is not expected to be negligible. In our real data analysis we found that both
models provide similar results. This is due to the fact that the dependence within family,
given the age at first full term pregnancy, is moderate. These results indicate that when
analyzing data of this type, both models are expected to be robust.

This work is concentrated on estimation of the marginal parameters. It is of practical
importance to investigate the performances of hypothesis testing and confidence intervals
under misspecification of the frailty distribution. However, this is beyond the scope of this
work.

Obviously, the ideal situation is when the frailty distribution is known. However, since the
frailty variates are unobservable, it is difficult to extract information from the observed data
about the underlying frailty distribution. There are tests and graphical procedures for
checking the dependence structure for cohort data [18–22]. These procedures, however, are
not directly applicable to the case-control family data, and extension of these procedures to
our setting is a potential problem for future work.

While this work is mainly concerned about the regression coefficients and marginal hazard
functions, the dependencies among failure times sometimes are of interest in family studies.
In these cases, an approximated correct frailty distribution is crucial in obtaining unbiased
estimates of these quantities and assuming a gamma distribution, when it is not, can yield
misleading results.
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Figure 1.
Kendall's τ as a function of θ under gamma, inverse Gaussian and positive stable frailty
models. Solid line - conditional model, dotted line - marginal model.
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Table 1

Density functions (f), first and second moments (μ1, μ2), Laplace transforms (ϕ) and cross-ratio (C) for the
distributions: gamma, inverse Gaussian, positive stable and discrete.

Gamma

f(t) = θ–1/θt(1–θ)/θ exp(–t/θ)/γ(1/θ), θ > 0

μ1 = 1, μ2 = θ + 1

ϕ(s) = (1 + θs)–1/θ

C(t1, t2) = θ + 1

Inverse Gaussian

f(t) = (πθ)–1/2 exp(2/θ)t–3/2 exp{–t/θ – 1/(tθ)}, θ ≥ 0

μ1 = 1, μ2 = θ/2

ϕ(s) = exp 2{ 1
θ − ( 1

θ 2
+

s
θ )1∕2}

C(t1, t2) = 1 +
θ

2 − θ log S m(t1, t2)

Sm(t1, t2) = P(T1 ≥ t1, T2 ≥ t2) = ϕ(H1(t1) + H2(t2)) where Hi(ti) = Λ0(ti) exp(βTZi)

Positive Stable

f (t) = − (πt)−1Σk=1
∞ γ(kθ + 1)(k ! )−1( − t −θ)k

sin(θπk) , , 0 < θ < 1

μ1, μ2 does not exist for θ < 1

ϕ(s) = exp(–sθ)

C(t1, t2) = 1 +
1 − θ

− θ log S m(t1, t2)
Discrete

Pr(ω = 1 + θ) = 0.5, and Pr(ω = 1 – θ) = 0.5, –1 ≤ θ < 1

μ1 = 1, μ2 = 1 + θ2

ϕ(s) = 0.5 exp {–s(1 – θ)} + 0.5 exp {–s(1 + θ)}

C(t1, t2) = 1 + 4θ2[(1 + θ){G(t1, t2)}–θ + (1 – θ){G(t1, t2)}θ]–2

G(t1, t2) = exp{H1(t1) + H2(t2)}
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Table 2

Uj0 under gamma, inverse Gaussian, positive stable and discrete.

Gamma Uj0 = {1 + θHj0(t)}–1

Inverse Gaussian
U j0 =

1
θ { 1

θ 2
+

H j0
(t)

θ }−1∕2

Positive stable Uj0 = θ{Hj0(t)}θ–1

Discrete
U j0 =

(1 + θ) exp{ − H j0
(t)(1 + θ)} + (1 − θ) exp{ − H j0

(t)(1 − θ)}
exp{ − H j0

(t)(1 + θ)} + exp{ − H j0
(t)(1 − θ)}
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Table 3

The posterior mean E(ωk|Xk, δk, Zk, Xk0, δk0, Zk0) under gamma, inverse Gaussian, positive stable and
discrete.

