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ABSTRACT The role of symmetry in fundamental physics
is reviewed.

Until the 20th century principles of symmetry played little
conscious role in theoretical physics. The Greeks and others
were fascinated by the symmetries of objects and believed that
these would be mirrored in the structure of nature. Even
Kepler attempted to impose his notions of symmetry on the
motion of the planets. Newton’s laws of mechanics embodied
symmetry principles, notably the principle of equivalence of
inertial frames, or Galilean invariance. These symmetries
implied conservation laws. Although these conservation laws,
especially those of momentum and energy, were regarded to be
of fundamental importance, these were regarded as conse-
quences of the dynamical laws of nature rather than as
consequences of the symmetries that underlay these laws.
Maxwell’s equations, formulated in 1865, embodied both
Lorentz invariance and gauge invariance. But these symme-
tries of electrodynamics were not fully appreciated for over 40
years or more.
This situation changed dramatically in the 20th century

beginning with Einstein. Einstein’s great advance in 1905 was
to put symmetry first, to regard the symmetry principle as the
primary feature of nature that constrains the allowable dy-
namical laws. Thus the transformation properties of the elec-
tromagnetic field were not to be derived from Maxwell’s
equations, as Lorentz did, but rather were consequences of
relativistic invariance, and indeed largely dictate the form of
Maxwell’s equations. This is a profound change of attitude.
Lorentz must have felt that Einstein cheated. Einstein recog-
nized the symmetry implicit in Maxwell’s equations and ele-
vated it to a symmetry of space-time itself. This was the first
instance of the geometrization of symmetry. Ten years later this
point of view scored a spectacular success with Einstein’s
construction of general relativity. The principle of equiva-
lence, a principle of local symmetry—the invariance of the laws
of nature under local changes of the space-time coordinates—
dictated the dynamics of gravity, of space-time itself.
With the development of quantum mechanics in the 1920s

symmetry principles came to play an even more fundamental
role. In the latter half of the 20th century symmetry has been
the most dominant concept in the exploration and formulation
of the fundamental laws of physics. Today it serves as a guiding
principle in the search for further unification and progress.

The Meaning of Symmetry

Progress in physics depends on the ability to separate the
analysis of a physical phenomenon into two parts. First, there
are the initial conditions that are arbitrary, complicated, and
unpredictable. Then there are the laws of nature that summa-

rize the regularities that are independent of the initial condi-
tions. The laws are often difficult to discover, since they can be
hidden by the irregular initial conditions or by the influence of
uncontrollable factors such as gravity friction or thermal
fluctuations.
Symmetry principles play an important role with respect to

the laws of nature. They summarize the regularities of the laws
that are independent of the specific dynamics. Thus invariance
principles provide a structure and coherence to the laws of
nature just as the laws of nature provide a structure and
coherence to the set of events. Indeed, it is hard to imagine that
much progress could have been made in deducing the laws of
nature without the existence of certain symmetries. The ability
to repeat experiments at different places and at different times
is based on the invariance of the laws of nature under
space-time translations. Without regularities embodied in the
laws of physics we would be unable to make sense of physical
events; without regularities in the laws of nature we would be
unable to discover the laws themselves. Today we realize that
symmetry principles are even more powerful—they dictate the
form of the laws of nature.

Classical Symmetries

In classical dynamics the consequences of continuous symme-
tries are most evident using Hamilton’s action principle.
According to this principle the classical motion is determined
by an extremum principle. Thus if we describe the system by a
generalized coordinate x(t) (for example the position of a
point particle in space) then the actual motion of the system,
given the values of x(t) at t 5 t1 and at t 5 t2, is such that the
action, S[x(t)], is extremal. The action is a local functional of
x(t), namely it can be written as the integral over time of a
function of x(t) and its time derivative—the Lagrangian, S 5
*t1
t2 dtL[x(t), x(t)]. Hamilton’s principle means that if x̄(t) is the

actual motion then S[x̄(t) 1 dx̄(t)] 5 S[x̄(t)] for any infini-
tesimal variation, dx̄(t), of x̄(t) that leaves its values at t 5 t1
and t 5 t2 unchanged. This is often called the principle of least
action, although the extremum can be either a minimum or a
maximum of the action. The classical equations of motion for
x̄(t) follow from this principle.
A symmetry of a classical system is a transformation of the

