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Abstract
Background—Sexual dimorphism in various bone phenotypes, including bone mineral density
(BMD), is widely observed; however the extent to which genes explain these sex differences is
unclear. To identify variants with different effects by sex, we examined gene-by-sex autosomal
interactions genome-wide, and performed eQTL analysis and bioinformatics network analysis.

Methods—We conducted an autosomal genome-wide meta-analysis of gene-by-sex interaction
on lumbar spine (LS-) and femoral neck (FN-) BMD, in 25,353 individuals from eight cohorts. In
a second stage, we followed up the 12 top SNPs (P<1×10−5) in an additional set of 24,763
individuals. Gene-by-sex interaction and sex-specific effects were examined in these 12 SNPs.

Results—We detected one novel genome-wide significant interaction associated with LS-BMD
at the Chr3p26.1-p25.1 locus, near the GRM7 gene (male effect = 0.02 & p-value = 3.0×10−5;
female effect = −0.007 & p-value=3.3×10−2) and eleven suggestive loci associated with either FN-
or LS-BMD in discovery cohorts. However, there was no evidence for genome-wide significant
(P<5×10−8) gene-by-sex interaction in the joint analysis of discovery and replication cohorts.

Conclusion—Despite the large collaborative effort, no genome-wide significant evidence for
gene-by-sex interaction was found influencing BMD variation in this screen of autosomal
markers. If they exist, gene-by-sex interactions for BMD probably have weak effects, accounting
for less than 0.08% of the variation in these traits per implicated SNP.

Keywords
gene-by-sex; interaction; BMD; association; aging
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Introduction
Osteoporosis is a common condition that affects at least 30% of women and 12% of men at
some point in life (1). Females show a greater incidence of both stress fractures early in life
(2) and fragility fractures later in life (3). Areal bone mineral density (BMD), evaluated by
dual-energy x-ray absorptiometry (DXA), is to date the most widely used assessment of
bone strength and a reliable clinical predictor of osteoporotic fracture (4) in both men and
women. Twin studies have demonstrated that BMD is a highly heritable trait (h2 ~ 75%) in
both women and men up to the age of 70 (5).

Strong sexual dimorphism in bone phenotypes, including BMD, has been reported, possibly
explaining the observed differences in fracture risk between the sexes (6). One explanation
for this sex-specific predisposition to osteoporosis and fracture risk is the possibility that the
observed differences between men and women are driven by genetic effects determining
bone fragility. There are known sex differences in bone traits in mice (7-10). Similarly,
some genome-wide linkage analyses in humans have reported sex-specific results. In a
whole-genome linkage analysis stratified by sex, sex-specific QTLs were found in the
Framingham sample (11), as well as by other groups (6). Furthermore, in a meta-analysis by
Ioannidis et al (12) that included data from the 9 whole-genome linkage scans for BMD,
several sex-specific QTLs were observed. Notably, some sex-specific QTLs did not appear
in any of the individual studies of BMD linkage, possibly because the individual studies had
limited power.

Previous published GWAS of bone phenotypes, such as BMD (13-18), did not test for SNP-
by-sex interactions, nor did they mainly investigate sex-specific results. As the sample sizes
of GWAS expanded with the growth of consortia, it has become more feasible to study sex-
specificity of BMD (19). However, direct comprehensive assessment of SNP-by-sex
interactions for BMD has not been previously reported. The availability of large-scale
GWAS collaborations allows for massive testing of SNP-by-sex interaction effects (20) and
for rigorous replication of proposed discovered interactions that would allay the risk of false
positives (21). To study potential genetic contributions to the sexual dimorphism in BMD,
we first performed a comprehensive study of genome-wide gene-by-sex interactions in
cohorts with both men and women who are part of the Genetic Factors for Osteoporosis
(“GEFOS”) consortium. In addition, we tested SNPs previously reported to be associated
with BMD in a recent meta-analysis of GWAS studies for sex by SNP interactions.

Methods
Subjects and Bone mineral density measurements

The discovery samples included 25,353 subjects of European ancestry (9,056 men and
16,297 women) from 8 cohorts (AMISH, CHS, DECODE, ERF, FHS, HABC, RSI, RSII,
see Supplementary Table 1) who are members of the GEFOS consortium. For replication,
we recruited an additional 24,763 individuals (6,814 men and 17,949 women) from 19
independent studies. Two (HKO: Asian and SAFOS: Mexican American) of replication
cohorts consist of samples of non-European ancestry. All cohorts measured BMD (g/cm2) at
the femoral neck (FN) and lumbar spine (LS) using dual-energy X-ray absorptiometry
(DXA). Sample size varies (340 ~ 7,605) across different cohorts and average age for each
cohort ranged from 19 to 80. Supplementary Table S1 displays the sample characteristics for
each cohort.

