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InTroducTIon

The complexity of tumor biology is re-

flected in the diversity of genomic profiles

of cancer specimens collected from differ-

ent patients or from the same patient at dif-

ferent time points, metastases, or position

within the tumor [1,2]. In contrast to normal

cells, tumor cells gain ability to proliferate

extensively and invade surrounding tissues.

Accumulation of genomic aberrations is

among the processes that can confer survival

advantages to tumor cells [1]. Copy number

alterations (CNA), for instance, have been

characterized and associated with several

different types of cancers, and, in some

cases, they have been shown to be associ-

ated with disease recurrence [1,3,4]. Char-

acterization of these alterations, including

changes in gene expression patterns and

point mutations, are of great relevance in un-

derstanding cancer biology, as well as in de-

signing clinically useful tumor biomarkers.

Recently, we showed that it is mathemati-

cally unfeasible to infer the exact copy num-

ber status from high-throughput analysis of

aggregates of cells from tumor biopsies [5].

The aggregate signals of multigenerational

progeny exhibit a higher degree of com-

plexity due to the extent, variety, and fre-

quency of aberrations, contamination of

stromal cells, and the intrinsic heterogene-

ity of cancer [2]. Heterogeneity reflects the

dynamic nature of tumors as aggregates of

different subclones, each carrying a contin-

ually varying number of genomic aberra-

tions, as well as diverse patterns of gene

expression levels and point mutations, as we

have shown using Fluorescent in situ Hy-

bridization (FISH) of novel amplicons and

RNA-Seq profiling of tumor samples [5].

In order to systematically characterize,

catalog, and classify signals associated with

tumor heterogeneity, we conducted an inte-

grated study of melanoma samples profiled

using different technologies and platforms.

In our previous study, we developed a robust

CNA measure of allelic imbalance ― the M-

measure ― and we have shown how to use

it to classify tumor SNP profiling to detect

regions of copy number gain or loss [5]. In

the present study, we integrated the M-mea-

sure in an algorithm for CNA detection and

simplified the classification of CNAs into

four classes as previously described in order

to characterize the genomic aberration map

of our melanoma samples [5]. We further ex-

tended our analysis to study the statistical

association between select aberrant loci to

their gene expression or to the tumor geno-

type. Altogether, this study addresses central

challenges arising in the integration of

analyses of DNA, CNAs, and RNA levels

from heterogeneous tumor samples. 

meTHodS

Cytogenetic Analysis

Chromosome analysis was performed

on melanoma cell lines using standardized

laboratory procedures at Yale Molecular Cy-

togenetics Laboratory. Briefly, the in situ

cultured cells were treated with colcemid to

arrest the metaphase, trypsin to digest chro-

mosomal proteins, and Wright’s stain for G-

banding. Clonal abnormality was defined by

similar numerical and structural chromo-

some rearrangements observed in at least

three metaphases.

SNP-Array Data Profiling Using 
Microarrays

Yale School of Medicine (YSM) SNP-

Array Cohort

DNA from 45 melanoma tumors, with 30

corresponding melanoma cell cultures derived

from fresh tumors (Table 1) and 13 paired

germlines from either blood or skin, was hy-

bridized to Illumina Human1M BeadChips

(Illumina Inc. San Diego, CA) as previously

described [5]. These tumors were cutaneous

melanomas, unless otherwise specified.

Queensland Institute of Medical Research

(QIMR) SNP-Array Cohort

The independent cohort of 76 SNP-ar-

rays was obtained from a publicly available

dataset (GEO dataset GSE9003) and con-

sisted of cell lines derived from primary cu-

taneous melanomas or melanoma metastases

[6].
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Data Processing

The cohorts were processed independ-

ently. We generated B-allele frequencies and

Log-R ratios using standard procedures in-

cluded in the Illumina BeadStudio package.

Data were imported in the BeadStudio soft-

ware suite and normalized within the pro-

gram with respect to the population of

western European ancestry from the

HapMap project that was analyzed on the Il-

lumina Human1M BeadChip.

Design, Probe Annotation, and Data
Processing of Arrays for Detection of
Genome-Wide Gene Expression

YSM Gene Expression Cohort

Expression experiments were performed

in batches. Typically, batch artifact effects are

significant even when the batches are meas-

ured using a single experimental platform.

Here, the three experimental batches were an-

alyzed using two different NimbleGen

genome-wide human expression arrays plat-

forms: a) 2005-04-20_Human_60mer_1in2

(batch 1) and b) 2006-08-03_HG18_60mer

(batch 2 and batch 3). These two platforms

consist of ∼400,000 probes for ∼30,000 tran-

scripts and ∼20,000 known genes, as speci-

fied in the NimbleGen annotations. Within

(Loess based) and between (Quantile based)

normalization methods available in the

Limma Bioconductor/R library as standard

methods for one- and two-channel microar-

rays are applied [7]. We define expression

level as the base two logarithm of the nor-

malized measured array intensities. The data
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Table 1. characterization of YSm samples.

