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ABSTRACT Transcription is regulated by a multitude of factors that concertedly induce genes to switch between activity
states. Eukaryotic transcription involves a multitude of complexes that sequentially assemble on chromatin under the influence
of transcription factors and the dynamic state of chromatin. Prokaryotic transcription depends on transcription factors, sigma-
factors, and, in some cases, on DNA looping. We present a stochastic model of transcription that considers these complex
regulatory mechanisms. We coarse-grain the molecular details in such a way that the model can describe a broad class of
gene-regulation mechanisms. We solve this model analytically for various measures of stochastic transcription and compare
alternative gene-regulation designs. We find that genes with complex multiprotein regulation can have peaked burst-size distri-
butions in contrast to the geometric distributions found for simple models of transcription regulation. Burst-size distributions are,
in addition, shaped by mRNA degradation during transcription bursts. We derive the stochastic properties of genes in the limit of
deterministic switch times. These genes typically have reduced transcription noise. Severe timescale separation between gene
regulation and transcription initiation enhances noise and leads to bimodal mRNA copy number distributions. In general,
complex mechanisms for gene regulation lead to nonexponential waiting-time distributions for gene switching and transcription
initiation, which typically reduce noise in mRNA copy numbers and burst size. Finally, we discuss that qualitatively different gene
regulation models can often fit the same experimental data on single-cell mRNA abundance even though they have qualitatively
different burst-size statistics and regulatory parameters.
INTRODUCTION
Transcription operates in a stochastic manner and depends
on many molecular factors. Recent studies suggest that eu-
karyotic transcription proceeds in a quasiordered sequence
of covalent histone modifications and protein complex
formation on chromatin (1–3). Activators recruit a multitude
of proteins to initiate transcription (4). Nucleosomes are re-
positioned and evicted to facilitate DNA access and protein
complex assembly, culminating in an assembled elongation-
competent RNA polymerase II (5). Dozens of proteins in
large assemblies have been implicated in transcription regu-
lation, e.g., SAGA, mediator, SWI/SNF, and generalized
transcription factors (6). Although prokaryotic transcription
often relies on a smaller number of proteins, gene regulation
still depends on several factors, such as transcription factors,
a sigma-factors, RNA polymerase, and in some cases DNA
looping.

Single-cell studies show that transcription can proceed
in a bursty fashion and bring about large cell-to-cell
heterogeneity (7–10). Although bursts in prokaryotes have
been mostly attributed to translation or leaky repression
(11–14), the origin of bursts in eukaryotes is less clear. Tran-
scription bursts in yeast have been linked to the quality of
the TATA box and its role in determining the frequency of
transcription reinitiation (15). Nucleosome remodeling and
eviction have been shown to influence the rate and noise
of gene expression (16–19).
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The stochastic model of transcription that is most
commonly used is the two-state model of gene expression.
Its advantage is that the burst-size distribution and the
stationary mRNA copy-number distribution can be obtained
analytically (11,14,20,21). In this model, a gene switches
between an on-and off-state and mRNA is produced during
the on-phase. It is assumed that each of these processes
relies on a single rate-limiting step and as a result, these pro-
cesses are described by first-order reactions (10,20,22–26).
Although this is indeed what is expected for a simple regu-
lation mechanism, involving a single protein that induces
gene switching between two activity states, even many
prokaryotic genes are known to have more complex regula-
tory mechanisms. For eukaryotic genes, which typically
involve large numbers of regulatory proteins and cofactors,
there is no a priori reason to assume that a single step for
each transition would be rate-limiting. A few experimental
and theoretical studies do therefore consider multistep
models where transitions between on-and off-state include
multiple reactions (7,16,18,28,29). In these studies, the
design of the model was guided by prior knowledge about
the system, either in terms of different possible nucleosome
states (for the PHO5 gene (16,18)) or of known complexes
of general transcription factors (7). Theoretical studies
that are more recent extend these approaches and calculate
stochastic measures for systems with arbitrary promoter
complexity while retaining synthesis and degradation as
single-step reactions (30–32).

