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Colorectal cancer is one of the most common cancers in the world. Dietary fat intake is a major risk factor for colorectal cancer.
Some nuclear hormone receptors play an important role in regulating nutrient metabolism and energy homeostasis. Among these
receptors, special attention has been focused on the role of peroxisome proliferator-activated receptors (PPARs) in colorectal
cancer, because PPARs are involved in regulation of lipid and carbohydrate metabolism. PPARs are ligand-activated intracellular
transcription factors. The PPAR subfamily consists of three subtypes encoded by distinct genes named PPARα, PPARβ/δ, and
PPARγ. PPARγ is the most extensively studied subtype of PPARs. Even though many investigators have studied the expression and
clinical implications of PPARs in colorectal cancer, there are still many controversies about the role of PPARs in colorectal cancer.
In this paper, the recent progresses in understanding the role of PPARs in colorectal cancer are summarized.

1. Introduction

Colorectal cancer is one of the most common cancers in the
world. Its incidence appears to be increasing, particularly in
developed countries [1–3]. Colorectal carcinogenesis results
from the loss of the normal regulatory pathways involved
in cell proliferation and cell death. Especially, molecular
alterations of multiple pathways including Wnt (Wingless
type)/adenomatous polyposis coli (APC), cyclooxygenase-
2 (COX-2), and Ras are known to play important roles
in progression of colorectal cancer. Recent progresses in
the development of new chemotherapeutic agents have
improved the prognosis of colorectal cancer patients [4].
However, for most patients with advanced colorectal cancer,
it is still difficult to achieve a complete remission, especially
with surgery or chemotherapy. Therefore, significant effort
has been exerted to identify novel drug targets for both the
prevention and treatment of colorectal cancer.

The peroxisome proliferator-activated receptors (PPARs)
belong to members of the nuclear hormone receptor super-
family including receptors for steroid, retinoid, vitamin

D, and thyroid hormones [5]. PPARs have received the
attention of investigators interested in studying about the
intracellular pathways that control signal transduction and
gene transcription since their discovery in 1990. The name
of PPARs was derived from its property to proliferate
peroxisomes in rodent liver, where PPARα plays the major
role. However, none of the PPARs could be contributed
to peroxisome proliferation in humans [6]. PPARs are
metabolic regulators involved in the regulation of glucose
and lipid homeostasis. Ligand-activated PPAR forms het-
erodimer with the retinoid X receptor (RXR) and binds to a
PPAR response element (PPRE) to regulate the transcription
of numerous target genes [7, 8]. The target genes are involved
in cell differentiation, proliferation, immune/inflammation
response, and lipid metabolism. PPAR subfamily consists of
three members such as PPARα, PPARβ/δ, and PPARγ. PPAR
isoforms consist of activation domain (A/B), DNA-binding
domain (C), hinge region (D), and ligand-binding domain
(E). Each subtype has different characteristics as summarized
in Figure 1. PPARα is expressed in brown adipose tissue,
liver, kidney, heart, skeletal muscle, and enterocyte. Ligands



2 PPAR Research

for PPARα are fibrates, leukotriene B4, and so on. PPARα
is involved in peroxisome proliferation, lipid catabolism,
lipid-lowering effect, anti-inflammation, keratinocyte dif-
ferentiation and proliferation, and skin wound healing.
PPARβ/δ is ubiquitously expressed and is involved in reverse
cholesterol transport, cell proliferation, apoptosis, and so
on. PPARγ is expressed in adipose tissue, colon, immune
system, hematopoietic cells, and retina. PPARγ is involved
in lipid anabolism, adipocyte differentiation, control of
inflammation, macrophage maturation, embryo implanta-
tion, and molecular targets of antidiabetic thiazolidinediones
(Reviewed in [9]). Of the three PPARs identified to now,
PPARγ represents the most promising target in view of the
many reports implicating this molecule in cancer cell growth.