Sample ID

HFSC
Nbmel
YuLOVY

YuPLA
YuGOE
YuKIM

YuROL
YuPAO
YuCAS
YuCHER
YuMAG
YuROB
YuSIV
YuTuR
YuZOR
YuWERA
YuHOIN
YuDOSO
YuHEIK
YuFuLO
YuSTE
YuCAL
YuSAC
YuGEN8
YuCLIR
YuSIK
YuNIBO
YuKSI
YuLAC
YuMAC
YuRIF
YuSIT

Normal/Nevus/Melanoma

Normal
Normal
Melanoma

Melanoma
Melanoma
Melanoma

Melanoma
Melanoma
Melanoma
Melanoma
Melanoma
Melanoma
Melanoma
Melanoma
Melanoma
Melanoma
Melanoma
Melanoma
Melanoma
Melanoma
Melanoma
Melanoma
Melanoma
Melanoma
Giant nevus
Melanoma
Melanoma
Melanoma
Melanoma
Melanoma
Melanoma
Melanoma

Stage

Normal
Normal
I, primary

II
III
III

III
III, acral
IV
IV
IV
IV
IV
IV
IV
IV, acral
IV, primary
llb, primary 
primary
primary
III
IV
IV
IV 
Giant nevus
III+
IIb, primary
IV
IV
IV
IV
IV

BRAF status

NA
NA
WT

WT
WT
WT
WT
WT
WT
WT
WT
WT
WT
WT
WT
WT
WT
WT
WT
WT
V600E
V600E
V600E
V600E
V600E / WT
V600E / WT
V600K
V600K
V600K
V600K
V600K
V600K / WT

NRAS status

NA
NA
Q61L

WT
WT
Q61R

WT
WT
WT
Q61R
Q61R / WT
WT
WT
WT
WT
WT
WT
Q61K / WT
WT
Q61L / WT
WT
WT
WT
WT
WT
WT
WT
WT
WT
WT
WT
WT



from different batches was kept separate to

circumvent possible cross-platform integra-

tion artifacts. 

To verify our findings on an independ-

ent melanoma gene expression cohort, we

collected and processed gene expression

data from a previous study [8]. We used

standard GC Robust Multi-array Averaging

(GCRMA) procedures for background sub-

traction and normalization of the signals

from the expression microarrays [9].

The control samples Nbmel are primary

cultures of normal human melanocytes iso-

lated from newborn foreskins and grown in

OptiMEM (Invitrogen, Carlsbad, CA) with

antibiotics, 5 percent fetal calf serum (regular

medium) together with growth supplements,

and they were used during their first passage.

Gene Expression Cohort from Independent

Studies (IGEC)

To support our findings, we analyzed

gene expression profiling from two inde-

pendent melanoma studies [8,10]. The corre-

sponding datasets are publicly available at

http://www.broad.mit.edu/melanoma and at

the GEO database (GSE7127). The 158 ex-

pression profiles measured on Affymetrix

HT-HGU133A were processed using stan-

dard GC Robust Multi-array Averaging

(GCRMA) procedures for background sub-

traction and normalization of the signals from

the expression microarrays [9]. We define ex-

pression level as the base two logarithm of

the normalized measured array intensities.

CNA Analysis Pipeline (CAP)

CNA analysis encompasses the tasks of

detecting and classifying copy number aber-

rations. We recently showed that determina-

tion of the exact number of copies from

SNP-arrays is an ill-posed problem in the

presence of heterogeneous samples [5]. On

the other hand, detection of deviations from

the normal (diploid) state can be achieved

by classifying the aberrations as losses or

gains inferred from the dominant component

in the subclonal mixture. 

In the present study, we transformed the

copy number variables of the A-allele and B-

allele to B-allele frequency () and ratio of

DNA enrichment () [11]. These transformed

variables were used to compute the robust M-

measure of allelic imbalance for each SNP

Mj = ∑(i sin(2�i)(1 - cos(2�i)))2 (1)

where W corresponds to a window of appro-

priate size and j is the SNP index, as previ-

ously described [5]. In our CAP, we computed

the M-measure for each SNP on the array and

applied a threshold to determine the CNA sta-

tus [5]. Specifically, our CAP classifies SNP

CNA profiles into four states: gain, loss, aber-

ration, or neither. We previously showed that

this classification is a practical choice in tumor

CNA analyses when the number of copies of

a given locus differs among subclones. The

aberration state represented LOH regions, or

mixtures with a large diploid component for
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Figure 1. Cytogenetic
analysis shows differ-

ent numerical and
structural clonal ab-

normalities in

melanomas. A. Hy-
podiploid karyotype

from YuFuLO. B. Hy-

perdiploid karyotype
from YuNIBO. c. Hy-
pertriploid karyotype
from YuSIK. d. Hy-

potetraploid karyotype
from YuSAC. 

j+W

i=j-W



which the determination of gain or loss is am-

biguous, but the state is clearly different from

normal diploid. The value of W was set to 100

for the YSM cohort and to 30 for the QIMR in

order to account for the different number of

measured SNPs in the two studies. Based on

these settings, the average resolution of the

CAP is estimated to be 300kbp, and it is lo-
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Table 2. cytogenetics results of analyzed melanoma cell lines.

Name

YuFuLO

YuRIF

YuDOSO

YuNIBO

YuKSI

YuSIV

YuSIK

YuLOVY

YuSIT

YuSAC

YuROL

Lab No.