In this work, we derive stochastic models for gene expres-
sion starting from the probability distributions for the
http://dx.doi.org/10.1016/j.bpj.2012.07.011
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lifetimes of on-and off-states as well as the waiting times
between consecutive transcription initiation events. In this
way, we can deal with complex molecular mechanisms for
transcription regulation in a coarse-grained manner. In
contrast to previous methods, the approach is not limited
to a specific Markov chain description of possible promoter
states. Instead, we offer analytical solutions for families of
waiting-time distributions for on-and off-states where the
shape of the waiting-time distribution is a parameter of
the model. Hereby we can efficiently model a whole range
of different gene-regulation mechanisms. Our approach
allows us to treat the number of promoter states and possible
transitions between them as variables, which are incorpo-
rated into the waiting-time distribution for gene state transi-
tions. Through this approach, we can directly compare the
stochastic properties of genes. In this article, we focus on
comparisons of the probability distributions of mRNA
copy numbers and of burst size and consider several novel
extensions, such as mRNA degradation during the gene’s
on-phase and genes with deterministic switch times. Finally,
we discuss contemporary limitations of model-based anal-
ysis of experimental data on single molecule counting of
mRNA (e.g., mRNA FISH).
FIGURE 1 Molecular-ratchet model of the basal design of eukaryotic

transcription. (a) A eukaryotic gene is displayed that switches between

on- and off-states via a sequence of transitions that involve reversible

protein complex formation on chromatin followed by covalent-histone

modifications that mark progress and sensitize chromatin for the next

protein complex assembly. (b) Coarse-grained view of the molecular ratchet

where the duration distributions of the on- and off-states and transcription

initiation (involving PIC formation, open complex formation, and promotor

escape) are given by general first-passage time distributions f(t), g(t), and

h(t). The first-passage time distributions can be obtained from a molecular

mechanism for ratchet transitions.
RESULTS

Complex transcription regulation mechanisms

Transcription regulation typically depends on the concerted
action of several proteins. In prokaryotes, transcription
regulation is typically less complex than in eukaryotes but
also there several proteins are required. Experimental
evidence suggests that the eukaryotic mechanism follows
an ordered, multistep and cyclic mechanism involving a
sequence of transitions between distinct chromatin states
(1–3,33). One interpretation of this data is that each transi-
tion involves reversible protein complex formation on chro-
matin followed by irreversible histone modifications, as
shown in Fig. 1 A. These modifications sensitize chromatin
for the assembly of the next complex in the sequence. We
shall refer to this model as the ‘‘molecular ratchet model’’.
In this model, some of the chromatin states are transcrip-
tionally permissive, and together make up the on-phase of
the gene and allow for (repeated) multistep assembly of
the preinitiation complex and promoter escape.

In the molecular ratchet model, the time that a single gene
spends in its on- or off-state and the time between consecu-
tive transcription initiation events are random variables that
depend on the kinetics of the underlying molecular mecha-
nisms. These times are sampled from the waiting-time
distributions f(t), g(t), and h(t) (Fig. 1 B), which correspond
to the first-passage time distribution of the underlying
molecular mechanism. In analytical studies, the waiting-
time distributions for gene switching and transcription initi-
ation are typically modeled as exponential distributions,
corresponding to single first-order reactions (14,20,21,34).
However, recent data (35,36) indicate that lifetimes of a eu-
karyotic gene’s off-state can have peaked (nonexponential)
distributions. These findings suggest that the underlying
molecular mechanisms are more complex than single first-
order reactions. Our aim is to derive models with the least
number of parameters and which are flexible enough to
describe a broad class of transcription mechanisms. To
achieve this we have to approximate the complex molecular
mechanisms involved in transcription regulation by suitable
waiting time distributions, i.e., f(t), g(t), and h(t).
Biophysical Journal 103(6) 1152–1161
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Limited experimental information exists on protein
assembly mechanisms and histone-modification kinetics.
Random (37,38) as well as sequential (39) assembly mech-
anisms have been reported. Our analysis indicates that
gamma-distributions can model a wide range of molecular
mechanisms relevant for gene switching and transcription
initiation. In Fig. 2, the first-passage time distribution is
shown for a protein complex formation process relevant
for transcription regulation. It is a peaked waiting-time
distribution that can be approximated by a gamma-distribu-
tion parameterized with the same mean and variance of the
assembly-time probability density corresponding to the
actual molecular mechanism. In the Supporting Material,
different mechanisms (sequential, preferentially random,
and random) are explored using realistic kinetic parameters
(see Fig. S3 in the Supporting Material). We find in all cases
that the first-passage time distributions can be approximated
by gamma-distributions as long as no severe timescale sepa-
ration occurs (see Fig. S5).
Burst-size probability distributions for different
transcription mechanisms

Transcription often proceeds in a bursty fashion
(8,12,14,15,23). This indicates that, while the gene is in
its on-state, several transcription initiation events can occur
(20). For a gene with exponential waiting times for gene
switching and transcription initiation, the burst size is
geometrically distributed (12,14). In this section, we will
derive the probability distribution for burst sizes for genes
with complex transcription mechanisms.