2. The Role of PPARα in Colorectal Cancer

Although the procarcinogenic effects of PPARα in rodent
hepatocarcinoma are evident, less is known about the role of
PPARα in human colorectal cancer. Previous studies showed
that activation of PPARα by exogenous agonists causes
inhibition of tumor cell growth in cell lines derived from col-
orectal cancer [10]. However, there is no evidence showing
that PPARα expression is elevated in human cancers. Recent
studies have shown that aspirin and other nonsteroidal anti-
inflammatory drugs reduce the relative risk of developing
colorectal cancers [11, 12]. The products of COX activity are
known to be involved in carcinogenesis [13–15]. COX-2 is
not expressed in most normal tissues but is induced upon
stimulation by inflammatory agents, and also by oncogenes,
growth factors, carcinogens, and tumor promoters [16–
21]. Overexpression of COX-2 contributes to colorectal
carcinogenesis by promoting the invasiveness of malignant
cells, inhibiting apoptosis, and supporting angiogenesis [22–
24]. Furthermore, human colorectal carcinoma patients with
COX-2 positive tumors show a significantly poorer prognosis
than those with tumors negative for COX-2 [25]. It was
recently demonstrated that bile acids, particularly secondary
bile acids such as lithocholic acid and chenodeoxycholic
acid, can stimulate cell proliferation [26] and act as tumor
promoters in colon carcinogenesis [27, 28]. Previous reports
have suggested that endogenous bile acids are ligands for
nuclear receptors such as farnesoid X receptor (FXR),
pregnane X receptor (PXR), and vitamin D receptor (VDR)
[29–32]. A recent study reported that bile acids also induce
the expression of the PPARα gene via activation of FXR
and leads to expression of COX-2 contributing to colorectal
carcinogenesis [33]. These data suggest that PPARα has the
tumor-promoting activity.

There is a growing importance of chemotherapy for
malignant colon cancers. However, resistance to anticancer
drugs is still a major obstacle in the failure of chemotherapy
in colorectal cancer patients. Tong et al. demonstrated
that decreased expression of PPARα confers resistance to
hydroxycamptothecin, an inhibitor of topoisomerase I [34].
Thus, they suggest that increased expression of PPARα is
necessary to overcome hydroxycamptothecin resistance even
though its reason is not clarified.

3. The Role of PPARγ in Colorectal Cancer

The PPARγ is a ligand-activated transcription factor of the
nuclear receptor superfamily [35, 36] and is expressed in a
variety of malignant tissues including prostate, breast, and
colon [37–41]. Upon activation, PPARγ forms heterodimer
with RXR and mediate transcriptional activation by binding
to the PPRE [7, 8]. In the inactive state, association of various
corepressor molecules with PPARγ (e.g., nuclear receptor
corepressor or silencing mediator for retinoid receptor and
thyroid hormone receptors) prevents this complex from
binding to DNA. For transcriptional transactivation of
PPARγ, recruitment of coactivators (e.g., CCAAT/enhancer-
binding protein, cyclic adenosine monophosphate response-
element-binding protein, steroid receptor coactivator-1,
receptor-interacting protein 140, PPARγ coactivator-1, and
PPARγ binding protein) is required which replace co-
repressors from the heterodimer complex. Transcriptional
transrepression occurs through a genome independent
mechanism and is mediated via physical association of
the heterodimer with other activated transcription factors
(STAT, NF-κB, and AP-1) thereby blocking their functions
(reviewed in [42]). PPARγ has been known to be related to
inflammation, immune response, and pathogenesis of some
disorders including obesity, atherosclerosis, cancer, and so on
[43]. There are natural ligands for PPARγ, including long-
chain polyunsaturated fatty acids, eicosanoids, components
of oxidized low density lipoproteins (oxLDL) [44], and oxi-
dized alkyl phospholipids. The prostaglandin J2 derivative,
15d-PGJ2 is the most potent endogenous ligand for the
PPARγ receptor. The antidiabetic thiazolidinedione (TZD)
class of drugs including troglitazone, rosiglitazone, pioglita-
zone and ciglitazone are synthetic ligands for PPARγ [44].
Recent studies have focused on the effect of PPARγ ligands
as anticancer agents. However, there are still controversies
about the antitumor activity of PPARγ agonists. Thus, this
paper describes the role of PPARγ in colorectal cancer and its
detailed mechanisms clarified until now.