2010-

1441

2010-

0813

2010-

1367

2010-
0990

2010-
0814

2010-
0991

2010-
2079

2010-
1440

2008-
0799

2008-

0800

2010-
0812

Composite Karyotype* (**modal number given inside the < >)

44<2n_>,X,del(1)(q12),del(4)(q13q21),add(8)(p11.2),der(9)t(1;9)(q21;p21),
der(11;21)(p11.2;p13),der(16)add(16)(p13.3)del(16)(q22q24)[cp5]

44<2n_>,XY,del(1)(q12),add(5)(q35),der(6)t(6;8)(q12;q11.2),der(7)del
(7)(q11.2q31)dup(7)(q31q36),_8,der(9)t(1;9)(q21;p21),der(10)dup(10)

(q21q23)del(10)(q23q26),_13,_16,+17,add(17)(p12),add(17)(q21),_21,
+2-4mar[cp5]

45<2n>,XY,
_

6,add(9)(p22),add(11)(q21),add(14)(q24),_17,+18,_22,+mar
[4]/~90,idemx2[1]

48~50<2n+>,der(X)t(X;1)(q26;q21),Y,+2,add(3)(p25),+5,del(5)(q31q35)
x2,del(6)(q21q23),+7,_9,add(9)(q34),der(12)del(12)(q13q15)inv(12)(q15
q24.3),del(16)(q22q24),+2-3mar[cp5]

67~73<3n>,XX,+1,del(1)(p22p32),+2,+3,+4,add(5)(q35),_6,+7,+8,_10,
-14,-16,i(17)(q10),-18,-19,+20,-21,+5-7mar[cp5]

67~71<3n>,XXX,der(1;3)(q10;q10)x2,_4,_5,_6,_9,_10,add(11)(p11.2),add
(12)(p11.2),+13,+16,-17,+20,-21,+2-7mar[cp5]

68~70<3n>,XX,del(X)(q11),+1,i(1)(q10),der(1)t(1;14)(p10;q10),_4,+6,+7,
_9,_10,_11,+12,del(13)(q12q22),_14,+15,_18,_19,+20,_21,+22,+2mar[cp5]

77~83<3n+>,XX,del(1)(q12)x2,+6,+7,+8,add(8)(p11.2)x2,+9,der(9)t(1;
9)(q21;p21)x2,der(11;21)(p11.2;p13),+12,+13,+14,+15,+16,der(16)add
(16)(p13.3)del(16)(q22q24)x2,+17,+18,+20,+22,+mar[cp5]

80~85<4n_>,XXXYY,_1,i(1)(q10),_2,der(2)t(1;2)(p31;q37),_3,del(3)(q21q23),
_4x2,_7x2,add(7)(q36),_8x2,der(8)t(8;15)(q24;q21)x2,add(9)(q34),_11x3,add
(12)(p13),del(12)(p12),_13x2,add(14)(p13),+16,_17,_18,del(18)(q22)x2,_19,
add(20)(q13.3)x2,add(21)(q22),_22x3,der(22)t(1;22)(p10;q10),+10_14mar

[cp3]

86~87<4n_>,XXY,_1,del(1)(q21q25),i(1)(q10),_2,der(2)t(1;2)(p31;q37),_3,del

(3)(q21q23),_4,add(4)(q21),
_

7x2,add(7)(q36),_8,der(8)t(8;15)(q24;q21)x2,_9,

add(9)(q34),_11x2,der(11)t(7;11)(p10;q10),_12x2,add(12)(p13),del(12)(p12),
_13x2,del(13)(q33),_14x2,add(14)(q32),_15,_16,add(16)(p13.3)x2,_17x2,del(
18)(q22)x2,_20,add(20)(q13.3)x2,_21,i(21)(q10),add(22)(p13),der(22)t(1;22)

(p10;q10),+20-24mar[cp2]

81~87<4n_>,XXYY,+Y,del(1)(p22p32)x2,_2,inv(3)(p25q29)x4,_4x2,_7,add

(7)(p22)x2,_9x2,_11,_13x2,_14,der(14;22)(q10;q10),_15,i(15)(q10),del(16)
(q22q24)x2,_17,_18x2,_19x2,der(21;22)(q10;q10),_22,+6_18mar[cp5]

*Composite karyotype following ISCN (An International System for Human Cytogenetic Nomenclature 2009)
**modal number: 2n-, hypodiploid; 2n+, hyperdiploid; 3n, triploid; 3n+, hypertriploid, 4n-, hypotetraploid.



cally determined by the genome-wide distri-

bution of the SNPs probed by the array. We

ran the pipeline only for the autosomes since

our model was not designed for allosomes. 

Other Statistical Analyses

All other bioinformatics analyses were

performed using custom-designed code for

the R statistical software package

(http://cran.r-project.org), Bioconductor

packages (http://www.bioconductor.org),

MATLAB (www.mathworks.com) and Perl

(http://www.perl.org/). 

Data Availability

Information on how to access the data

and the results of the analyses described in

the present manuscript is available through

the MelaGrid resource (http://melagrid.org).

