Gamma
|
f(t) = θ–1/θt(1–θ)/θ exp(–t/θ)/γ(1/θ), θ > 0 |
μ1 = 1, μ2 = θ + 1 |
ϕ(s) = (1 + θs)–1/θ
|
C(t1, t2) = θ + 1 |
Inverse Gaussian
|
f(t) = (πθ)–1/2 exp(2/θ)t–3/2 exp{–t/θ – 1/(tθ)}, θ ≥ 0 |
μ1 = 1, μ2 = θ/2 |
|
|
Sm(t1, t2) = P(T1 ≥ t1, T2 ≥ t2) = ϕ(H1(t1) + H2(t2)) where Hi(ti) = Λ0(ti) exp(βTZi) |
Positive Stable
|
|
μ1, μ2 does not exist for θ < 1 |
ϕ(s) = exp(–sθ) |
|
Discrete
|
Pr(ω = 1 + θ) = 0.5, and Pr(ω = 1 – θ) = 0.5, –1 ≤ θ < 1 |
μ1 = 1, μ2 = 1 + θ2
|
ϕ(s) = 0.5 exp {–s(1 – θ)} + 0.5 exp {–s(1 + θ)} |
C(t1, t2) = 1 + 4θ2[(1 + θ){G(t1, t2)}–θ + (1 – θ){G(t1, t2)}θ]–2
|
G(t1, t2) = exp{H1(t1) + H2(t2)} |