Genotyping and genotype imputation
Discovery GWAS cohorts were genotyped with various platforms, including Illumina
370CNV (CHS and DECODE), Illumina Infinium HumanHap550 Beadchip (RSI and RSII),
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the Affymetrix Nsp 250K chip, the Sty 250K chip and the 50K gene-centered MIP chip
(FHS), Illumina Human 1M-Duo BeadChip (HABC), Affymetrix 500k or 6.0 (AMISH), and
both Illumina and Affymetrix (ERF). Imputation for non-genotyped SNPs was used to
perform meta-analysis of results from the same set of SNPs across all individual cohorts.
Imputation quality was assessed using the ratio of empirical observed variance of the allele
dosage to the expected binomial variance. The imputations were conducted using Hidden-
Markov Model implemented in MACH (22,23), IMPUTE (24,25) or BIMBAM (26). The
imputation reference panel was the HapMap CEU Phase II (release 22, build 36). Details of
the imputation procedures in each discovery cohort and the filtering criteria for each SNP
can be found in Supplementary Table S2.

Five of the 19 cohorts for follow-up used various genotyping platforms and applied their
cohort-specific filtering criteria. Samples from the other 14 replication studies, all members
of the GENOMOS consortium, were de novo genotyped by K-Biosciences
(http://www.kbioscience.co.uk/) using a competitive allele specific PCR (KASPar) assay.
Most of the de-novo genotyped studies opted for amplified DNA. We evaluated the
genotype concordance between genomic DNA genotypes and amplified DNA genotypes in
an independent panel of 82 SNPs within 96 samples (19). The genotype accuracy between
before and after amplification was 99.97%. A Y-chromosome specific assay was evaluated
in all samples to confirm the sex of the individual sample. Sample mismatches between the
sex specific assay and the reported sex in the questionnaire were removed from analysis.
Aspects of reproducibility (I.e. assessment of duplicate sample, positive control and negative
control genotyping) were considered during the stage of assay design for all markers. For the
QC of cohort specific genotyping sex concordance checks were assessed using a Y-
chromosome assay to identify potential plating errors for which if unresolved samples were
excluded. Genotyping concordance using a different platform was also assessed in the
EDOS study using Illumina OmniExpress technology for a distinct project on a subset of the
EDOS cohort which was originally genotyped at Kbiosciences. The concordance of the
shared markers with the microarray and the SNPs genotyped by Kbiosciences was 99.7%.
Genotyping comparisons between discovery and follow-up samples were not compared. The
following inclusion thresholds were applied for the cohorts typed by K-Biosciences: sample
call rate > 80%, SNP call rate > 90%, Hardy Weinberg Equilibrium P-value > 1×10−6.
Detailed information on all replication cohorts can be found in Supplementary Table S2.

Statistical Methods for phenotype-genotype association analysis and Meta-analysis
A two-stage approach was applied to test gene-by-sex interaction. In stage 1, using a fixed
effects inverse variance approach, we performed a meta-analysis of summary statistics for
the gene-by-sex interaction effects in genome-wide analyses of FN- and LS-BMD obtained
from 8 discovery cohorts. We used a p-value threshold of P≤5×10−8 for genome-wide
significance and P≤1×10−5 for suggestive signals. In the second stage, we then evaluated
SNPs with interaction p-values < 1.0×10−5 obtained from stage 1 in replication cohorts. In
addition, we evaluated the sex-specific effects for these top SNPs from our GWAS analysis.
We also conducted candidate gene analysis to investigate the gene-by-sex interaction for
previously reported BMD associated loci from the largest GWAS meta-analysis to date (19).

Stage 1: GWAS Discovery Analysis—Only cohorts with both sexes were included in
our discovery stage. Each discovery cohort conducted cohort-specific genome-wide
association analyses using linear regression with a main effect for each SNP and SNP-by-
sex interaction terms using an additive model for each SNP. We adjusted for age, height,
weight, study site (for multisite cohort studies), sex, and also principal components to
control for population stratification. The “dosage” information for imputed genotype was
used to account for uncertainty of imputation. In addition, we conducted sex-specific
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association analyses for the top SNPs (P≤1×10−5) to examine their effect on BMD within
each sex. We excluded SNPs with poor imputation quality (Observed variance/Expected
variance < 0.3 for MACH and BIMBAM imputed datasets and < 0.4 for IMPUTE imputed
datasets) and low minor allele frequency (MAF <0.03 for sex-specific analysis and MAF <
0.05 for gene-by-sex interaction analysis).