TaqMan Copy number assay

We validated EZH2 copy number varia-

tion employing DNA from several melanoma

cell line and normal human melanocytes,

using Applied Biosystems® real-time PCR

instruments and software. The assay included

Target-specific forward and reverse primers

(CCAGATGCTGGGATAGTGCCACCC

and TTCCCGACAGGTACGGCTGCCA),

VIC® dye-labeled TAMRAT, and Genotyp-

ing Master Mix, following manufacturer’s in-

structions (Applied Biosystems, Life

Technologies Corporation).

reSuLTS

The Map of Melanoma CNAs

To inspect the heterogeneity of

melanoma tumors at a course grain scale, we

performed cytogenetic analysis of 11

melanoma YSM cell lines where, for each

cell line, we examined several cells origi-

nating from the mainline clone as well as

cells from sideline clones (subclones). We

observed complex numerical and structural

rearrangements from different melanoma tu-

mors, showing the distinctive and complex

clonal abnormalities observed in the

melanoma cell lines by cytogenetics analy-
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Figure 2. CNA map of the YSM cohort. The colored patient labels refer to metastatic sam-
ples (red), primary tumors (green) and normal DNA samples matched to a subset of the
tumors (blue). The map shows the status of the corresponding genomic location for each
sample. The possible states and their corresponding color are indicated in the legend, with
white indicating no detected alteration, red indicating gains, green indicating losses, and
yellow indicating possible copy neutral LOHs or not-well characterized aberrations. 



sis. In particular, in Figure 1, we show four

representative karyotypes, representing a

hypodiploid karyotype from YUFULO, a

hyperdiploid karyotype from YUNIBO, a

hypertriploid karyotype from YUSIK, and a

hypotetraploid karyotype from YUSAC.

Composite karyotypes for the mainline

clone of the inspected tumors are summa-

rized in Table 2. 

SNP array platforms allow us to detect

aberrations at a higher resolution compared

with cytogenetic analysis. Measurements

using these arrays are performed using nu-

merous cells and hence provide an aggre-

gated picture of these aberrations. We

applied our CAP to both the YSM and

QIMR cohorts and recovered their genome-

wide patterns of genomic alterations (Figure

2). Importantly, the YSM cohort was com-

posed of germline DNA samples as well as

primary tumors and metastatic tumor sam-

ples. The minimal number of structural vari-

ants in the germline samples (Figure 2, blue

samples) was indicative of the specificity of

our pipeline. In addition, we visually in-

spected the raw SNP array signals at the

chromosomal coordinates of a subset of the

germline variants detected by our algorithm

and confirmed the presence of these CNV.

Interestingly, the YUCAS cell culture from

the YSM cohort was profiled twice at two

consecutive early passages. Applying our

pipeline to these two profiles and compar-

ing their CNA status confirmed the high sen-

sitivity of our approach to detect changes in

CNA profiles between closely related cell

populations, e.g., in chromosomes 2, 4, 12,

13, and 16 (Figure 3).

Overall, these global CNA maps

showed consistent patterns of large aberra-

tions, often affecting whole chromosome

arms. In particular, we could identify well-

known recurring amplifications in chromo-

some 7, as well as amplification of 1q and

6p of chromosome 20 and, less frequently,

8q. Similarly, we detected recurring losses

of chromosome 9 and 10 in both cohorts, as

well as loss of 6q. We also noted cohort-spe-

cific aberrations, such as the amplification

of chromosome 22 in the QIMR cohort. 

We found that the typical number of aber-

rations varied between the cohorts. Further-
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Figure 3. CNA comparison between two passages of the YSM sample YuCAS. The two
samples are shown in terms of BAF and CNA maps. The Log-R ratio profile of the early
passage is also shown. Several additional aberrations are clearly visible.



more, we also observed global differences be-

tween the profiles of primary and metastatic

melanomas. In the YSM cohort, the metastatic

melanomas exhibited patterns that we inter-

preted as superposition of multiple aberrations

at the same site, such as changes in chromo-

somes 8 and 12 in the YUCAS replicates; in

contrast, the five primary tumors showed

fewer aberrations that tend to be more uniform

(Figure 3). Unfortunately, our sample size for

primary tumors was too small to conclude that

this observation is statistically significant. In

addition, we note that the QIMR data had a

higher number of aberrations, in general re-

sembling the metastatic YSM profiles.

Visual inspection of the global map of

aberrations suggested the presence of several

short amplifications (~100 kbp). In order to

investigate the distribution of genomic sizes

of events, we defined an event as the ge-

nomic region comprising contiguous SNP-

array signals with identical CNA status (gain,

loss, aberration, none). For each sample, we

computed the length distribution of gain and

loss events. We observed a significant over-

representation of gain events rela-

tive to loss events in length scales

around 300kbp. Conversely, in

longer length scales (>1 Mbp), gain

events were under-represented

compared to loss events (Figure 4).