dynamical variable x̄(t), x̄(t)3 5[x̄(t)], that leaves the action
unchanged. If follows that the classical equations of motion
are invariant under the symmetry transformation, since if
x̄(t) is an extremum of the action, and 5 generates a
symmetry of the action, then 5[x̄(t)] is also an extremum.
The symmetry can then be used to derive new solutions.
Thus, if the laws of motion are invariant under spatial
rotations, then if x(t) is a solution of the equations of motion,
say an orbit of the earth around the sun, then the spatially
rotated x(t), is also a solution. This is interesting and
sometimes useful.
A more important implication of symmetry in physics is the

existence of conservation laws. For every global continuous
symmetry—i.e., a transformation of a physical system that acts
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the same way everywhere and at all times—there exists an
associated time independent quantity: a conserved charge.
This connection went unnoticed until 1918, when Emmy
Noether proved her famous theorem relating symmetry and
conservation laws. Thus due to the invariance of the laws of
physics under spatial transformations momentum is con-
served, due to time translational invariance energy is con-
served and due to the invariance under a change in phase of
the wave functions of charged particles electric charge is
conserved. It is essential that the symmetry be continuous;
namely that it is specified by a set of parameters that can be
varied continuously, and that the symmetry transformation can
be arbitrarily close to the identity transformation (which does
nothing to the system). The discrete symmetries of nature (all
of which are approximate symmetries), such as time reversal
invariance or mirror reflection, do not lead to new conserved
quantities.
One can give a simple geometrical argument that illustrates

the connection between symmetry and conservation laws.
Consider the motion of a particle described by x(t), from xi to
xf. Assume that the action is invariant under spatial transla-
tions. If so the action for the actual path, S[x(t)] will be equal
to the action for the displaced path—i.e., S[x(t)] 5 S[x(t) 1
a]. Now consider the path of motion from xi to xi 1 a to xf 1
a to xf. If a is very, very small (infinitesimal) then, according
to Hamilton’s principle, the action along this path is the same
as the original action. Thus the difference of the two vanishes,
and since the action is additive we have

S@xi3 xi 1 a3 xf 1 a3 xf# 2 S@xi3 xf# 5 S@xi3 xi 1 a#

1 S@xf 1 a3 xf# 5 0.

The action along the infinitesimal path from xi to xi 1 a must
be proportional to a, i.e., S[xi 3 xi 1 a] [ piza, which defines
the momentum p. Similarly the action along the infinitesimal
path from xf 1 a to xf is given by S[xf 1 a3 xf] [ 2pf za (the
minus sign is because the path runs in the opposite direction).
Consequently themomentum p is conserved, namely it is a time
independent constant along the path of motion.

Symmetry in Quantum Mechanics

In quantum theory, invariance principles permit even further
reaching conclusions than in classical mechanics. In quantum
mechanics the state of a physical system is described by a ray
in a Hilbert space, uC&. A symmetry transformation gives rise
to a linear operator, R, that acts on these states and
transforms them to new states. Just as in classical physics the
symmetry can be used to generate new allowed states of the
system. However, in quantum mechanics there is a new and
powerful twist due to the linearity of the symmetry trans-
formation and the superposition principle. Thus if uC& is an
allowed state than so is RuC&, where R is the operator in the
Hilbert space corresponding to the symmetry transformation
5. So far this is similar to classical mechanics. However, we
can now superpose these states—i.e., construct a new al-
lowed state: uC& 1 RuC&. (There is no classical analogue for
such a superposition; of say the superposition of two orbits
of the earth.)
The superposition principle means that we can construct

linear combinations of states that transform simply under the
symmetry transformations. Thus superimposing all states that
are related by rotations we obtain a state uF& 5 •R RuC& that
is rotationally invariant, the singlet representation of the
rotation group. Namely

RuF& 5 O
R9

RR9uC& 5 O
R0

R0uC& 5 uF&.

