Skip to main content
. Author manuscript; available in PMC: 2013 Oct 1.
Published in final edited form as: J Stat Comput Simul. 2012 Jul 5;82(10):1449–1470. doi: 10.1080/00949655.2011.581669

Table 3.

The posterior mean E(ωk|Xk, δk, Zk, Xk0, δk0, Zk0) under gamma, inverse Gaussian, positive stable and discrete.

Gamma
{1+ θHk.(t)}–1/θ
inverse Gaussian
{1θ(1θ2+Hk.(t)θ)12ifdk=01θ(1θ2+Hk.(t)θ)12[1+12(1θ2+Hk.(t)θ)12]ifdk=11θ(1θ2+Hk.(t)θ)12[{1+(1θ2+Hk.(t)θ)12}+14(1θ2+Hk.(t)θ)1{1+12(1θ2+Hk.(t)θ)12}1]ifdk=2}
Positive Stable
{θHk.(t)θ1ifdk=0θHk.(t)θ1(θ1)Hk.(t)1ifdk=1θ2Hk.(t)2θ(t)2θ3θ(θ1)Hk.(t)θ+(θ1)(θ2)Hk.(t)(θHk.(t)θθ+1)ifdk=2}
Discrete
(1+θ)dk+1exp{(1+θ)Hk.(t)}+(1θ)dk+1exp{(1θ)Hk.(t)}(1+θ)dkexp{(1+θ)Hk.(t)}+(1θ)dkexp{(1θ)Hk.(t)}