Influence of CNAs on Gene 

Expression Levels

The current understanding is

that tumor cells accumulate ran-

dom aberrations whose net effect is

measured in terms of conferring se-

lective advantages to the carrier

cell, which ultimately enable the

tumor to survive and spread. Many

aberrations are regarded as “pas-

sengers” that do not significantly

alter the tumor phenotype; in con-

trast, “driver” aberrations can af-

fect growth, or survival, or invasive

capabilities of cancer cells, thus

leading to more aggressive and re-

silient tumors. Consequently, in

order to select CNAs with the po-

tential of having a relevant associ-

ation to the oncogenic phenotype, we

investigated the relationship between CNAs

and gene expression levels of genes posi-

tioned within or near to the genomic bound-

aries of these aberrations.

Homozygous deletions are more easily

interpreted, as complete loss of a gene causes

complete loss of both its mRNA and its pro-

tein product. Further, we reasoned that am-

plified driver genes would have

proportionally increased expression. Passen-

ger genes that are not initially expressed

would not show expression following ampli-

fication or their expression was unaltered due

to transcriptional regulatory responses to

compensate for the copy number change. We

compared the global relationship between

gene expression levels, measured using ex-

pression microarrays, and the arithmetic

mean of Log-R ratios measured along all

SNPs within the longest transcript of each

gene, which we used as a proxy for the DNA

enrichment log-ratio along the transcript. This

comparison showed poor correlation between

the two quantities, suggesting that the major-
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Figure 4. Empirical distribution of genomic sizes of
aberrant regions of gains and losses. For each sam-
ple in the cohort, we computed the distribution of ge-
nomic sizes of aberrant regions for gains (pink) and
losses (gray). The gains mean and corresponding
error bars are shown in red, the losses mean and
corresponding error bars are shown in black. A gap is
seen between the error bars of short copy number
events, indicating that gains are more frequent than
losses at that length-scale. However, losses are
more frequent, although not significantly, at longer
length-scales.



ity of aberrations have either no impact on ex-

pression levels or that they affect regions with

genes that are not expressed (Figure 5A, top

panel). In order to distinguish between these

two possibilities, we smoothed the expression

profiles as well as the DNA enrichment pro-

files. For each quantity, we computed a run-

ning mean of 30 neighboring genes: The

corresponding smoothed profiles between ex-

pression levels and DNA enrichment log-ra-

tios showed an increased correlation (Figure

5A, bottom panel).

Based on these results, we aimed to

identify potential genes localized along

driver aberrations. In particular, we com-

puted the correlation between the gene ex-

pression levels and the DNA enrichment

log ratio across patients in the YSM cohort

and determined the significance of the cor-

relation coefficient. Most genes showed a

very poor correlation, few passing our

Bonferroni-adjusted p-value cutoff of 10-5.

The best correlation was found for the

Forkhead box protein K2 (FOXK2,

r2>0.70), known to participate in gene and

viral regulation. Interestingly, we found

that a 4-fold change in expression levels

across samples was roughly associated

with a 2-fold change in Log-R ratio, which

we used as a proxy for DNA enrichment

(Figure 5B). However, investigation of

protein levels as reported in the Human

Protein Atlas [12] indicates that high levels

of FOXK2 protein are rather typical of cell

lines rather than of melanoma tumor sam-

ples. Nonetheless, whether the higher lev-

els of FOXK2 in cell lines are directly

related to the homogeneous sample of im-

mortalized, metastatic-like cells remains

unclear.
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Figure 5. Relationship between Log-R ratios and gene expression levels. A. The relation-
ship between Log-R ratios and expression levels improves after smoothing. The density
heatmaps show the joint distribution of Log-R ratios and expression levels from the sam-
ples in the YSM cohort for which both expression- and SNP-profiling were available. Red
corresponds to a high density, while grey corresponds to low density. White is used to indi-
cate areas with too few measurements. A green LOESS estimator has been added as a
visual aid. upper Panel: density heatmap of raw data. Lower Panel: density heatmap after
a running mean smoothing along the genomic coordinate of both the expression levels
and the Log-R ratios. The Pearson’s correlation coefficient between the two quantities is
shown. B. FOXK2 shows strong dependence between Log-R ratios and expression levels.
For each tumor sample profiled both in terms of gene expression and CNAs, we com-
pared the expression level and the Log-R ratio. The correlation value shown in the figure
corresponds to the Pearson’s correlation coefficient between the average Log-R value
along the FOXK2 locus and the expression levels of the FOXK2 gene.
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Table 3. Go analysis of 200 candidate genes from the integrated pipeline.