3.1. The Role of PPARγ as a Tumor Suppressor in Colorectal
Cancer. Several studies have focused on the putative asso-
ciation between the various polymorphisms and mutations
of the PPARγ gene and the occurrence of cancer. It was
described that 4 somatic PPARγ gene mutations resulting
in reducing its function occurred in 55 sporadic colon
cancers [45]. However, Ikezoe et al. [46] analyzed 397 clinical
samples and cell lines including colon, breast, and lung
cancers for mutations of PPARγ gene and showed the absence
of PPARγ gene mutations. These data suggest that PPARγ
mutations may occur in cancers but they are rare.

There has been substantial accumulation of experimental
data supporting that synthetic PPARγ ligands as well as 15d-
PGJ2 induce apoptosis in several types of cancer cells [41, 43].
Although increasing evidence has established that PPARγ
agonist induces growth arrest in cancer cells, the molecular
mechanism of the growth inhibition by PPARγ agonist is
not well understood and complicated. This paper describes
some of the molecular mechanisms for anticancer activity of
PPARγ (Table 1 and Figure 2) as follows.
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Figure 1: Summary of ligands and functions of each PPAR.
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Figure 2: Potential molecular mechanisms for PPARγ as tumor suppressor in colorectal cancer.
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Table 1: Potential molecular mechanisms for anticancer activity of
PPARγ.

Actions and molecular mechanisms References

(1) Inhibition of cell proliferation and induction of
apoptosis

(1) Upregulation of PTEN [47, 48]

(2) Downregulation of survivin [49]

(3) Downregulation of XIAP [50, 51]

(4) Suppression of NF-κB [52]

(5) Upregulation of cyclin-dependent kinase
(CDK) inhibitors, downregulation of CDK, and
downregulation of cyclin D1

[51, 53–57]

(6) Downregulation of COX-2 [51]

(7) Upregulation of Krüppel-like Factor4 (KLF4) [58, 59]

(8) Upregulation of Bax and downregulation of
Bcl-2

[51, 60, 61]

(9) Inhibition of telomerase activity and hTERT
expression

[62]

(2) Induction of cellular differentiation

Upregulation of E-cadherin and Drg-1 gene
expression

[63]

(3) Inhibition of angiogenesis

(1) Downregulation of vascular endothelial growth
factor (VEGF)

[64]

(2) Downregulation of matrix metalloproteinases
(MMP)

[65]

(3) Downregulation of iNOS and COX-2 [66–72]

(4) Downregulation of proinflammatory
mediators

[73]

3.1.1. Inhibition of Cell Proliferation and

Induction of Apoptosis

(1) Upregulation of PTEN. The Phosphatase and Tensin
Homolog (PTEN) tumor suppressor gene modulates several
cellular functions, including cell migration, survival, and
proliferation by inhibiting phosphatidylinositol 3-kinase
(PI-3K)-mediated signaling cascades [74]. Previous studies
have demonstrated that rosiglitazone, a synthetic ligand for
PPARγ, upregulates PTEN expression in Caco2 colorectal
cancer cells [47]. Dai et al. also show that treatment of
colon cancer cells with rosiglitazone stimulates expression
of tumor suppressor gene PTEN. This effect is probably
mediated through the binding of PPARγ on PPRE in the
promoter of PTEN [48]. Inhibition of the PI-3K/Akt pathway
by increased PTEN expression is believed to underlie this
effect of the PPARγ ligand.

(2) Downregulation of Survivin. Survivin is one of the
inhibitors of apoptosis protein (IAP) family since it is
overexpressed in almost every human tumor that has been
studied, but is barely detectable in most normal adult
tissues [75]. Overexpression of survivin is associated with
poor clinical outcome with reduced tumor cell apoptosis
in patients with colorectal cancer [76, 77]. PPARγ agonist

GW7845 induced cell death through downregulation of
survivin in colorectal cancer cells [49].