We define the probability distribution for the burst size
pb(B ¼ b) as the distribution of the number of transcription
initiation events per single on-phase. The probability
density function of the waiting time between transcription
initiation events is denoted by h(t) (Fig. 1 b). The probability
that at least b mRNA’s are formed during the lifetime of the
on-state, ton, is given by
FIGURE 2 First-passage time (duration) distribution for a single-

transition mechanism. A single-ratchet transition composed out of revers-

ible protein complex assembly followed by irreversible covalent histone

modification has a peaked waiting time distribution (solid line) that can

be approximated by a gamma-distribution with the same mean and variance

(dotted line).
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pbðBRbjTon ¼ tonÞ ¼
Zton
0

hðtÞðbÞdt;

where the probability density function h(t)(b) equals the bth

convolution of h(t), given by

L�1
�
LðhðtÞÞb

�
;

where L($) denotes the Laplace transform. The probability
that exactly b initiation events occur in a time span ton is
given by the probability mass function,

pbðB ¼ bjTon ¼ tonÞ ¼ pbðBRbjTon ¼ tonÞ
� pbðBRbþ 1jTon ¼ tonÞ:

The burst-size distribution results after integrating over all
Ton times,

pbðB ¼ bÞ ¼
ZN
0

pbðB ¼ bjTon ¼ tonÞgðtonÞÞdton: (1)

This equation applies to a general waiting-time distribution
(i.e., molecular mechanisms) for the on-state and for tran-
scription initiation. The moments of this distribution can
be determined from the Laplace transforms of h(t) (see the
Supporting Material).

For exponentially distributed waiting times for the on-
state and transcription initiation Eq. 2 simplifies to
a geometric distribution, pb(B ¼ b) ¼ p(1 – p)b, which
was also found by others using combinatorics (11,14).
Here p ¼ kg/(kh þ kg) equals the probability for a step in
the on-to-off transition. In this case, the mean burst-size
hbi is given by the mean on-time (k�1

g) divided by the
mean initiation time (k�1

h). The noise in burst-size, hd2bi/
hbi2, equals 1 þ 1/hbi and cannot reduce to <1. The
burst-size distribution remains geometric as long as the
on-state has an exponentially distributed waiting time
even when general waiting-time distributions, h(t), are
considered for the initiation process.

To explore how nonexponential waiting times for switch-
ing and transcription initiation (for complex molecular
mechanisms) influence the burst-size distribution, we
consider Erlang-distributed duration times for the on-phase
and transcription initiation. The Erlang-distribution E(N,k)
is a special case of a gamma-distribution and gives the
distribution of the waiting times for a sequence of N first-
order reactions with rate constant k. In the most general
case, with Erlang-distributed initiation times (a series of
Nh reactions with rate constant kh) and Erlang-distributed
on-lifetimes (a series of Ng reactions with rate constant
kg), the burst-size distribution is given by
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pbðB ¼ bÞ ¼
Xðbþ1ÞNh�1

i¼ bNh

�
iþ Ng � 1

i

�
pNgð1� pÞi; (2)

where p¼ kg/(khþ kg) equals the probability for a step in the
on-to-off transition. This burst-size distribution can be
a peaked distribution and is therefore qualitatively different
from the previous two transcription designs (Fig. 3).

