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ABSTRACT The role of symmetry in the folding of pro-
teins is discussed using energy landscape theory. An analyt-
ical argument shows it is much easier to find sequences with
funneled energy landscape capable of fast folding if the
structure is symmetric. The analogy with phase transitions of
small clusters with magic numbers is discussed.

The role of symmetry in the physics of atoms, nuclei, and
elementary particles is different from its role in the biological
world. In microphysics, it has been fruitful to postulate sym-
metry as being fundamental, thereby severely constraining the
form of the underlying laws (1). Furthermore, the conse-
quences of symmetry for dynamics and stability are profound
in the subatomic world. General treatment of these symmetry
effects, based on group theory, allows a nearly complete
classification of states and transitions (2, 3). Indeed, even the
deviations from exact symmetry have their own quantifiable
consequences. In the biological world, symmetry exists too, but
it often appears to be an accident (4). While accidents still can
have significant consequences, rationalizable on a case-by-case
basis, there has been no general unifying theory of symmetry
in biology. Exact symmetry in biology would even seem to be
antithetical to the notions of complexity, variety, and meta-
morphosis that are central to the idea of life as we know it.
Nevertheless, as in microphysics, life requires stability and
sameness as well as change. The apparent conflict of these
notions was captured in Schrödinger’s metaphor of life as an
‘‘aperiodic crystal’’ (5). Since Schrödinger’s time, numerous
studies of biological macromolecules have revealed their struc-
ture and, thereby, the aptness of his aphorism. X-ray diffrac-
tion and nuclear magnetic resonance have led to a view of
proteins and nucleic acids as complex three-dimensional struc-
tures with some precision (6, 7). At the same time, dynamical
studies show that the situation is much more complex than the
static models alone suggest (8) and that the proteins fluctuate
through a variety of conformational substates whose average
is represented by the beautiful pictures now in biology text-
books. This complexity is reflected in the notion of the energy
landscape (9).
In this paper, we discuss the role that symmetry plays in the

structure and dynamics of biomolecules. Some of this discus-
sion is speculative, but we shall see that the origin and
importance of symmetry for biomolecules can be made much
clearer in the light of a joint consideration of evolution and
biomolecular energy landscapes. We will argue that, while the
relationship between symmetry, stability, and dynamics is
different for biological physics than for the subatomic world,
there are deep similarities.

Symmetry and Evolution

Two extreme points of view can be taken in thinking about
biomolecular symmetry from an evolutionary standpoint.

Symmetry of its biomolecules may provide some essential
advantage to an organism and thusmay reflect some important
constraint on function. Alternatively, biomolecular symmetry
may be a ‘‘frozen accident’’ of natural history. An example of
thinking along the first lines was provided by Jordan (10, 11)
long before a structure of any biological macromolecule was
known. Jordan argued that heredity required the duplication
of a molecular structure and that this duplication could be
specifically carried out through the formation of a symmetric
dimer in which like parts of a molecule would be attracted to
like parts of its dimeric counterpart through a quantum
mechanical resonance interaction. The attraction, according to
Jordan, arises through the combined thermal and quantum
fluctuations of the electronic structure of the molecule. These
attractions are stronger if the two molecules have the same
excitation spectrum. Despite the beauty of the idea, the
analysis wasmathematically f lawed. Pauling andDelbrück (12)
soundly trounced it by showing the weakness of the difference
in force and argued instead that heredity and biological
specificity in general arose through precise shape complemen-
tarity, so that symmetry was not necessary for these functions.
The history of structural molecular biology has many times
over confirmed the fruitfulness of the Pauling and Delbrück
point of view.
Biomolecular symmetry may be advantageous and therefore

adaptive on other grounds, however. Duplication of parts from
the same instructions means less expenditure of energy and
material in carrying forward genetic information. On these
grounds, Crick and Watson (13) predicted that the coats of
viruses would be made of repeating subunits and thus exhibit
the symmetry of closed polyhedra. This beautiful symmetry of
viruses was later revealed when their structures were solved by
electron microscopy and x-ray diffraction (14). Larger organ-
isms are not so constrained by the cost of passing on genetic
information. Indeed, there is a tremendous amount of ‘‘non-
coding DNA’’ in eukaryotes (15), so this cannot be the entire
explanation for symmetry in more complex living things.
As the study of DNA sequence confirms in the higher