(3) Downregulation of X-Linked Inhibitor of Apoptosis (XIAP).
XIAP can inhibit apoptosis by binding and thereby inac-
tivating caspases including caspase-9 and the effector cas-
pases (-3 and -7) [78]. Qiao et al. showed that 15d-PGJ2

and troglitazone mediate XIAP downregulation in colon
cancer cells by facilitating ubiquitination and proteasomal
degradation [50]. In addition, Lee et al. demonstrated that
pioglitazone induces apoptosis through downregulation of
XIAP via unknown mechanism in colorectal cancer cell lines
[51].

(4) Suppression of NF-κB and GSK-3β. The transcription
factor NF-κB is involved in the regulation of various
genes, including metalloproteinases (MMPs), inflammatory
response genes, and a number of antiapoptotic genes
including cIAP1, cIAP2, and glycogen synthase kinase-3
(GSK-3) [79]. Its activation is also associated with cell
proliferation, cell cycle progression, promotion of tumor
growth, angiogenesis, and metastasis through the expression
of genes participating in malignant conversion and tumor
promotion [80–82]. Ban et al. showed that PPARγ agonist,
troglitazone inhibits colon cancer cell growth via inactivation
of NF-κB by suppressing GSK-3β activity [52].

(5) Upregulation of Cyclin-Dependent Kinase (CDK) Inhib-
itors, Downregulation of CDK and Downregulation of Cyclin
D1. Interestingly, CDK5 protein expression and kinase
activity were significantly inhibited by ciglitazone, which
was associated with ciglitazone-induced antiproliferation in
colon cancer HT-29 cells [53]. Cyclin D1 is involved in G1/S
progression and increased proliferation. PPARγ activation in
intestinal epithelial cells results in the inhibition of cell cycle
and S-phase entry though a decrease in cyclin D1 expression
[54, 55]. PPARγ ligand treatment not only decreases the
protein level of cyclin D1, but also increases the CDK
inhibitors p21CIP and p27KIP1 through both increased tran-
scriptional activity and inhibition of proteasome degradation
in colorectal cancer cells [56, 57]. Ciglitazone also inhibited
G1/S cell cycle progression through upregulation of p27 and
inhibition of Cdk2 activity in HT-29 cells [56]. Fajas et al.
[83] suggested that PPARγ activation in the presence of RB
results in G1 arrest, whereas in the absence of RB, cells
accumulate in G2/M, endoduplicate, and undergo apoptosis.
Lee et al. [51] also showed that pioglitazone treatment
leads to G2/M block through downregulation of cyclin B1
and cdc2 and upregulation of p21 in RB-deficient human
colorectal cancer SNU-C4 and SNU-C2A cells. Thus, these
studies suggest that the antiproliferative or proapoptotic
effects of PPARγ agonist are associated with its ability to
regulate the expression of various genes which are involved
in controlling the cell cycle and cell survival/death.

(6) Downregulation of COX-2. Most of the current studies
showed that COX-2 contributes to tumorigenesis through
various mechanisms and overexpression of COX-2 can
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stimulate tumor growth, invasion, and metastasis [84, 85].
A previous study showed that pioglitazone induces apoptosis
through the downregulation of COX-2, activation of caspase-
3, downregulation of Bcl-2 and upregulation of Bax in RB-
deficient human colorectal cancer cells [51].

(7) Upregulation of Krüppel-Like Factor 4 (KLF4). KLF4 is a
member of the Krüppel-like zinc finger transcription factor
family. It is extensively expressed in the epithelial cells of the
gastrointestinal tract [86–88]. Over-expression of KLF4 in
colon cancer cells caused inhibition of DNA synthesis and
cell growth [89, 90]. Zhi and Tseng demonstrated that 15d-
PGJ2 inhibits proliferation of HT-29 human colon cancer
cells and induces upregulation of KLF4 mRNA and protein
through the activation of MEK/ERK and STAT-dependent
pathway [58]. They provided a novel mechanism for the
antitumorigenic actions of 15d-PGJ2. In addition, rosiglita-
zone treatment of colorectal cancer cells caused to G1 arrest
because increased expression of KLF4 by rosiglitazone leads
to increased expression of p21 and decreased expression of
cyclin D1 [59]. These data suggest that KLF4 is a nodal player
in a network of PPARγ-regulated genes.