molecular function

endopeptidase activity

peptidase activity, 

acting on L-amino acid

peptides

peptidase activity

metalloendopeptidase 
activity

receptor binding

cellular component

triglyceride-rich 
lipoprotein particle

very-low-density 
lipoprotein particle

organelle membrane

protein-lipid complex

endomembrane 
system

plasma lipoprotein particle

endoplasmic reticulum
part

intrinsic to Golgi 

membrane

endoplasmic reticulum
membrane

subsynaptic reticulum

nuclear envelope-

endoplasmic reticulum

network

Golgi membrane

Golgi apparatus part

intrinsic to organelle

membrane

triglyceride-rich 

lipoprotein particle

Adjusted p-value

0.0054

0.0143

0.0158

0.0209

0.0209

Adjusted p-value

0.0028

0.0028

0.0063

0.0079

0.0079

0.0079

0.0149

0.0190

0.0209

0.0209

0.0261

0.0261

0.0263

0.0305

0.0028

Genes

CARD18, MMP20, ST14, YME1L1, DDI1, BACE1, ADAMTS8, TMPRSS5,

ADAMTS15, MMP1, PCSK7, MMP25, TMPRSS4, CASP12

CARD18, MMP20, ST14, YME1L1, BACE1, ADAMTS15, MMP1,
PCSK7, uSP28, TMPRSS4, DDI1, TMPRSS5, ADAMTS8,

MMP25, ZRANB1, CASP12

CARD18, MMP20, ST14, YME1L1, BACE1, ADAMTS15, MMP1,
PCSK7, uSP28, TMPRSS4, DDI1, TMPRSS5, ADAMTS8,
MMP25, ZRANB1, CASP12

MMP1, MMP25, MMP20, YME1L1, ADAMTS8, ADAMTS15

IFNA8, SORBS1, CD3G, GABARAPL2, ARHGEF12, CRTAM, INSL4,

IFNA14, PANX1, IFNA21, MMS19, RLN1, ADAMTS8, APOC3, CER1,
MED17, RLN2, APOA5, IFNA13, APOA1

Genes

APOC3, APOA5, APOA1, VLDLR

APOC3, APOA5, APOA1, VLDLR

ALG9, SOAT1, ATP5L, TIMM8B, VPS11, SRPR, NLRX1, PCSK7,
DPAGT1, GABARAPL2, SPATA19, CHST5, MTMR2, GBF1, SDHD,
ST8SIA6, ST3GAL4, SLC37A4, STT3A, uPK2, CYP26C1, ACAT1,
CYP17A1, ARCN1, TYRP1

APOC3, APOA5, APOA1, VLDLR 

ALG9, SOAT1, SRPR, VLDLR, DPAGT1, GABARAPL2, PCSK7,
CHST5, GBF1, ST8SIA6, ST3GAL4, SLC37A4, STT3A, VPS26B, uPK2,
CYP26C1, CYP17A1, ARCN1, TYRP1

APOC3, APOA5, APOA1, VLDLR

ALG9, SOAT1, SLC37A4, SRPR, STT3A, uPK2, CYP26C1,
HYOu1, DPAGT1, CYP17A1, APOA1

ST8SIA6, PCSK7, ST3GAL4, CHST5

ALG9, SOAT1, SLC37A4, SRPR, STT3A, uPK2, CYP26C1,
DPAGT1, CYP17A1

ALG9, SOAT1, SLC37A4, SRPR, STT3A, uPK2, CYP26C1,

HYOu1, DPAGT1, CYP17A1, APOA1

ALG9, SOAT1, SLC37A4, SRPR, STT3A, uPK2, CYP26C1,
DPAGT1, CYP17A1

ST8SIA6, PCSK7, GABARAPL2, ST3GAL4, CHST5, GBF1,

ARCN1 

ST8SIA6, ST3GAL4, BACE1, TRAPPC4, GABARAPL2, PCSK7,

CHST5, ARCN1, GBF1 

ST8SIA6, ALG9, PCSK7, ST3GAL4, CHST5, uPK2

APOC3, APOA5, APOA1, VLDLR



Gene Expression Studies Enable Filtering

of Relevant CNAs

The negligible number of genes with a

significant correlation between DNA en-

richment and gene expression levels across

all patients was unexpected. Among the

many possible explanations for this phe-

nomenon, we reasoned that gene expression

patterns are the result of complex regulatory

mechanisms and thus direct dependence be-

tween expression levels, and CNA might be

achieved only for a subset of genes in a non-

linear fashion. We therefore selected loci po-

sitioned within CNA regions for which the

melanoma tumor samples exhibited devia-

tions in terms of gene expression levels. In

particular, we identified two sets of 200

genes that were either under- or over-ex-

pressed in more than 24 melanoma samples

(>80 percent of the 30 samples in the cohort)

relative to the extreme expression levels of

normal melanocytes for the same gene and

showed CNAs affecting the gene locus. For

each gene with at least one tumor showing a

CNA gain (loss), we required at least 24

tumor samples to have gene expression lev-

els for the selected gene above (below) the

maximum (minimum) expression level in

any of the normal samples. Next, we se-

lected the 200 over- (under-) expressed

genes with the largest number of samples

having a CNA gain (loss) affecting the gene

locus. In detail, for each gene with at least

one tumor showing a CNA gain (loss), we

required at least 24 tumor samples have gene

expression levels for the selected gene above

(below) the maximum (minimum) expres-

sion level in any of the normal samples.

Next, we selected the 200 over- (under-) ex-

pressed genes with the largest number of

samples having a CNA gain (loss) affecting

the gene locus.

We analyzed these bona fide 400 driver

genes with potentially activating aberrations

using a standard pathway analysis tool

(www.bioinfo.vanderbilt.edu/webgestalt/) and

identified the mitotic cell division category to

be the leading GO category associated with

over-expressed genes. For example, the cell

division category included 23 genes with an

adjusted p-value < 10-10 and the mitosis cate-

gory included 19 genes with an adjusted p-

value < 10-8. The under-expressed genes

exhibited a larger variety of themes, with GO

categories associated to Golgi organelle, pep-

tidase activity, and receptor binding, in partic-

ular in the class of interferon receptors (Table

3). These results showed that our bona fide

candidates were indicative of tumor activity.