Stage 2: Replication Analysis—Twelve SNPs from the first stage were followed for
replication. For each cohort we performed sex-specific association analysis and for the
cohorts with both sexes, SNP-by-sex interaction was examined directly as with the
discovery cohorts. For cohorts with both sexes, we meta-analyzed their association results.
For cohorts with only one sex, we meta-analyzed the sex-specific association results for the

main effects of a SNP and then estimated the gene-by-sex interaction effects by 

with its corresponding standard error , where  and  are
sex-specific SNP effects from sex-stratified analysis. Utilizing all samples, the final result
was obtained through meta-analyzing, with inverse variance as weight, the direct gene-by-
sex interactions test result from two-sex sample cohorts and the interaction results estimated
from contrasting the one-sex sample cohorts.

Power Analysis for Interaction: Before beginning second-stage analyses, we estimated
that we would have samples of size 50,000 in total. So we conducted a power analysis on the
detection of gene-by-sex interaction based on the sample size of our discovery cohorts
(25,353) and the estimated sample size of discovery + follow-up cohorts (50,000). Using the
effect sizes of top SNPs we observed in our discovery cohort, we explored the relationship
between detectable (with 80% power at genome-wide significant level of 5×10−8)
interaction effect sizes and allele frequency. We explored all different scenarios
corresponding to the range of observed effect sizes of our top SNPs, but their power analysis
results are similar so we only present one scenario in Figure 1, corresponding to the
parameter estimates of rs1405534 in LSBMD (effect size of −0.0048 for SNP and −0.0219
for SEX).

Gene Expression Quantitative Trait Loci (eQTL) Analysis
In parallel to our second stage analysis, we also investigated our top findings from the first
stage for the possibility of a meaningful biologic process underlying the genes that these
SNPs belonged to. We conducted cis-expression quantitative trait locus (eQTL) analysis
within a 500kb flanking region of each of the top SNP to evaluate whether the SNP-by-sex
interactions also influence transcript levels of genes in human primary osteoblasts and
lymphocytes. In each locus, we selected either the gene in which the interacting SNPs were
located or its closest nearby gene. Expression experiments in primary osteoblasts and
lymphocytes were conducted in different study samples. For un-genotyped SNPs, surrogate
SNPs with LD r2 ≥ 0.5 and within 100kb of the targeted SNPs were used in primary
osteoblast samples.

Lymphocytes—A gene expression profile with 24,385 RefSeq annotated genes (Illumina
Sentrix Human-6 BeadChips) and genome-wide genotyping of ~2.5 million SNPs were
available from Hapmap samples (lymphoblastoid cell lines from 128 women and 142 men).
Blood sample collection, RNA and DNA isolation, expression profiling, and DNA
genotyping have been described in detail (27). A mixed-effect regression model
implemented in R was used to test SNP-sex interactions, adjusting for sex, ethnicity and age.

Primary Osteoblasts—A gene expression profile with 18,144 known genes (Illumina
Human Ref8v2 BeadChips) and genome-wide genotyping of 561,303 SNPs (Illumina 550k
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Duo chips) were available (GSE15678) in 95 human Caucasian primary osteoblast samples
(42 women and 53 men). Human trabecular bone came from the shaft of proximal femora
obtained from donors undergoing total hip replacement. Primary osteoblasts were derived
from bone tissue. Tissue collection, RNA and DNA isolation, expression profiling, and
DNA genotyping have been described in detail (28). A linear regression model implemented
in PLINK (http://pngu.mgh.harvard.edu/~purcell/plink/) was used to test SNP-sex
interactions, adjusting for sex and year of birth.

Gene-Set Enrichment Tests of Functional Similarity
To explore functional similarity of the genes from our top SNP-sex interactions, we
performed a gene-set enrichment test to examine the probability of selected candidate genes
clustering in particular biological/functional pathways as defined by the Gene Ontology
(GO) project (29).The GO Consortium provides controlled vocabularies, which model
“Biological Process”, “Molecular Function” and “Cellular Component” that are structured
into directed acyclic graphs based on published literature and databases. Gene products may
be annotated to one or more GO nodes. To determine whether any GO terms annotate a
specified list of genes at a frequency greater than that would be expected by chance, a p-
value was calculated using the hypergeometric distribution (30). To correct for multiple
testing, the false discovery rate (FDR) was estimated (31).