For example the lowest energy state, the ground state of the
Hydrogen atom is such a rotational invariant singlet state.
Other superpositions of rotated states will yield other irreduc-
ible representations of the symmetry group. Indeed any state
can be written as a sum of states transforming according to
irreducible representations of the symmetry group. These
special states can be used to classify all the states of a system
possessing symmetries and play a fundamental role in the
analysis of such systems. Consequently the theory of repre-
sentations of continuous and discrete groups plays an impor-
tant role deducing the consequences of symmetry in quantum
mechanics. With the tools of group theory many consequences
of symmetry are revealed. For example, the selection rules that
govern atomic spectra are simply the consequences of rota-
tional symmetry.
Quantum mechanics also revealed a new kind of symmetry,

that of exchange of identical particles. This lead to a classifi-
cation of all elementary particles as either bosons, whose wave
function is invariant under interchange of two identical par-
ticles, or fermions, whose wave function changes sign when two
identical particles are interchanged. The quantum statistics of
such particles is different, with profound implications for their
behavior in aggregate.
In relativistic quantum mechanics the implications of sym-

metry are greater. Here the symmetry group is the Poincaré
group, of space-time translations, rotations, and boosts to
moving frames. The analysis of the representations of this
group leads to a complete classification of physical irreducible
representations–elementary particles:
(i) Massive representations: M . 0. These irreducible

representations are labeled by the mass and the spin J, which
is quantized in half-integer units, J 5 0, 1/2, 1, . . . .
(ii) Massless representations: M 5 0. In this case the only

finite dimensional representations of this group are one di-
mensional. These are labeled by a single helicity, l, that is
half-integer. An example of such a representation is the
left-handed neutrino, which only has one helicity state with l
5 1/2. (If we include parity then irreducible representations
contain both positive and negative helicities, 6l.) This group
theoretic analysis makes it clear that massless spinning parti-
cles are fundamentally different from massive particles. This
difference has profound implications for dynamics; indeed, it
requires that massless spinning particles be described by gauge
theories.

Symmetry Breaking

The secret of nature is symmetry, but much of the texture of
the world is due to mechanisms of symmetry breaking. The are
a variety of mechanisms wherein the symmetry of nature can
be hidden or broken. The first is explicit symmetry breaking
where the dynamics is only approximately symmetric, but the
magnitude of the symmetry breaking forces is small, so that
one can treat the symmetry violation as a small correction.
Such approximate symmetries lead to approximate conserva-
tion laws. Many of the symmetries observed in nature are of
this sort, not really symmetries of the laws of physics at all,
but—for what appears sometimes to be accidental reasons—
approximate symmetries for a certain class of phenomena. The
isotopic symmetry of the nuclear force is an example of an
approximate symmetry; good due to the small values of the up
and down quark masses and the weakness of the electromag-
netic force.
A more profound way of hiding symmetry is the phenom-

enon of spontaneous symmetry breaking. Here the laws of
physics are symmetric but the state of the system is not. This
situation is common in classical physics. The earth’s orbit is an
example of a solution of Newton’s equations that is not
rotationally invariant, although the equations are. Conse-
quently, for an observer of the solar system, the rotational
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invariance of the law of gravitation is not manifest. The
particular orbit is picked out by the asymmetric initial condi-
tions of the planet. Thus this mechanism for hiding symmetries
of physics is related to the asymmetry induced by asymmetric
initial values. In quantum mechanics the situation is different.
Quantum mechanical systems with a finite number of degrees
of freedom (an adequate description of atomic physics, for
example) always have a symmetric ground state. Classically a
particle under the influence of gravity can sit anywhere on a
flat surface; yet the quantummechanical state of lowest energy
(the ground state) is a superposition of all these classical
allowed states. Thus the quantum mechanical particle is ev-
erywhere at one—a state that exhibits the translational invari-
ance of the laws of motion.
In systems with an infinite number of degrees of freedom,

however, global symmetries may be realized in two different
ways. The first way is standard: the laws of physics are invariant
and the ground state of the theory is unique and symmetric, as
is the case for quantum mechanical systems with a finite
number of degrees of freedom. However in systems with an
infinite number of degrees of freedom a second mode is
possible, in which the ground state is asymmetric. Such spon-
taneous symmetry breaking is responsible for the existence of
crystals (that break translational invariance), magnetism (in
which rotational invariance is broken), superconductivity (in
which the phase invariance of charged particles is broken), and
the structure of the unified electro-weak theory and more.
Indeed the spontaneous symmetry breaking of global and local
gauge symmetries is a recurrent theme in modern theoretical
physics. The search for new symmetries of nature is based on
this possibility, for a new symmetry that we discover must be
somehow broken otherwise it would have been apparent long
ago; it would have been an old symmetry.
Spontaneous broken symmetries have consequences. Al-