When Nh is set to 1 in Eq. 2, the initiation waiting-time
distribution becomes exponentially distributed and the on-
to-off transition remains Erlang-distributed. This design
leads to a negative binomial burst-size distribution,

pbðB ¼ bÞ ¼
�
bþ Ng � 1

b

�
pNgð1� pÞb: (3)

This distribution is qualitatively different from a geometric
distribution in its noise properties: it is a peaked distribution
with tunable dispersion. The mean burst-size corresponds
again to a ratio of timescales, hbi ¼ Ngkh/kg. The noise in
burst-size, �

d2b
�

hbi2 ¼
�
d2ton

�
htoni2

þ 1

hbi ¼ 1

Ng

þ 1

hbi;

decreases when the lifetimes of the on-to-off are less
dispersed. Having in addition a multistep mechanism for
initiation (Eq. 2) further reduces the noise, but only slightly
(Fig. 3). Therefore, the multistep design of the on-to-off
transition can reduce burst-size noise by making the burst-
size distribution peaked.
FIGURE 3 Nonexponential on-state time distributions make the burst-

size distribution peaked. The on-to-off transition and the initiation mecha-

nism were modeled with Erlang (solid, light-shaded) or exponential

(dark-shaded) distributions. The average duration of the on-state was

kept constant while the initiation rate was adjusted to achieve a mean

burst-size of 25 initiations per on-phase. The initiation time is exponentially

distributed (solid line) and Erlang-distributed (light-shaded line). A nonex-

ponentially distributed initiation time has a small effect on the burst-size

dispersion.
The effective burst-size distribution:
consideration of mRNA degradation during
the burst phase

So far, degradation of mRNA during the on-phase was ne-
glected. This is assumed in most studies of transcription
bursts. A more realistic measure for the burst-size statistics
is the distribution of the number of remaining transcripts at
the end of a single on-phase, taking into account mRNA
synthesis and degradation. This distribution we refer to as
the effective burst-size distribution, pbe . The distribution of
the remaining number of mRNAs produced during a certain
period of time given zeroth-order transcription and first-
order mRNA degradation kinetics is known analytically
(see Eq. 1, and Hemberg and Barahona (40)). Substitution
of this relationship for pb(B ¼ njTon ¼ ton) into Eq. 1 yields
the effective burst-size distribution as function of the on-
duration distribution, g(t). For an exponentially distributed
lifetime of the on-state, the effective burst-size distribution
equals (with kd as the rate constant for mRNA degradation),

pbeðBe ¼ beÞ ¼
�
kh
kd

�be

G

�
kd þ kg

kd

	
1

� F1R

�
1þ be;

kd þ kg
kd

þ be;�kh
kd

	
:

(4)

In this equation, G denotes the gamma-function and F1R the
regularized and confluent hypergeometric function of the
first kind. Equation 4 is explored in Fig. 4. The effective
burst-size converges to the steady-state level of mRNA
when the gene is rarely in the off-state. At low turnover of
FIGURE 4 High mRNA turnover or nonexponentially distributed on-

lifetime can make the effective burst-size distribution peaked. All models

have an exponential distribution for the initiation mechanism. The on-to-

off transition was modeled with an Erlang distribution (N¼ 10, dotted black

line) and with exponential distributions otherwise with a fixed average

duration. For all models the initiation rate constant was adjusted to fix

the mean effective burst-size to 25. The average mRNA lifetimes are

10ton (solid black, dotted black), 1ton (dark-shaded), and 0.1ton (light-

shaded). At high turnover (light-shaded), mRNA can almost attain its

steady-state level given transcription and degradation kinetics and the

mRNA burst-size becomes peaked. At low turnover of mRNA (black lines),

the burst-size can become peaked for nonexponentially distributed on-to-off

transition durations (dotted black).
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mRNA, the nonexponentially distributed on-durations can
make the effective burst-size distribution peaked. Then,
the distribution approximates Eq. 3.

If the lifetime of the on-state is Erlang-distributed, the
mean and noise of the effective burst-size distribution can
be calculated as

hbei ¼ kh
kd

�
1�

�
kg

kd þ kg

�Ng
�
;

�
db2e

�
hbei2

¼ 1

hbei þ

�
kg

2kd þ kg

�Ng

�
�

kg
kd þ kg

�2Ng

��
kg

kd þ kg

�Ng

�1

�2
:

Inspection of the expressions in this equation indicates that
noise in burst-size can be tuned above as well as below the
noise of geometrically distributed bursts. These equations
indicate at the large Ng the effective burst size converges
to kh/kd. In the noise equation, the numerator of the second
term is typically positive.
Noise in mRNA copy numbers for genes with
short on-periods

The probability to have a certain copy number of mRNAs at
stationary state depends on the kinetics and mechanisms of
transcription and degradation. The associated probability
distributions for mRNA have been derived for a number
of gene systems, mostly dealing with the two-state model
(21,23,41) or for more complex models using simulation
(7,18,28). These studies suggest that transcription bursts
enhance noise in mRNA copy numbers. In this section, we
will study whether the complex transcription mechanisms
for gene switching can compensate for this type of noise
enhancement. We developed a method for calculating the
moments of mRNA copy number distributions for genes
with general lifetime distributions for switching (see the
Supporting Material). Here, we first discuss this model in
its stochastic hybrid system limit (42) where the durations
of the on-state are infinitesimally short. As part of this
description, bursts are solely characterized by their mean
burst-size and noise level.