Results
GWAS SNP-by-Sex Interaction for Bone Mineral Density

We observed one significant locus associated with SNP-by-sex interaction for LS-BMD at
3p26 with the most significant marker being rs10510373 (closest gene GRM7, P =
P≤3.41×10−8) and 11 SNPs with suggestive signals for interactions for either LS-BMD or
FN-BMD. We carried forward these 12 SNPs from stage 1 GWAS for replication in 24,763
replication samples. The genome-wide association plots are shown in Supplementary Figure
S1 and the quantile-quantile plots are displayed in Supplementary Figure S2, which shows
that there was no systematic inflation of test statistics (with genomic inflation factor 1.010
for FNBMD and 1.003 for LSBMD). The results for Stage 1, Stage 2, Stage1 + Stage2
analysis for the 12 SNPs are displayed in Table 1. Of the 12 SNPs carried forward for
replication, no SNP reached genome-wide significance for the combined Stage 1 + Stage 2
analyses.

We also conducted sex-specific analysis for the 12 SNPs with at least suggestive interaction
signals in Stage 1 to examine their sex-specific signal with BMD (Table 2). None of these
12 SNPs showed a genome-wide significant sex-specific signal.

Differential Expression and eQTL
As listed in Table 3, except for RELL1, gene expression levels of 11 top associated genes
were obtained in human lymphocytes. Gene expression levels in lymphocytes of these 11
genes were higher in men than the expression levels in women. However, none of them were
considered statistically significant after correcting for multiple comparisons using
Bonferroni correction (p-value cutoff= 0.05/11 = 0.0046). A significant eQTL was found for
SNP rs3748371, as a polymorphic allele T in rs3748371 was associated with higher
SERPINA1 expression (data not showen). However, no significant SNP-sex interactions on
gene expression were shown in human lymphocyte samples.

Except for RELL1, gene expression levels of 11 top associated genes were obtained in
human primary osteoblasts. Gene expression levels in these 11 genes were not significantly
different between men and women. For targeted SNPs not genotyped in human primary
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osteoblast samples, surrogate SNPs with LD r2 ≥ 0.5 and within 100kb of the targeted SNPs
were selected and estimate their eQTL (ie, SNP rs6696978 as a surrogate SNP of targeted
SNP, rs2295294 in UBE4B loci). No surrogate SNP (genotyped) can be found for targeted
SNP rs6830890 in C4orf32 loci; therefore, the eQTL in this region was not estimated. No
significant SNP-sex interactions on gene expression (eQTL) were found in human primary
osteoblast samples.

Gene-Set Enrichment Tests—To test the probability of our candidate genes clustering
into a particular biological pathway, we performed a gene set enrichment test on 12 genes
listed in Table 3. Due to lack of biological or functional annotation, RELL1 and C4orf32
were excluded from analyses. The most significant clustering (Fisher exact test
p=6.03×10−4; Benjamini-Hochberg multiple testing correction p=0.045) of genes involved
nervous system development and function, including UGCG, GRM7, TYRP1 and UBE4B
genes. However, by looking at more specific biological function ontology terms under
nervous system development and function, no significantly enriched functions were found.

Previously, we have identified 55 genome-wide significant loci associated with BMD with
the most significant p-values < 5×10−8 (19), and we found an additional 10 loci that were
considered as suggestive signals with the most significant p-values < 5×10−6. We performed
a gene-set enrichment analysis on these 65 loci and found functional enrichments on
ossification (p=1.8×10−7), bone formation (p=2.8×10−6), mineralization of trabecular bone
(6.1×10−6), cell-cell connection among osteoclast and osteoblast and chondrocyte
(p=1.2×10−6), degenerative mitral valve disease (p=1.5×10−6) and Wnt/β-catenin Signaling
(p=3.4×10−5). To estimate whether additional enriched functional pathways could be
identified by adding gene-sex interaction loci to the 65 BMD associated loci, we performed
a gene-set enrichment analysis on 75 loci (65 BMD associated loci with 10 gene-sex
interaction loci with functional information). These ten gene-sex interaction loci were not
significantly clustered together with any of the 65 BMD associated loci in any known
functional and biological pathways or gene sets. No additional enriched functional and
biological pathways were found.

