Skip to main content
. Author manuscript; available in PMC: 2013 Oct 1.
Published in final edited form as: J Stat Comput Simul. 2012 Jul 5;82(10):1449–1470. doi: 10.1080/00949655.2011.581669

Table 1.

Density functions (f), first and second moments (μ1, μ2), Laplace transforms (ϕ) and cross-ratio (C) for the distributions: gamma, inverse Gaussian, positive stable and discrete.

Gamma
f(t) = θ–1/θt(1–θ)/θ exp(–t/θ)/γ(1/θ), θ > 0
μ1 = 1, μ2 = θ + 1
ϕ(s) = (1 + θs)–1/θ
C(t1, t2) = θ + 1
Inverse Gaussian
f(t) = (πθ)–1/2 exp(2/θ)t–3/2 exp{–t/θ – 1/()}, θ ≥ 0
μ1 = 1, μ2 = θ/2
ϕ(s)=exp[2{1θ(1θ2+sθ)12}]
C(t1,t2)=1+θ2θlogSm(t1,t2)
Sm(t1, t2) = P(T1t1, T2t2) = ϕ(H1(t1) + H2(t2)) where Hi(ti) = Λ0(ti) exp(βTZi)
Positive Stable
f(t)=(πt)1Σk=1γ(kθ+1)(k!)1(tθ)ksin(θπk),,0<θ<1
μ1, μ2 does not exist for θ < 1
ϕ(s) = exp(–sθ)
C(t1,t2)=1+1θθlogSm(t1,t2)
Discrete
Pr(ω = 1 + θ) = 0.5, and Pr(ω = 1 – θ) = 0.5, –1 ≤ θ < 1
μ1 = 1, μ2 = 1 + θ2
ϕ(s) = 0.5 exp {–s(1 – θ)} + 0.5 exp {–s(1 + θ)}
C(t1, t2) = 1 + 4θ2[(1 + θ){G(t1, t2)}θ + (1 – θ){G(t1, t2)}θ]–2
G(t1, t2) = exp{H1(t1) + H2(t2)}