For anErlang-distributed lifetime of the off-state, the noise
in the steady-state mRNA distribution can be expressed as

�
d2n

�
hni2 ¼ hbi

2hni

0
BBBBBBB@

1þ
�

kf
kf þ kd

�Nf

1�
�

kf
kf þ kd

�Nf
� 2kf
Nf kd

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
nonexponential effect

þhdb2i
hbi2 þ 1

hbi

1
CCCCCCCA
:

(5)
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This equation indicates that the noise in mRNA levels
increases with the mean burst size and its noise. More
sequential steps in the transition from off- to on-state
decrease the noise. This suggests that a reduction in the
noise in the lifetime distribution of the off-state leads to
a reduction in the noise of the resulting copy-number distri-
bution. The multistep design already proved beneficial for
the reduction of burst-size noise, but then it led to an
increase in the number of reactions for the on-to-off-transi-
tion. Thus, multistep transitions lead to a reduction in the
noise of burst-size and mRNA.

The nonexponential term is largest when degradation is
slow (kd << kg). In the absence of degradation, the nonex-
ponential term becomes 1/Nf, which is equal to the noise of
gamma-distributed lifetimes for the off-state. In this limit,
the equation reduces to the equation given in Pedraza and
Paulsson (43). In more realistic regimes, when the half-
life of mRNA is of the same order as the duration of the
off-state, the deviation of the nonexponential term from 1
is less pronounced.

The application of Eq. 5 is limited to systems with short
lived on-states, e.g., leaky repression. Fig. S5 shows the
relative deviation of the mRNA noise of the instantaneous
burst model compared to a model with gamma-distributed
switch times. For the Lac/Ara promoter in Escherichia
coli for which on- and off-duration distributions have been
measured with an MS2 construct (14), the relative deviation
of Eq. 5 from the switching model lies between 25 and 50%
for typical lifetimes of bacterial mRNAs of 5–10 min.
Noise in mRNA copy numbers for a gene with
deterministic switch times

The multistep sequential design of a eukaryotic transcrip-
tion cycle can cause the waiting-time distributions for
gene switching to have low noise. Accordingly, an inter-
esting limit of the ratchet model is then a deterministic-
switch model. We have derived an analytical expression
for the complete probability distribution for mRNA copy
numbers (see the Supporting Material). Simulations show
that Erlang-distributed switch times with N R 5 show qual-
itatively the same behavior as a deterministic switch model
(see Table S1 in the Supporting Material). This suggests that
quite some eukaryotic genes could be close to the determin-
istic limit of gene switching.

In Fig. 5, the copy-number distribution is explored
numerically. Severe timescale separation can induce
bimodal distributions of mRNA across cell populations;
the same applies to the stationary mRNA distribution for
the single-step gene switch model (20). However, the noise
in mRNA is smaller in the case of deterministic switching,
as we shall see next. This suggests that eukaryotes can
reduce mRNA noise by tuning the design of complex tran-
scription mechanisms. The noise in the stationary state
mRNA copy number can be expressed analytically as



FIGURE 5 Stationary mRNA copy number distributions for the deter-

ministic gene switch as function of on- and off-durations. A gene controlled

by a deterministic switch with transcription rate 0.5 mRNA min�1 and

a mRNA lifetime of 40 min. If the gene is always in the on-state, the

mRNA is Poisson-distributed with mean 20 molecules per cell (black).