Discussion
This is the first genome-wide association analysis focusing on SNP-by-sex interaction of
BMD phenotypes. We identified 12 SNP-sex interaction loci with suggestive genome-wide
significance (p < 10−5) in 25,353 adult men and women which did not replicate in an
additional 24,763 adult men and women. Also we observed no replicated SNP by sex
interaction for any of the top SNPs found to be significantly associated with BMD in the
largest GWAS meta-analysis performed to date (Detail described in Supplementary text and
Supplementary Table 3). To account for the varying linkage disequilibrium structure across
different populations, we also analyzed the data from the sample of European ancestry (data
not shown). Although we observed improvement of the p-values (smaller p-values in
European ancestry samples only), but no SNP by sex interaction was replicated for any of
the top SNPs in this sample. Hence, the conclusion remained the same.

Recent studies (32) suggest that sex-specific genetic architecture influences many human
phenotypes, including reproductive, physiological, and complex disease traits. Some of the
underlying mechanisms might be attributed to differential gene regulation in males and
females, particularly in sex steroid responsive genes (different hormonal milieu). In the field
of skeletal genetics, in particular, sex-specific findings were reported in linkage studies
(both in humans and animal models) and candidate gene association studies (reviewed in
(6)).
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Similar to the studies in mice, whole-genome linkage studies in humans for BMD also
provided evidence of sex-specific QTLs with max LOD of 3.29 (12). More recently, this
was confirmed by Peacock et al. (33), who found male-specific QTLs on chromosomes
7q34, 14q32, and 21q21 to be linked with aBMD. Several groups studying candidate genes
also found evidence of sex-specific associations. For example, a SNP in the glucocorticoid
receptor (GR) gene was associated with extreme BMD in Chinese men but not women(34);
SNPs in the VKORC1 gene were associated with decreased BMD in Mexican-American and
Black men but not women from NHANES III(35). Finally, sex-specific associations of the
Pirin (PIR) gene with lumbar spine BMD was shown in a large Chinese cohort(36). None of
these findings overlap with our top hits.

Analyzing sex-specific associations between SNPs and BMD tests a different hypothesis
than showing that there are interactions between genetic variants and gender on BMD. The
former hypothesis tests whether the association between SNPs and BMD differs from zero
either within males or females, whereas interaction tests whether the magnitude of
association between SNPs and BMD differs significantly between sexes. Given that most
genetic variants have very subtle effects, it is expected that the lists of discovered genes and
variants associated with BMD in analyses limited to men and in analyses limited to women
may differ simply because of power considerations, even if the effects of these variants are
not genuinely different in the two sexes. In addition, the observation that men have higher
BMD than women does not necessarily imply that genetic variation contributes to the
differential distribution of BMD between men and women, despite the fact that sex is by
itself genetically-determined.

There are obvious gender-specific hormonal milieus contributing to the sexual dimorphism
on bone health. Notably, differences in response to estrogen and testosterone have been
shown for male and female chondrocytes, osteoblasts, myoblasts, and other cells (37,38). In
an earlier study, sex differences in response to progesterone have also been reported in cells
derived from rat lumbar vertebrae (39). Most recently, using human peripheral blood
mononuclear precursor cells from adult males and females that were differentiated into
osteoclasts, Wang & Stern (40) demonstrated sex-specific actions of estrogen and androgen.
Thus, 17b-estradiol and testosterone largely affected expression of different genes from a
custom designed array containing 94 genes related to bone and hormone metabolism. If such
sex-specific expression of genes related to bone metabolism does in fact occur, this was not
reflected by our analyses.

Attempts to evaluate whether there are functionally significant sex-specific differences
arising from the interaction results, differences in gene expression between males and
females and eQTL on SNP-by-sex interactions were analyzed in human samples from two
tissue types: primary osteoblast and lymphocytes. We failed to find significant differential
gene expression between men and women among the 12 transcripts prioritized by the SNP-
by-sex interaction analyses despite the presence of significant eQTL (eSNP). However, it is
important to note that a lack of evidence from expression experiments does not necessarily
exclude gene interaction with sex influencing BMD variation, given that (i) experimental
models such as osteoclastogenesis, osteoblastogenesis or early skeletal development, do not
represent all relevant processes related to the skeleton at the organism level; (ii) variation in
a gene leading to disease may affect protein function but not expression; and (iii) absence of
detectable SNP-by sex interactions may be due to modest effect sizes or due to different
environmental conditions.