To experimentally verify the utility of

this approach, we inspected the copy number

status of four selected genes using either RT-
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Figure 6. Integrated analysis of CNA and gene-expression. A. Integrated analysis of the
EZH2 gene. Combining expression levels and CNA profiling suggests aberrations of the
EZH2 gene in a number of samples. The suggested aberrations were validated using RT-
PCR techniques as shown in the inset. B. Deletion of the 3’uTR region of the NRG gene
occurs in the sample with the highest NRG3 expression level. Samples have been divided
into batches based on gene expression profiling. Replicates are shown when available
and are connected by a dashed line. Each sample has been characterized in terms of
BRAF and NRAS mutations (see the figure legend). Inset: the BAF and Log-R ratio at the
NRG3 locus exhibit a clear homozygous deletion in the YuKSI sample.



PCR or FISH analysis as previously reported

[5]. RT-PCR confirmed all amplifications (an

example featuring the Histone-lysine N-

methyltransferase (EZH2) locus is shown in

Figure 6A), and FISH analysis revealed re-

markably complex mixtures with varying

gains and numbers of subclones. The FISH

validation further supported our simplified

classification into gain, losses, aberrations,

and normal categories as an efficient and

transparent approach to handle very complex

tumor subclonal mixtures. 

We investigated focal losses (<1Mbp) and

identified one recurring event that was previ-

ously reported as a susceptibility locus for schiz-

ophrenia [13] and has been linked to breast

cancer [14] (Figure 6B). Considering that the

focal loss occurs at the 3’ end of the neuregulin
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Figure 7. DKK1 gene expression levels are associated with BRAFV600 mutation status. 
A. Expression levels of DKK1 gene in the YSM cohort. Samples have been divided into

batches based on gene expression profiling. Replicates are shown when available and are

connected by a dashed line. Each sample has been characterized for BRAF and NRAS

mutations. With few exceptions, BRAFV600E samples show an expression level below 11 for
the DKK1 gene. B. Distribution of DKK1 expression levels in the independent IGEC co-
hort. The samples in the cohort were divided according to their BRAF mutation status: WT

(black) and V600E (red). As expected, WT exhibits clear bi-modality, the lower mode cor-
responding to the mode of the distribution of DKK1 expression levels in the BRAFV600E

group.



3 (NRG3) gene, we analyzed the expression and

CNA status of the NRG3 gene. NRG3 encodes

a transmembrane protein whose ectodomain is

cleaved and acts as a direct ligand for the trans-

membrane v-erb-a avian erythroblastic

leukemia viral oncogene homolog-like 4

(ERBB4) tyrosine kinase receptor through its

BGF-like domain [15]. The binding results in

ligand-stimulated tyrosine phosphorylation and

activation of the receptor [13,15], which be-

longs to the ERBBs family, known for being in-

volved in intracellular signaling cascades and

the induction of cellular responses including

proliferation, migration, differentiation, and sur-

vival or apoptosis. We observe the deleted re-

gion of the transmembrane gene NRG3 is part

of the cytoplasmic region, which is not involved

in binding with ERBB4, suggesting that the

deleted protein retains functionality.

Association with BRAF 
Mutations

V-raf murine sarcoma viral oncogene ho-

molog B1 (BRAF) V600 mutations, denoted

in the text as BRAFV600E

and BRAFV600K, are

prevalent in melanomas.

Thus, we studied the as-

sociation of CNA and

gene expression levels

with BRAF mutation sta-

tus, and we identified a

number of genes whose

changes in expression

levels were associated to

the BRAF status. An im-

portant class of genes as-

sociated with BRAF

status were the Glu-

tathione-S-Transferase

genes, in particular, the

glutathione S-transferase

mu 1 (GSTM1) gene,

whose increased level

was associated with mu-

tated BRAF. No currently

known pathway could

explain GSTM1 in-

creased expression as a

feedback mechanism of

altered BRAF activity.

We therefore hypothesized that the increased

GSTM1 expression could be obtained via

other indirect processes, such as DNA methy-

lation or point mutations. Surprisingly, we

found no CNA event associated with BRAF

mutation status, suggesting the presence of

independent underlying processes leading to

large-scale genomic rearrangements and

point mutations, the latter exhibiting a

stronger association to changes in gene ex-

pression patterns.