With 40 min in the on- and the off-state, the mean mRNA level goes

down (dark-shaded). With infrequent switching (100 min in on- and off-

state), the mRNA distribution becomes bimodal (light-shaded). When the

gene is 1 min in the on-state and 60 min in the off-state, the distribution

becomes nearly exponential with a mean of z0.3 molecules per cell

(dashed black).
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�
d2n

�
hni2 ¼ 1

hni þ
ð1� ekdtoff Þð1� ekdtonÞ

1� ekdðtonþtoff Þ
ton þ toff
kdt2on

þ toff
ton

: (6)

The mean mRNA level is given by

hni ¼ ton
ton þ toff

kh
kd
:

The sum of the last two terms in this equation is always
larger than zero and increases with shorter on-times and
longer off-times: genes that are infrequently in the on-state
are more noisy than highly active genes, which converge to
Poissonian noise.
Time-resolved single-molecule mRNA counting
allows for model discrimination

Complex formation, DNA looping, transcription initiation,
and mRNA synthesis cannot yet all be tracked at single-
molecule resolution in one experiment. The question is,
then, how much information about the underlying transcrip-
tion mechanisms is actually captured by the contemporary
experimental data, and to what extent are the contemporary
analytical models capable of discriminating alternative tran-
scription mechanisms?

The advantage of our model is that it captures a broad
range of different transcription mechanisms, ranging from
simple to very complex transcription mechanisms. In addi-
tion, the waiting-time distributions for f(t), g(t), and h(t) can
generally by approximated by gamma-distributions, which
require only two parameters each. This leads to a model
with at least seven parameters. The experimental data that
are often at hand are mRNA copy-number distributions—
for instance, those measured by mRNA-FISH labeling
(10,23,44,45) or RT-qPCR on individual cells (46–49).

Often the simplest gene switch model is used to fit mRNA
copy-number distributions. Such a model has exponential
waiting-time distributions for f(t), g(t), and h(t). We shall
show next that such fits may be misleading because models
with nonexponential waiting times, which can have very
different burst statistics, can fit the data often equally well
(Fig. 6 and see Table S2 and Table S3).

We fitted the mRNA distributions for the five genes
measured by Zenklusen et al. (10) to models with Erlang-
distributed lifetimes of on- and off-states. The rate constants
for transcription initiation and state switching were calcu-
lated such that the first three moments of the steady-state
distribution of the model matched the moments of the exper-
imental data. The mRNA distributions of the models were
obtained from stochastic simulations (50). The quality of
the fit, as measured by the c

2 value, did not differ signifi-
cantly between models with different values for Ng and Nf.
The failure to discriminate between alternative transcription
mechanisms on the basis of the stationary mRNA distribu-
tion was perhaps to be expected for the three house-keeping
genes (MDN1, DOA1, KAP104). Zenklusen et al. (10)
already showed that these distributions could be fitted by
a Poisson distribution, suggesting a model with a short
off-state. In this regime, the shapes of the distributions
of the lifetimes of both states do not significantly affect
the steady-state mRNA distribution as is indicated by
Fig. S6 b. More surprisingly, we could not use the mRNA
distribution for the two bursting genes (PDR5, POL1) in
the data set to distinguish different transcription initiation
models (see Fig. 6).

The different models with multistep and single-step on-
to-off-switch mechanisms used in the fit vary vastly in their
fractions of time that the gene is in the off-state, in total
transcription cycle duration relative to the average time
for degradation, and in burst-size distributions (Fig. 6, see
Table S2). Even though these parameters do also vary
between the different models fitted to the three house-
keeping genes, a closer look at mRNA time traces reveals
that those differences are less informative, as the on- and
off-phases are not distinguishable from the time traces of
the mRNA production events alone. This was further
confirmed by calculations of the burst significance (21).
For all models fitted to mRNA distributions of the three
housekeeping genes, the burst significance was <0.1 (even
though the fraction of time the gene is in the off-state
according to the model can be significant, e.g., for DOA1;
see Table S3), whereas all the models for the two bursting
genes showed high burst significances (>0.85).

Fig. 7 exemplifies further how inferring parameters from
a fit to the two-state model with exponentially distributed
waiting times may be misleading. We simulated the
Biophysical Journal 103(6) 1152–1161



FIGURE 6 Stationary single-cell mRNA data contain only very limited information about the transcription mechanism. (a) Lifetime distributions of on-

and off-states that were determined from choosing a combination of shape parameters for both states and then determining the rate parameters for both life-

time distributions as well as the rate constant for h(t) by matching the first three moments of the experimental data: (i.) (Red) Non ¼ 1, Noff ¼ 1. (ii.) (Blue)