(8) Upregulation of Bax and Downregulation of Bcl-2. In
colon cancer cells, treatment of the PPARγ ligands (pioglita-
zone, troglitazone) induces apoptosis through upregulation
of the proapoptotic protein Bax and downregulation of
the antiapoptpotic protein Bcl-2 [51, 60, 61]. Alternative
expression of Bax and Bcl-2 causes apoptosis by the release
of cytochrome c and subsequent activation of several effector
caspases.

(9) Inhibition of Telomerase Activity and hTERT Expression
through Modulation of the Myc/Mad/Max Network. The
telomerase stabilizes telomere length by adding TTAGGG
repeats to telomeres [91, 92]. Telomerase activity has been
detected in almost all human tumors [93, 94] but not in adja-
cent normal cells [95, 96]. Human telomerase is composed of
human telomerase RNA, telomerase-associated protein 1 and
human telomerase reverse transcriptase (hTERT) [91, 97].
The forced expression of hTERT in normal human cells
has been reported to increase their lifespan [98], while the
expression of dominant-negative hTERT in human cancer
cells has been known to inhibit telomerase and cause
telomere shortening [99, 100]. A recent study shows that
15d-PGJ2 and rosiglitazone inhibit Caco-2 colon cancer cell
proliferation through the inhibition of telomerase activity
and hTERT expression. In addition, it was demonstrated that
the inhibition of hTERT expression in Caco-2 cells depends
on the downregulation of c-Myc and the upregulation of
Mad 1 by PPARγ ligands [62].

3.1.2. Induction of Cellular Differentiation. PPARγ has been
demonstrated to induce differentiation in solid tumors both
in vitro and in vivo [101]. In colon cancer cells, activation
of PPARγ by troglitazone treatment inhibits growth and
metastasis through differentiation-promoting effects, such as
the marked increase in p21 Waf-1, developmentally regulated

GTP-binding protein 1 (DRG-1), and E-cadherin in human
colon cancer cells [63]. These effects involve modulation of
the E-cadherin/β-catenin system and upregulation of Drg-1
gene expression.

3.1.3. Inhibition of Angiogenesis. Angiogenesis, a formation
of new capillaries from the preexisting vessels, is a complex
process involved in the degradation of the basement mem-
brane by cellular proteases, the penetration and migration
of endothelial cells into the extracellular matrix, endothelial
cell proliferation, tube formation, and vessel stabilization
[102]. Inhibition of angiogenesis may contribute to the
mechanism by which PPARγ agonists halt the cancer process.
Several studies demonstrated that PPARγ agonist inhibits
angiogenesis through the following mechanisms.

(1) Downregulation of Vascular Endothelial Growth Factor
(VEGF). VEGF is involved in angiogenesis [103, 104]. VEGF
expression is increased in several cancers including colorectal
and other tumors [105, 106]. It was shown that rosiglitazone
inhibited angiogenesis via the downregulation of VEGF and
VEGF mRNA in pancreatic cancer xenografts [64].

(2) Downregulation of Matrix Metalloproteinases (MMPs).
The process of cancer cell invasion is dependent on the
degradation of the extracellular matrix (ECM) by MMPs.
MMPs are a family of proteases cleaving several macro-
molecules of the ECM [107]. 15d-PGJ2 has been reported to
have inhibitory effects on the proliferation and invasiveness
of colon cancer cell lines which are associated with G1 cell
cycle arrest and downregulation of MMP-7 synthesis [65].

(3) Downregulation of iNOS and COX-2. It has been shown
that both COX-2 and inducible nitric oxide synthase (iNOS)
are overexpressed in various human cancers [108]. It was
reported that iNOS is associated with altered expression
of important modulators of angiogenesis [108]. 15d-PGJ2

downregulates iNOS [66–68] and COX-2 [69–71]. The
expression of COX-2 and iNOS is regulated by NF-κB.
The recent several studies have demonstrated that 15d-
PGJ2 can act as a negative regulator of proinflammatory
signaling through blocking the NF-κB activation pathway
at multiple levels via covalent modification of NF-κB or
its regulators [72]. Thus, antiangiogenic effects of 15d-
PGJ2 might be associated with disruption of NF-κB and
subsequent blockade of iNOS and COX-2 expression.