organisms, gene duplication is quite common and provides a
route to symmetry. A fair fraction of enzymes and other
functional molecules are oligomers (4). The most famous
example is hemoglobin (see Fig. 1). The tetrameric hemoglo-
bin molecule has a two-fold symmetry, as revealed by x-ray
diffraction. The oligomerization allows the possibility of co-
operative binding with all of the concomitant functional
advantages. The natural historians tell us that this function
evolved '600 million years ago, and the missing link between
the monomeric and oligomeric form can be seen fixed in the
genes of the sea lamprey whose hemoglobin subunits are
monomeric but associate upon binding oxygen (16). The
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similarity between the a and b subunits is so close that we can
be quite confident that this gene duplication occurred as a
historical fact. In this scenario, the actual symmetry of the
oligomer would seem to be a kind of accident, and the
differences between the a and b chains, which prevent a full 222
symmetry from being exact, is a fossilized mark of this history.
It is the inexact symmetries of biological molecules that are

most striking. At the tertiary fold level, a single nonoligomeric
biomolecule can show symmetry in its overall structure, even
though the sequences of the approximate symmetrically re-
lated portions of the chains are not the same. An example of
this type is shown in Fig. 2. The overall chain traces of the
residues from 1 to 88 and from 89 to 174 of the g crystallin
clearly have the same shape, but their sequences are not
identical. The symmetry is therefore not exact; furthermore,
the similarity in sequence is sufficiently small that we might not
realize the two sequences are related by evolution at first.
Nevertheless, each section of the molecule is so large that,
again, we can be fairly confident after seeing the structure that,
in fact, this approximate symmetry arose through gene dupli-
cation and fusion followed by genetic drift for a very long
period of time.
The most striking examples of approximate biomolecular

symmetry arise, however, for smaller proteins that lack any
obvious subunit structure or symmetry in sequence. In Fig. 3,
we show a four-helix bundle protein, cytochrome b562. There
is no obvious exact symmetry in sequence, but the tertiary fold
is easily described using the language of symmetry. The
molecule is made of four helices of nearly the same length.
(One has a poorer hydrogen bonding, so it actually appears to
be shorter than it really is.) There is also a twist ultimately due
to chirality, which is important, but, ignoring this, it is a
symmetric bundle of four cylinders. It is at this crude level of
approximation that a symmetry is apparent.
Protein folds generally can be described as belonging to

families (48). Many, but not all, of these families exhibit simple
approximate symmetries when we idealize them, ignoring the

fine details of the chirality of the helices—e.g., approximate
mirror symmetries, like the four-helix bundle, or approximate
polyhedral symmetries, like the globins (see Fig. 3). The
hemoglobin subunit, when the helices are rendered as cylin-
ders, looks like a polyhedron. Symmetry is not universal, since
some families do not exhibit even this approximate symmetry.
Why are these approximately symmetric structures so preva-
lent? Again it is possible that the approximate symmetry is an
accident of natural history tracing back to primordial proteins.
It has been hypothesized that the original proteins were much
shorter than most present day proteins and that the larger
proteins were later assembled from these units (17, 18). This
attractive hypothesis was made soon after the discovery of split
genes or exons in eukaryotes, which could have encoded these
folding units. The hypothesis remains a bit controversial, but,
if correct, even the symmetry of these smaller proteins would
be an accidental result of gene duplication and drift. An
alternate view, we pursue below is that this kind of approxi-
mate biomolecular symmetry in smaller proteins arises not
from duplication and drift but from some kind of convergence
in evolution. In this view, the symmetry conferred an advan-
tage even for organisms possessing the primordial proteins
andyor symmetry continues to be reinvented during evolu-
tionary history. Under this view, in any event, we must explain
why such approximate symmetry of tertiary structure should
persist and be prevalent in the absence of obvious symmetry in
sequence. An explanation lies in the energy landscape of
foldable proteins.