Gamma

{1+ θHk.(t)}–1/θ

inverse Gaussian

{
1
θ ( 1

θ 2
+

Hk.
(t)

θ )−
1
2 if dk = 0

1
θ ( 1

θ 2
+

Hk.
(t)

θ )−
1
2 1 +

1
2 ( 1

θ 2
+

Hk.
(t)

θ )−
1
2 if dk = 1

1
θ ( 1

θ 2
+

Hk.
(t)

θ )−
1
2 {1 + ( 1

θ 2
+

Hk.
(t)

θ )−
1
2 } +

1
4 ( 1

θ 2
+

Hk.
(t)

θ )−1{1 +
1
2 ( 1

θ 2
+

Hk.
(t)

θ )−
1
2 }−1

if dk = 2

Positive Stable

{
θHk.

(t)θ−1 if dk = 0

θHk.
(t)θ−1 − (θ − 1)Hk.

(t)−1 if dk = 1

θ 2Hk.
(t)2θ(t)2θ − 3θ(θ − 1)Hk.

(t)θ + (θ − 1)(θ − 2)

Hk.
(t)(θHk.

(t)θ − θ + 1)
if dk = 2

Discrete

(1 + θ)
dk+1

exp{ − (1 + θ)Hk.
(t)} + (1 − θ)

dk+1
exp{ − (1 − θ)Hk.

(t)}

(1 + θ)
dkexp{ − (1 + θ)Hk.

(t)} + (1 − θ)
dkexp{ − (1 − θ)Hk.

(t)}
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Table 5

The Kendall's τ function for gamma, inverse Gaussian, positive stable and discrete, and the parameter value
under τ = 0.45.

Gamma τ =
θ

θ + 2
θ = 1.64

Inverse Gaussian τ = 0.5 − 2 ∕ θ + 8 ∕ θ 2 exp(4 ∕ θ)∫4∕θ
∞ u −1 exp( − u)du θ = 30.55

Positive Stable τ = 1 – θ θ = 0.55

Discrete τ = θ2/2. θ = 0.95
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Table 6

The cumulative marginal hazard function given Z = 0 or Z = 1 for gamma, inverse Gaussian, positive stable
and discrete.

Gamma

Λm(t ∣ Z = 0) =
1
θ log{1 + θΛ0

c(t)}

Λm(t ∣ Z = 1) =
1
θ log{1 + θΛ0

c(t) exp(βC T )}
Inverse Gaussian

Λm(t ∣ Z = 0) = − 2{ 1
θ − ( 1

θ 2
+

Λ0
c(t)

θ )1∕2}
Λm(t ∣ Z = 1) = − 2{ 1

θ − ( 1

θ 2
+

Λ0
c(t) exp(βC T )

θ )1∕2}
Positive Stable

Λm(t ∣ Z = 0) = {Λ0
c(t)}θ

Λm(t ∣ Z = 1) = {Λ0
c(t) exp(βC T )}θ

Discrete

Λm(t ∣ Z = 0) = − log 0.5 exp{ − Λ0
c(t)(1 − θ)} + 0.5 exp{ − Λ0

c(t)(1 + θ)}

Λm(t ∣ Z = 1) = − log 0.5 exp{ − Λ0
c(t) exp(βC T )(1 − θ)} + 0.5 exp{ − Λ0

c(t) exp(βC T )(1 + θ)}
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Table 7

Simulation results: empirical mean (standard error) of 

Λ0
c(0.05) = 0.05 Λ0

c(0.1) = 0.1 Λ0
c(0.15) = 0.15 Λ0

c(0.2) = 0.2

60% – 80% censoring rate

True frailty distribution: inverse Gaussian (IG)

Used: IG 0.055(0.012) 0.110(0.022) 0.164(0.033) 0.218(0.044)