Non ¼ 1, Noff ¼ 10. (iii.) (Green) Non ¼ 5, Noff ¼ 5; (magenta) Non ¼ 10, Noff ¼ 1; and (orange) Non ¼ 10, Noff ¼ 10. (b) Experimental data for PDR5 from

Chubb et al. (8) (shaded bars) and the mRNA distributions of the fitted models. (c) Burst size distributions vary greatly between the fitted models. (d) Time-

traces for the models described in panel a. (Colored lines) On- and off-states. (Black lines) Time-traces of simulations (50). (Numbers on top) Burst sizes.
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distribution for a model where the lifetimes of both on- and
off-state follow an Erlang distribution with four steps and
used this simulated data for a fit with the exponential two-
state model. The parameter range inferred from this fit on
a 90% confidence level does not include the true parameters
used to generate the distribution. In general, how the signif-
icant the parameter discrepancy is between simple and
complex models depends on the parameter regime. The
differences are largest for a bursting gene model in a
bimodal regime of mRNA copy numbers. For genes with
on-state durations longer than off-state durations, the fits
between exponential and nonexponential models are in
good agreement. This demonstrates that the static distribu-
tions of mRNA copy numbers contain only limited informa-
tion about the underlying mechanisms and burst statistics.
Time traces of mRNA copy numbers (e.g., measured
Biophysical Journal 103(6) 1152–1161
with MS2 tagged mRNAs (51–53)) does allow for a
discrimination of the different transcription mechanisms
(see Fig. S9).
DISCUSSION

In this work, we have explored the consequences of complex
molecular mechanisms for transcription regulation using
nonexponentially distributed lifetimes of gene states for
stochastic transcription. Such lifetime distributions occur
naturally as a consequence of protein complex formation
mechanisms in transcription regulation under the condition
that the associated reactions occur on similar timescales.
Recently, in eukaryotes, experimental evidence for nonex-
ponentially distributed lifetimes of gene states was found
(35,36). In prokaryotes, even though the gene regulation



FIGURE 7 Parameters estimated with the two-

state model with exponentially distributed waiting

times can be misleading. (a) Histogram shows the

copy number distribution obtained by simulating a

model with nonexponentially distributed lifetimes

for on- and off-state. Both distributions were

modeled as Erlang distributions with four steps

and average times of htoni ¼ 1 and htoffi ¼ 3. (Solid

line) Best fit to the first three moments of the simu-

lated data using the exponential two-state model.

(Dashed line) Distribution for an exponential

two-state model that has the same average life-

times for on- and off-state as the nonexponential

model used to simulate the data. (b–d) Contours

show 99% and 90% confidence levels for a param-

eter fit to the exponential two-state model. (Solid

dot) Best fit. (Asterisk) Parameters of the nonexpo-

nential model used to generate the data.
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mechanisms do involve several molecules, the waiting
times for gene switching in some cases have been found
to be exponentially distributed (11,14). We found that non-
exponential waiting times for gene switching have an influ-
ence on the burst size and mRNA distribution across a cell
population and cause a reduction in transcription noise.
The methods we propose can be extended to handle specific
nonexponential waiting-time distributions when more
mechanistic knowledge of the transcription initiation mech-
anism becomes available, as many of our equations do not
depend explicitly on the type of waiting-time distribution
for gene states.

Many studies aim at inference of kinetic parameters and
burst sizes from experimental data on single cells. Often
the stationary mRNA distribution (measured with RNA
Fish) across a cell population is fitted to either the two-state
transcription model or models tailored to the gene under
investigation based on prior knowledge. Our results high-
light the importance of the type of waiting-time distributions
for gene switching in inference studies. Different kinetic
parameters and burst sizes can be fit to the same distribution.
Time-resolved single-molecule counting of mRNA, first
carried out using a bacteriophage-derived protein MS2
(8,14,53) and recently with PP7 (54), are promising methods
that do suffer less from the limitations we discussed. The
disadvantage to these methods is that these experiments
are more invasive and that genetic engineering is required.
The molecular ratchet model is a step toward quantita-
tively modeling eukaryotic gene regulation. The modular
nature of the ratchet model allows for various extensions.
Specific coarse-grained waiting time distributions can be
used that derive from molecular mechanisms that could,
for instance, incorporate chromatin looping. The integration
of such models with time-resolved single-cell technologies
will undoubtedly give more insight into the basal design
and regulation of gene expression.
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