The Energy Landscape of Foldable Proteins and the
Minimal Frustration Principle

To function efficiently, most proteins must fold. Much recent
theoretical work suggests that achieving a folded structure
spontaneously is not trivial (ref. 19; ref. 20 and references
therein; refs. 21–23). Foldability requires a specially shaped
energy landscape resembling a funnel (20, 21). Not all protein
sequences possess an obviously ‘‘funneled’’ landscape and
certainly not all sequences have surfaces funneled to the same
degree. A heteropolymer with a completely random sequence
generically possesses a rugged energy landscape without a
funnel, because bringing together two segments of a random
sequence will usually give rise to conflicting interactions
between the connected side chains, and, therefore, many
alternative local minima of the energy can be found. We
therefore say a random heteropolymer typically is ‘‘frustrated’’
[a term from solid state physics (24, 25)], because these
conflicts make the search through the landscape very difficult.
At temperatures low enough to stabilize the ground state
conformational dynamics is sluggish or ‘‘glassy.’’ States that are
geometrically globally different can be nearly ground states
and can act as traps slowing the folding process.
Fast-folding proteins can access their thermodynamically

stable organized (folded) structure at temperatures where
glassy dynamics and traps can be avoided. To do this, the
interactions in the folded structure must act in concert more
effectively than expected in the most random case. This idea
is called the ‘‘principle of minimal frustration’’ (19) and is a
generalization of many older notions, such as the idea of Go#
(26) that local secondary and nonlocal tertiary interactions
must be consistent with each other.
The principle of minimal frustration can be made quanti-

tative using energy landscape theory. Using the simplest
approximations of the statistical mechanics of disordered
systems, it can be shown to be equivalent to the assertion that
the ground state energy of the protein is significantly (i.e.,
many standard deviations of the energies in the rugged part of
the landscape) lower than the bulk of the collapsed states of
the protein (27, 28). Such an energy landscape allows folding
into the correct state at temperatures where glassy traps are

FIG. 1. The hemoglobinmolecule is a tetramer a2b2. If the subunits
were identical it would have 222 symmetry.
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unimportant. When the ground state energy is very low,
structures similar to the ground state will also be low in energy,
thus leading to a funnel structure of the energy landscape as
shown in Fig. 4. Many analytical and simulation studies of
model heteropolymer problems confirm the outlines of the
energy landscape description quickly summarized above. The
quantitative form of these ideas can also be used to find and
evaluate energy functions for protein structure prediction (27,
28) and to design foldable protein sequences (29) if one is given
exact energy functions. The most rapidly foldable proteins
have the most pronounced funnel structure to their landscape
and are quite stable.
Again we must emphasize that minimal frustration does not

mean no frustration. The symmetry and apparent uniqueness
of the folded configuration is only approximate, leading to a
large number of distinct conformational substates with differ-
ent reaction characteristics in the overall folded state.

Symmetry and Minimally Frustrated Energy Landscapes

It is natural to suppose that symmetry, minimal frustration,
and the funneled nature of the landscape are somehow con-

nected. The consistency of geometry in symmetric structures
suggests some preselection and consistency of interaction—
i.e., an argument for the validity of the minimal frustration
principle (30). This connection is easily understandable when
one deals with systems with precisely symmetric interactions
between identical particles, such as those in nuclei or atomic
clusters. In fact, the notion of funneled landscapes has been
taken over to the world of the thermodynamics and kinetics of
simple (nonbiological) clusters of atoms (31). For atomic
clusters, an especially stable ground state, removed in energy
from the bulk of the states allowing a crisp and rapid melting
transition, can be achieved only when highly symmetric ar-
rangements of the atoms are possible (32). This property is
related to the phenomenon of the ‘‘magic numbers’’ for the
stability of van der Waals clusters. Ar13, which is capable of
forming a close packed icosahedron, has a funneled landscape
easily accessible upon cooling. On the other hand, Ar8 has a
much rougher landscape and the ground state is not easily
accessed kinetically. We must unfortunately admit the current
lack of a deep understanding or mathematical proof of why
symmetric arrangements are always so stable for such systems

FIG. 2. g crystallin is a monomeric protein, but clearly its structure arises from gene duplication and drift. The two modules are similar but
not identical in sequence.
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with symmetric (and therefore minimally frustrated) interac-
tions. But the observation of extra stability through symmetry
is nevertheless not only very plausible for systems of equal
particles but also a fact. Admitting this fact, there still remains
a significant puzzle for heteropolymers, since the interactions
within proteins are far from symmetric. Indeed, an explanation
based on the symmetries of a homopolymer seems out of the
question on several thermodynamic grounds. Soluble ho-
mopolymers of amino acids are either in a random coil state
or helical fibers. Simulations of homopolymers on lattices
usually give nearly degenerate ground states and insufficient
driving force toward the native structure when it is unique. It
can also be demonstrated that even for highly complex non-
symmetric structures, there are sequences capable of giving a
protein with a funneled landscape that leads to an asymmetric
structure but where the frustration has nevertheless been
minimized (29).
In answering this last puzzle, the symmetry of heteropoly-