There are several potential limitations of this study. First, this analysis was restricted to
autosomal SNPs, although we do not expect that most of BMD associated SNPs will be
assembled at the sex chromosomes, as there is not much of X-linked heritability of BMD.
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Second, areal BMD, despite being a sexually-dimorphic phenotype, is not necessarily the
most optimal skeletal phenotype because it does not adequately represent bone size. To
avoid identifying genes responsible for bone size, we adjusted height in the model to
account for this concern. We also repeated our analysis without height adjustment and the
results were very similar. However given the limitation of 2-D aBMD, volumetric density
measures would be also worthwhile assessing in the future for genetics of sex differences.
Third, our analyses were corrected for body weight and height which are important
determinants of the skeletal differences observed between men and women. From this
perspective gene-sex interactions effects influencing BMD variation through weight and
height (size) parameters would have been missed. We evaluated here (mostly) direct skeletal
effects. Finally, despite our large sample size, we did not identify genome-wide significant
SNP-by-sex interactions from using 25,353 individuals for the discovery stage followed by
24,763 individuals for replication. As shown in Figure 1, with the sample of size 50,000, we
would have 80% power to detect gene-by-sex interaction effect of 0.018 or larger in
LSBMD (SD = 0.187) for the SNP (which explain around 0.08% variation of a quantitative
trait) with minor allele frequency of 0.25. With 25,353 individuals in the Discovery stage,
we did not have adequate power to identify interaction reaching genome-wide significant
level (p < 5×10−8) at any allele frequency. The power analyses were conducted under the
assumption that the interaction effects are similar to what we observed for the main effects,
in our first stage analysis. We are aware that the real effect size may be relatively smaller (a
“winner’s curse” effect) and acknowledge that despite the large size of the populations
studied, we were still underpowered to detect these magnitudes of interaction effect sizes.
This result also implies that the gene-by-sex effect, if exists, is smaller in magnitude than the
previously observed SNP effects. Although we did not replicate the top SNP-by-sex
interaction loci in additional samples, possibly due to insufficient statistical power and/or
potential heterogeneity across discovery studies and replication studies, we cannot
completely rule out the possibility that these top loci from the discovery stage are in fact
involved in sex-specific regulation of BMD.

Using bioinformatics approaches, we performed biological functional interaction network
analysis with a couple of pre-specified pathways; namely sex steroids and Wnt signaling
(detailed methods and results are described in the supplementary materials). Using this
approach, we were able to indirectly link some of our top SNP-by-sex loci to β-estradiol
(supplementary Figure S3). For example, UBE4B has been found to negatively regulate the
level of p53 and to inhibit p53-dependent transactivation and apoptosis(41). Based on
chromatin immunoprecipitation assays, studies found p53 as being recruited to the ER
promoter along with other transcription factors and that this complex was formed in a p53-
dependent manner, which suggests that p53 regulates ER expression through transcriptional
control of the ER promoter (42). This type of evidence from biological experiments may
suggest that if there are true SNP-by-sex interactions on BMD, they may be indirect, acting
through more complex networks of genes. Thus, UGCG and SERPINA1 (two of the most
significant findings from the discovery stage) were found to have a direct functional
interaction with Wnt signaling pathways (supplementary Figure S4). SERPINA1 not only
interacts with CTNNB1 protein, it also decreases activation of the NFkB complex (43),
which also supports its involvement in bone metabolism.

In conclusion, our results suggest that an SNP-by-sex interaction effect if present may be too
small and heterogeneous to be detected with the current sample size, and/or with the
limitations of the areal BMD phenotypes. Therefore, future investigations of true differences
in genetic associations between the sexes will require even larger samples or more sexually-
dimorphic skeletal phenotypes such as volumetric skeletal measurements.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Power Analysis
This plot presents the relationship between detectable gene-by-sex interaction effect size
with 80% power and minor allele frequency. Specifically, we used the parameter estimates
of rs1405534 in LSBMD (SD = 0.187 at genome-wide significant level of 5×10−8) along its
relevant parameter estimates (effect size of −0.0048 for SNP and of −0.0219 for SEX), as
the setting for our power analysis. The sample size used is 25,353 for discovery cohort and
50,000 (estimated) for discovery + replication cohort. With the sample of size 50,000, we
would have 80% power to detect gene-by-sex interaction effect of 0.018 or larger in
LSBMD for the SNP with minor allele frequency of 0.25. This would explain 0.08%
variation of LSBMD. With 25,353 individuals in the Discovery stage, we did not have
adequate power to identify interaction reaching genome-wide significant level (p < 5×10−8)
at any allele frequency.
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