though the symmetry is not manifest it has implications. Thus
for every broken global symmetry there exist f luctuations with
very low energy. These appear as massless particles. Examples
are sound waves in solids, spin waves in magnetics and pions
in nuclear physics.
Associated with spontaneous symmetry breaking is the

phenomenon of symmetry restoration. If one heats a system
that possesses a broken symmetry it tends to be restored at high
temperature. Thus a ferromagnetic material can be magne-
tized at low temperature (or even at room temperature) with
all the little atomic magnets aligned in the same direction. This
is a state of broken rotational symmetry. As the temperature
increases the atoms vibrate more and more. Finally when the
temperature is greater than a certain critical value the fluc-
tuations win out over the forces that tend to align the atomic
magnets and the average magnetization vanishes. Above the
critical temperature the system exhibits rotational symmetry.
Such a transition from a state of broken symmetry to one
where the symmetry is restored is a phase transition. We
believe that the same phenomenon occurs in the case of the
symmetries of the fundamental forces of nature. Many of these
are broken at low temperatures. Very early in the history of the
universe, when the temperature was very high, all of these
symmetries of nature were presumably restored. The resulting
phase transitions, as the universe expanded and cooled, from
symmetric states to those of broken symmetry have important
cosmological implications.

Gauge Symmetry

The traditional symmetries discovered in nature were global
symmetries, transformations of a physical system in a way that
is the same everywhere in space. Global symmetries are
regularities of the laws of motion but are formulated in terms
of physical events; the application of the symmetry transfor-
mation yields a different physical situation, but all observations

are invariant under the transformation. Thus global rotations
rotate the laboratory, including the observer and the physical
apparatus, and all observations will remain unchanged. Gauge
symmetry is of a totally different nature. Gauge symmetries
are formulated only in terms of the laws of nature; the
application of the symmetry transformation merely changes
our description of the same physical situation, does not lead to
a different physical situation.
Gauge symmetry first appeared in Maxwell’s electrodynam-

ics. Here the physical observables are the electric and magnetic
fields, E and B. It was discovered early on that one could
simplify the equations by introducing a vector potential Am, in
terms of which both the electric and magnetic fields could be
expressed. Yet this description was not unique, one could
perform a gauge transformation, Am(x) 3 Am(x) 1 mf(x),
without changing the values of E and B. This symmetry was
regarded for decades as rather artificial. As Wigner, one the
pioneers of symmetry in this century put it,

This gauge invariance is, of course, an artificial one, similar to
that which we could obtain by introducing into our equations
the location of a ghost. The equations must then be invariant
with respect to changes of coordinates of that ghost. One does
not see, in fact, what good the introduction of the coordinate
of the ghost does.

This attitude toward gauge invariance has changed dramat-
ically in the last two decades. Gauge theories have assumed a
central position in the fundamental theories of nature. They
provide the basis for the extremely successful standard model,
a theory of the fundamental, nongravitational forces of na-
ture—the electromagnetic, weak, and strong interactions. To
be sure gauge invariance is a symmetry of our description of
nature, yet it underlies dynamics. Gauge invariance forces the
existence of special particles, gauge bosons. These are massless
spin one particles that are associated with the vector potential
and mediate the forces. Thus the SU(3) 3 SU(2) 3 U(1)
gauge symmetry of the standard model implies the existence
of eight gluons that mediate the strong interaction, three gauge
bosons, the W6 and the Z bosons, that mediate the weak
interactions and the photon of light. As Yang has stated:
Symmetry dictates interaction. The first example of this was
general relativity where Einstein employed the symmetry of
space-time under local changes of coordinate to determine the
laws of gravity.
Furthermore, the realization that gauge symmetry is based

on the fiber bundle, a sophisticated geometrical concept, has
provided a deep and beautiful geometrical foundation for
gauge symmetry. The fiber bundle is a beautiful mathematical
construction that combines an internal space together with
space-time, to form a unified geometrical object which exhibits
the gauge symmetry. It has also been understood, a century
after Maxwell discovered his equations, that the vector poten-
tial is not just an artificial construct, but has direct observable
meaning. This is most evident in the Bohm–Aharonov effect,
wherein an electron beam propagates in a region where there
is no electromagnetic field, yet due to the geometry the vector
potential is nonvanishing. Due to the change of phase that
accompanies a charged particle moving in a background vector
potential one can observe interference effects directly. Thus
the vector potential is primary.
Indeed today we believe that global symmetries are unnat-

ural. They smell of action at a distance. We now suspect that
all fundamental symmetries are local gauge symmetries.
Global symmetries are either all broken (such as parity, time
reversal invariance, and charge symmetry) or approximate
(such as isotopic spin invariance) or they are the remnants of
spontaneously broken local symmetries. Thus, Poincaré invari-
ance can be regarded as the residual symmetry of the
Minkowski vacuum under changes of the coordinates.
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The Origin of Symmetry