Used: gamma 0.045(0.009) 0.082(0.015) 0.116(0.022) 0.149(0.028)

True frailty distribution: positive stable (PS)

Used: PS 0.057(0.013) 0.113(0.023) 0.168(0.033) 0.221(0.041)

Used: gamma 0.278(0.047) 0.505(0.090) 0.743(0.141) 0.998(0.203)

True frailty distribution: discrete (Disc)

Used: Disc 0.052(0.007) 0.106(0.012) 0.159(0.017) 0.212(0.023)

Used: gamma 0.051(0.007) 0.105(0.014) 0.161(0.020) 0.219(0.027)

30% – 40% censoring rate

True frailty distribution: inverse Gaussian (IG)

Used: IG 0.067(0.041) 0.137(0.085) 0.208(0.130) 0.279(0.176)

Used: gamma 0.035(0.006) 0.062(0.010) 0.087(0.013) 0.110(0.016)

True frailty distribution: positive stable (PS)

Used: PS 0.050(0.010) 0.101(0.018) 0.151(0.025) 0.201(0.032)

Used: gamma 0.192(0.031) 0.326(0.054) 0.452(0.078) 0.578(0.105)

True frailty distribution: discrete (Disc)

Used: Disc 0.050(0.006) 0.100(0.011) 0.151(0.015) 0.201(0.019)

Used: gamma 0.055(0.008) 0.114(0.015) 0.176(0.022) 0.241(0.023)
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Table 10

The function α under gamma, inverse Gaussian and positive stable models.

Gamma
α(t) = λ0

m(t) exp{βM T
Z + θ exp(βM T

Z)Λ0
m(t − )}

Inverse Gaussian
α(t) = λ0

m(t) exp(βM T
Z){ θ

2
Λ0

m(t − ) exp(βM T
Z) + 1}

Positive Stable
α(t) = λ0

m(t) 1
θ {Λ0

m(t − )}1∕θ−1 ⋅ exp( 1
θ β

M T
Z)
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Table 11

 for the distributions: gamma, inverse Gaussian and positive stable.

Gamma

θ −1 + δk0 + Nk1
(t)

θ −1 + Ak0(Tk0) + Ak1(Tk1 ∧ t)
Inverse Gaussian

{
1
θ ( 1

θ 2
+

Ak.
(t)

θ )−
1
2 if dk = 0

1
θ ( 1

θ 2
+

Ak.
(t)

θ )−
1
2 1 +

1
2 ( 1

θ 2
+

Ak.
(t)

θ )−
1
2 if dk = 1

1
θ ( 1

θ 2
+

Ak.
(t)

θ )−
1
2 {1 + ( 1

θ 2
+

Ak.
(t)

θ )−
1
2 } +

1
4 ( 1

θ 2
+

Ak.
(t)

θ )−1{1 +
1
2 ( 1

θ 2
+

Ak.
(t)

θ )−
1
2 }−1

if dk = 2

Positive Stable

{
θAk.

(t)θ−1 if dk = 0

θAk.
(t)θ−1 − (θ − 1)Ak .

(t)−1 if dk = 1

θ 2Ak.
(t)2θ − 3θ(θ − 1)Ak.

(t)θ + (θ − 1)(θ − 2)

Ak.
(t)(θAk.

(t)θ − θ + 1)
if dk = 2
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Table 12

The frailty distribution parameter value used in the simulation study

Kendall's τ 0.33 0.45

Gamma 1.25 2.20

Inverse Gaussian 8.50 380

Positive Stable 0.63 0.50
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Table 13

The inverse function A–1 (x).

Gamma
A −1(x) =

log(1 − θx)

θ exp(βM T
Z )

Inverse Gaussian
A −1(x) =

− 1 + 1 − θx

θ
2

exp(βM T
Z)

Positive Stable
A −1(x) = ( − x)θexp( − βM T

Z)
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