mers, it is important to recall that the observation requiring
explanation is not that symmetrical protein folds are universal
but that they are prevalent. Several studies suggest all shapes
are not equally easy to design by a random process like
evolution (33–36). In the context of RNA secondary structure
folding where the secondary structural folding problem can be
explicitly solved, Schuster et al. (34) have shown that some
shapes have many sequences that can code for them while
others have few (34). In the more difficult computational
problem of protein tertiary folding, Yue and Dill (35), using
lattice models of proteins with two-letter codes, both hydro-
phobic and hydrophilic, have shown that symmetric patterns
giving nondegenerate ground states are easy to design and
have argued that this is the origin of the symmetry prevalence.
Govindarajan and Goldstein (36) have not discussed the
symmetry issue explicitly but have tried to quantify the statis-
tical distribution of designable proteins using landscape theory
and recently lattice models. Using some ideas from statistical
mechanics of energy landscapes, we now can make the con-

nection between symmetry and designability of funnel land-
scapes more precise and explicit.
For concreteness, consider an ensemble of heteropolymers

of fixed length N and average composition. For purposes of
illustration, the energy function for this heteropolymer can be
taken to have the pairwise additive form:

E~$ri%! $ai% 5 Ovij~ai, aj, ~ri 2 rj!! 1 Ebackbone ~$ri%!, [1]

where {ri} is the set of polymer subunit locations and {ai}
represents the sequence information. The pair potential vij
depends on the distance between and identity of the residues.
The potential Ebackbone ({ri}) maintains chain connectivity and
those backbone effects inherent to poly-amimo acids that allow
a-helices and b-sheets to form. We now consider the design-
ability of a specific structure {ri}. If the landscape is to be
funneled, this structure must have an energy considerably
below that for the typical random structure. The latter quan-
tity, according to the simplest theories, should be a function
only of the composition but not the ‘‘sequence order.’’ Thus,
to ensure a funneled landscape, we must ask that the energy
of that configuration with locations of residues at {Ri},E({Ri})
' EF({ai}) must reach some desired low value. The folded
energy EF is a function now only of the sequence {ai}. The
actual value of the energy difference needed depends on the
biological constraint for the time scale of folding. This involves
the physics of the stability folding time correlation. Finding the
most designable structures by a random process corresponds
with finding the structures such that the number of sequences
corresponding to them is the largest. This can be thought of
equivalently as the entropy of a statistical mechanics problem
(29), where the sequence is the variable rather than the
locations, {Ri}.
Elementary statistical thermodynamics (37) argues that for

large enough systems, maximizing the entropy, given an energy
constraint, is equivalent to minimizing the free energy for a
specific value of a pseudotemperature T* chosen in such a way
that the Boltzmann average energy of the structures at that

FIG. 3. A four-helix bundle molecule, cytochrome b562. The ribbon diagram actually exaggerates the dissymmetry because of the demanding
algorithm for secondary structure assignment.
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pseudotemperature is equal to that selected energy value. In
fact, just such a pseudo-Boltzmann ensemble is the basis of
some formal approaches to the statistical mechanics of
polymers satisfying the minimal frustration principle (38,
39). To be consistent with a low energy ground state, T* must
be lower than physiological temperature and the glass tran-
sition temperature.
For a specific structure, this free energy can be written using

a partition sum:

Z 5 O
$ai%
e2E~$Ri%, $ai%!ykBT* 5 e2F~$ri%!ykBT*. [2]

This partition sum is an average over possible sequences with
a given average composition. Thus we can see that the effective
free energy governing the prevalence of sequences for a given
structure is a Hamiltonian lacking disorder. The sequence
dependence is per force averaged over! The effective free
energy function contains only equivalent sites. The energy
corresponds to what is known as the ‘‘annealed’’ average of the
partition function for the originally disordered system. The
connection to symmetry and the simple cluster system can be
made especially transparent when the number of types of

amino acids is large. In this case, the individual pairs of
interactions or bonds are nearly independent and the energy
of a given pair and the average over sequence used to compute
pseudo-Boltzmann probability for a structure is just a product
of the average Boltzmann factors for each pair. This approx-
imation, while exact for large numbers of amino acid types, is
not a bad approximation even when there are few. It is
equivalent to the quasichemical or Bethe and Kirkwood ap-
proach used in the statistical mechanics of magnetic systems
(37). The sequence averaged energy function, appropriate for
determining the designability of this sequence, is in fact
identical with the energy function of an equivalent homopoly-
mer. The interactions of this homopolymer are attractive (and
may be much stronger than those presenting any actual ho-
mopolymer of amino acids). If the pair interactions were
precisely Gaussian in their distribution, they would give a free
energy of the form:

F~$ri%! 5 O
ij

2 ^vij&ai,aj 2
1

2kBT*
^dv2ij&ai,aj 1 Ebackbone ~$ri%!

[3]

FIG. 4. A protein folding funnel. The width of the funnel represents configurational entropy. The depth is the free energy of an individual
configuration. The funnel is shown as anisotropic. The coordinate Q1, which destroys the symmetry rapidly, changes the energy, while Q2, preserving
symmetry gives smaller energy changes.
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Here dvij5 vij2 ^vij&aiaj is the fluctuating part of the interaction
representing the fact that an individual protein is a hetero-
polymer. We see the most easily designable structures (i.e., the
most numerous in a random sampling with the minimal
frustration constraint) are the minimum energy structures for
an effectively homoattractive polymer with some specific
backbone interactions (the expression in Eq. 3). Just as for
atomic clusters, we would expect the most stable arrangements
of the equivalent homopolymer to correspond with symmet-
rical arrangements. If the backbone interactions were entirely
isotropic and very weak, the resulting highly symmetric struc-
tures would in fact be the same as those corresponding with the
magic numbers of van der Waals clusters.
Two effects will change the preferred symmetries from those

of atomic clusters. First, the inadequacy of the independent
pair or quasichemical approximation would imply that the
actual sequence-averaged free energy would not be additive as
in Eq. 3, but would have nonadditive interactions. Neverthe-
less, it would still be symmetrical between the particles. The
favored symmetries for nonadditive forces may be different
from additive ones. This is what occurs for metallic clusters in
contrast to van der Waals clusters. More important, however,
is that the backbones of proteins favor linear hydrogen bonded
arrangements such as a-helices, so one really must consider the
most symmetrical arrangements of a helices or b sheets but
with homoattractive interactions. Just such a route to under-
standing the families of protein folds was undertaken by
Murzin and Finkelstein (40) a rather long time ago when they
discussed the bundle and polyhedral packings of helices,
neglecting the heteropolymeric aspect (41). Similar ideas have
been used for the homoattractive b-sheets by Chothia et al.
(42). We see that the validity of those crystallographically
inspired approaches can be based on the combination of the
minimal frustration principle for the energy landscape providing
a force for convergence in evolution with the assumption of
otherwise sufficient neutrality and time for drift so that the most
common adaptive sequences are those that are observed.
It is amusing that the evolutionarily averaged potential

that gives rise to the symmetry, according to this view, is very
much analogous to the quantum mechanical van der Waals
force. The term ^vij&aiaj contributes too but is partially can-
celed by the fact that it is also present in the disordered
molten globule, as is a fraction T*yT of the f luctuation part.
Indeed, it is the average interaction over evolutionary f luc-
tuations in sequence as opposed to quantum mechanical or
thermal f luctuations in electronic structure that enters the
probability of finding an abundant structure. Despite the
validity of the Pauling and Delbrück viewpoint for each
individual biomolecule, in a sense, a ghost of Jordan’s
mechanism for biomolecular symmetry resurfaces through
an analogy involving the statistical mechanics of evolution
and minimally frustrated energy landscapes.

Consequences of Symmetry for the Biomolecular
Energy Landscape

For a particular protein, biomolecular symmetry will not be
exact unless it is the result of gene duplication. It is a
quantitative issue how much the forces leading to minimal
frustration, partially determined by symmetry considerations,
are dominant over the aspects of the landscape arising from
randomness. For protein folding itself, and even more so for
function, much needs to be done to address these issues, but
we will make here a few observations and speculations.
First, the convergent evolution viewpoint on biomolecular

symmetry could be most directly investigated by combinatorial
synthesis experiments in which random or partially random
proteins are produced through genetic engineering. Two ef-
forts along this line already give some information. Sauer’s