BRAF mutations and DKK1

Changes in the expression levels of dick-

kopf 1 homolog (DKK1) gene were associated

with the specific BRAF mutation: DKK1 was

expressed at low levels in the BRAFV600E mu-

tants and highly expressed in BRAFV600K mu-

tants. WT BRAF samples showed variability in

DKK1 expression levels (Figure 7A). However,

our IGEC profiles consist of too few BRAFV600K

melanomas to perform direct comparisons be-

tween the two groups. Nevertheless, BRAFV600E

samples were enriched at low expression lev-
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Figure 8. Simplified schematic of a possible association be-
tween BRAF and WNT pathways via DKK1. Relevant BRAF
pathway components are shown in dark grey. Relevant WNT
pathway components are shown in light grey. Red lines indicate
that there is a hindering association, whereas black arrows in-
dicate a facilitating association. Two alternative paths are indi-
cated, one hindering, corresponding to the presence of V600E
BRAF, and a facilitating one, corresponding to the presence of
BRAFV600K. BRAFV600E is associated to decrease in DKK1 lev-
els, while V600K BRAF is associated to increase in DKK1 lev-
els. The cell membrane is shown as a dashed grey line.



els, while WT BRAF samples exhibited a bi-

modal distribution over a broad range of ex-

pression levels. In the YSM cohort, we

observed two distinct modes for the expression

levels of BRAF mutants (low-expression:

V600E; high-expression: V600K), while WT

BRAF samples exhibited the full range of ex-

pression levels; we thus hypothesized that the

mode corresponding to high-expression level

of WT BRAF in the IGEC cohort might over-

lap with the mode of the BRAFV600K mutants.

Unfortunately, the number of BRAFV600K sam-

ples in the IGEC cohort was too small to con-

firm this hypothesis (Figure 7B).

dIScuSSIon

In the present study, we generated an in-

tegrated aberration map of a cohort of

melanoma samples collected at our institu-

tion. For many of the samples, we had both

SNP and expression array profiling. Alto-

gether, the analysis of these data provides a

bird’s-eye view of the variety and hetero-

geneity of melanomas, which we confirmed

by comparison with other cohorts. We could

also confirm the findings of previous studies

concerning typical melanoma aberrations

[3,4,8]. For example, the prevalence of am-

plification of chromosome arms 6p and 8q

has been previously demonstrated. Further,

we provided additional evidence that con-

secutive passages of a given short term cell

culture exhibit substantial changes in CNA

profiles (Figure 3). It is unclear if these suc-

cessive changes accurately model in vivo

tumor evolution or are an artifact of the cell

culture environment.

Our findings are consistent with previ-

ous studies that employed gene expression

profiling analysis to successfully predict

whether a locus of interest is positioned

within a region of CNA [16]. This approach

combines the expression data of genes in the

genomic neighborhood of the locus of inter-

est, suggesting that the association between

gene expression and CNA at the resolution

of single gene is weaker than the association

in larger length scales. Notably, gene ex-

pression levels are affected by the interplay

between weak large-scale regulators, such as

copy number and chromatin state, and

strong localized regulators, such as tran-

scription factors, DNA methylation, and nu-

cleosomal compaction. Only one gene,

FOXK2, a forkhead regulator of chromatin

activity, showed a significant correlation be-

tween Log-R and expression levels across

our cohort. Notwithstanding the weak cor-

relation between CNAs and expression lev-

els, we used the copy number status as a

filter to identify relevant examples pointing

at the diversity of mechanisms by which a

CNA can alter the response of the affected

gene. These findings were successfully val-

idated using RT-PCR. In addition, we re-

ported loss of the 3’ end of the NRG3 gene,

which did not seem to reduce its expression.

This finding could be explained, for in-

stance, by the loss of a miRNA regulatory

site, ablated by the deletion.

A recurrent goal in the analysis of tumor

samples is to identify markers of tumor onset

and progression. To address this point, we de-

signed an approach to integrate the diverse in-

formation provided by the different types of

analyses. We show that in our data the direct

influence of CNA on gene expression levels is

seen at larger length-scales than at a single gene

length-scale. We note, however, that in our data,

some aberrations (e.g., the BRAF point muta-

tion) have a strong association with changes in

gene expression levels, as shown by the rela-

tionship between DKK1 expression and BRAF

mutation status. This is consistent with a recent

study reporting a highly significant association

between BRAFV600E mutations and methylation

of the DKK1 promoter site [18]. This methyla-

tion would likely result in down regulation of

DKK1, hence the observed reduction of gene

expression. This leads to the hypothesis of an

association between the WNT pathway and the

BRAF pathways: BRAFV600E would result in

potent activation of proliferation, eventually

leading to immortalization; BRAFV600K, a less

potent but steadier activation of proliferation,

instead would not reach senescence (Figure 8).

A recent report using mouse models showed

that stabilization of β-catenin signaling was as-

sociated to increased Erk activation [19], which

is in agreement with our hypothesis, where

BRAFV600E, powerfully enhancing Erk, is asso-
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ciated to repression of DKK1. In addition, the

study also reported that loss of β-catenin, and

thus, inactivation of WNT signaling in BRAF

mutant mice corresponded to delayed

melanoma formation, together with deep inva-

sions of the dermis [19]. This is in agreement

with DKK1 activation associated to BRAFV600K,

which, although less effective in enhancing Erk

compared to BRAFV600E, would slowly but

steadily grow and expand.

concLuSIon

Integration of separate genomic ap-

proaches has the potential to distinguish driving

alterations from passengers in the aggregate

signal from multigenerational heterogeneous

tumor samples. While the direct relation be-

tween copy number, gene expression, and phe-

notype may require analysis of additional

processes, such as epigenetics, and point muta-

tions, the present study provides some insight

into the complexity of tumor aberrations.
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