Why is nature symmetric? There are at least two views. The
first is based on the paradigm of condensed matter systems
where unexpected and new symmetries often occur, although
they are not present in the fundamental laws. The prime
example is the appearance of symmetry in the behavior of
long-range fluctuations of a system undergoing a second-order
phase transition. Here one has the phenomenon that at the
fundamental, short distance or high energy, level there is no
symmetry. Rather the symmetry emerges dynamically at large
distances.
Could this be the reason for the ‘‘fundamental symmetries’’

that we observe in nature? Could they be dynamical conse-
quences of an asymmetric physics? I believe not. The lesson of
the history of physics in this century points to the opposite
conclusion. As we explore physics at higher and higher energy,
revealing its structure at shorter and shorter distances, we
discover more and more symmetry. This symmetry is usually
broken or hidden at low energy. I like to think of the first
paradigm asGarbage in—Beauty out, and the second as Beauty
in—Garbage out. At the fundamental level nature, for what-
ever reason, prefers beauty and is marvelously inventive in
inventing new forms of beauty. If this is the case then it
provides us with an important tool for the exploration of
nature. When searching for new and more fundamental laws
of nature we should search for new symmetries.

New Symmetries

Current theoretical exploration in the search for further
unification of the forces of nature, including gravity, is largely
based on the search for new symmetries of nature. Theorists
speculate on larger and larger local symmetries and more
intricate patterns of symmetry breaking in order to further
unify the separate interactions. Most exciting is the speculation
concerning new kinds of symmetry, which could explain some
of the most mysterious features of nature. Foremost among
these is supersymmetry that has the ability to unify bosons and
fermions into a single pattern, to unify matter and force, and
to help explain themysterious fact that themass scale of atomic
and nuclear physics is so much smaller than the scale deter-
mined by gravity (the hierarchy problem).

Supersymmetry is a profound and beautiful extension of the
geometric symmetries of space-time to include symmetries
generated by fermionic (anticommuting) charges. We can
describe supersymmetry by saying that space-time is to be
replaced by super-space-time, which has new coordinates in
addition to the usual coordinates of space and time, that we
denote by ui, i 5 1, 2, . . . . The new feature of these
coordinates is that they are anticommuting numbers, i.e., u1u2
5 2u2u1. Supersymmetric physics is formulated in this su-
perspace. Thus all fields are function of x and t and the ui
values. Super-symmetry is then a set of continuous transfor-
mation, rotations, of all of the coordinates of superspace.
These symmetries contain the usual relativistic symmetries of
spacetime, but in addition new symmetries, with new conse-
quences. The most important consequence is that for every
particle with spin J there must be another with spin J 6 1/2.
If the symmetry were exact these would be degenerate in mass.
This is not what is observed in nature—thus supersymmetry
must be broken. But, as we have learned, this is no problem;
most symmetries are broke. If the scale of breaking is the scale
of the standard model then this symmetry could explain the
hierarchy problem. Furthermore it would then be visible at
energies which are just now becoming accessible. We eagerly
await the experimental discovery of the signs of this (broken)
symmetry at the next generation of particle accelerators—a
discovery of new dimensions of space-time.
Finally, in recent years we have begun to seriously explore

a new kind of theory based on a radical extension of the
conceptual framework of local quantum field theory: string
theory. String theory is the most ambitious candidate for a
unified theory of all the interactions that naturally embodies in
a consistent fashion quantum gravity. It contains within it all
the familiar symmetries which we have discovered play a role
in nature. It indeed appears to have all the ingredients we need
to derive or explain the standard model. In addition, there are
hints within the theory that it embodies new and strange
symmetries that we are now trying to understand.
Thus, once again we are embarked on a new stage of

exploration of fundamental laws of nature, a voyage guided
largely by the search for and the discovery of new symmetries.

Supported in part by the National Science Foundation under Grant
PHY90-21984.

Colloquium Paper: Gross Proc. Natl. Acad. Sci. USA 93 (1996) 14259