group at the Massachusetts Institute of Technology has syn-
thesized random amino acid chains from a small library (43).
They showed that a small fraction (0.5%) showed the two-
state-like thermodynamics associated with a funneled energy
landscape. It is very interesting that of this fraction many of the
species were oligomers and, therefore, may be taking advan-
tage of symmetry to fold. On the other hand, Hecht and
coworkers (44) has synthesized a random library of proteins
whose hydrophobic pattern were forced to obey the exact
symmetries of the four-helix bundle, and, in this case, the
fraction of sequences with apparently funneled energy land-
scapes for the monomer is considerably higher. These studies
in combinatorial synthesis of proteins, however, point out the
complexity in applying quantitatively the statistical mechanical
analysis described earlier. Clearly, specific packing forces
involving side chains need to be taken into account to achieve
fully protein-like behavior.
While the symmetry is approximate for any given native

protein, it will contribute to the overall shape of the energy
landscape. We might expect there to be a tendency for the
symmetry to be preserved in the most important routes to
folding and for breaking of symmetry along such a route to
be more costly. Again, there is some anecdotal evidence of
symmetry preservation along the dominant folding routes
when we examine folding of systems such as triosphosphate
isomerase. This molecule has an overall three-fold symme-
try, but, on the long time scales, it seems to fold in two steps.
In the first a two-fold symmetry is preserved and the final
third unit is added last (49). The statistical mechanical
analysis of folding for symmetrical proteins may also show
some correlation of the typical barrier heights with the
degree of symmetry of the molecules. The landscape or
funnel geometry for a specific minimally frustrated protein
will have a strong correlation to the landscape of the
sequence averaged effective homopolymer and the energy
(see Fig. 4) should vary differently along collective coordi-
nates preserving symmetry from those breaking it.
The individuality of proteins with a common symmetric fold

arises from the fluctuations away from the ideal average
landscape. It is interesting that the magnitude of these fluc-
tuations is again dependent on the dv2 interaction that enters
the annealed average. For quenched disorder, according to
spin glass theory, however, the relevant disorder averaged
force is scaled by the actual temperature, not T*, and is
therefore weaker. Different heteropolymers exhibit non-self-
averaging behavior when dv2ykBT is sufficiently strong to cause
a glass transition. In the formal statistical mechanics of dis-
ordered systems, the glass transition corresponds to ‘‘broken
replica symmetry’’ (45). In the language used by the particle
physicists, we can restate the minimal frustration principle as
‘‘the folding transition that breaks the isotropic symmetry of
the globule down to the point symmetry of the folded state
occurs at higher temperature than the temperature of broken
replica symmetry in order for fast folding to occur.’’
The arguments presented here have focused on symmetry

and the energy landscape involved in folding, but there may be
important consequences for function as well as for folding. It
is important to remember that Monod, Wyman, and Changeux
proposed their two-state model for the allostery of hemoglobin
on the basis that the dyadic symmetry of the molecule had to
be preserved (46, 47). Since that time, especially in the kinetics,
other nonsymmetric states have been invoked and found to be
important in the dynamics. We can see the present arguments
would, however, be consistent with the Monod, Wyman, and
Changeux perspective. Clearly, if one wishes to have an
allosteric protein, it must have two different structures. By the
same counting arguments that make single symmetric struc-
tures more easily designable, pairs of symmetric structures
should be an easier design goal if one needs two-state-like
switching behavior. It is striking that Eaton has recently
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described the multistate complex kinetics of hemoglobin
allostery using the basic Monod, Wyman, and Changeux
symmetry-derived notion of two symmetric R and T states
with a simple superposition of multistate relaxation through
an energy landscape superimposed on these two basic struc-
tures (E. R. Henry, J. Hofrichter, and W. Eaton, personal
communication).
We see that the beautiful symmetries of biomolecules may

indeed reflect basic principles about the energy landscape in
biology, just as symmetry relations do in particle physics. The
extra key, however, is the notion of evolution, which can
reconcile the symmetry of a family and the diversity of
individuals. Whether the powerful mathematical machinery
describing symmetry via group theory used in field theory and
condensed matter theory will also help understand the bio-
molecular energy landscape through the choice of collective
coordinates and by describing the nature of defects in biomo-
lecular structure is a question for future development.

Note Added in Proof. Several papers relevant to the theme of this paper
have appeared recently. These should be consulted for alternate
viewpoints and approaches (50–52).
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