(4) Downregulation of Proinflammatory Mediators. The
potential mechanism of angiogenesis inhibition by 15d-PGJ2

may involve downregulation of pro-inflammatory media-
tors. Both physiological and pathological angiogenesis can be
stimulated by pro-inflammatory cytokines, such as IL-1 and
TNF-α. Certain cytokines (e.g., IL-6 and CSF-1) can influ-
ence the phenotype and the function of tumor-associated
macrophages and indirectly stimulate tumor invasiveness
and angiogenesis [109]. Tumor-associated macrophages play
an important role in tumor progression due to production
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Table 2: Potential molecular mechanisms for procarcinogenic
activity of PPARγ.

Actions and molecular mechanisms References

(1) Stimulation of tumor cell growth

(1) Upregulation of β-catenin and c-Myc expression [110]

(2) Upregulation of COX-2 [111]

(2) Induction of angiogenesis

(1) Upregulation of VEGF and VEGF receptor [112–114]

(2) Upregulation of MMP-1 [115]

of several angiogenic factors, such as VEGF, IL-8, inflam-
matory cytokines (IL-1 and IL-10) and proteases (MMP-2
and MMP-9) [109]. Thus, 15d-PGJ2 inhibits angiogenesis
through suppression of such pro-inflammatory cytokines
[73]. Induction of several pro-inflammatory cytokines, such
as TNF-α, IL-1, and IL-8, is regulated at the transcrip-
tion level by NF-κB. It is still unclear whether 15d-PGJ2

exerts an anti-angiogenic effect through inhibition of NF-
κB-dependent induction of pro-inflammatory mediators
or through downregulation of cancer cell-derived pro-
inflammatory cytokine release which is NF-κB-independent.
Hence, further investigations are necessary to clarify the
signaling pathways that delineate the anti-angiogenic effects
of 15d-PGJ2.

3.2. The Role of PPARγ as a Tumor Promoter in Colorectal
Cancer. In contrast to above described, PPARγ has been
known to have procarcinogenic activity such as stimulation
of tumor cell growth and induction of angiogenesis. This
review describes some mechanisms for it as summarized in
Table 2 and Figure 3.

3.2.1. Stimulation of Tumor Cell Growth. Although the
majority of publications indicate that PPARγ agonists have
potent antiproliferative properties in several types of cancer
cells, there are some reports demonstrating the cell growth
promoting effects of 15d-PGJ2 and other PPARγ ligands.
It was shown that activation of PPARγ by troglitazone
increased the frequency and the size of colon tumors in
C57BL/6J-APCMin/+ mice [116, 117]. In addition, a recent
study shows that low concentration of 15d-PGJ2 and piogli-
tazone can promote the growth of APC-mutated HT-29
colon cancer cells in vitro and in vivo [110].

(1) Upregulation of β-Catenin and c-Myc Expression. The
Wnt/β-catenin pathway plays a critical role in the develop-
ment of colon cancer [118]. Choi et al. showed that low
concentrations of 15d-PGJ2 and pioglitazone promote the
HT-29 colon cancer cells in vitro and in vivo through increase
in β-catenin and c-Myc expression [110].

(2) Upregulation of COX-2. As previously mentioned, 15d-
PGJ2 is one of the major final products of COX-2. Since
abnormal overexpression of COX-2 was observed in several
cancer cells, COX-2 has been shown to contribute to

carcinogenesis by promoting cell proliferation and angio-
genesis as well as by protecting cells from apoptosis [119].
The regulation of COX-2 synthesis occurs mainly at the
transcriptional level, although mRNA stabilization is also
involved. A recent study has shown that 15d-PGJ2 enhances
COX-2 expression through ROS-Akt-driven AP-1 activation
in human breast cancer cells [111].

3.2.2. Induction of Angiogenesis. It has been reported that
PPARγ agonist can induce angiogenesis in various cell lines.
Several studies provided some molecular mechanisms for
induction of angiogenesis by PPARγ agonist. Here, this
paper summarizes the potential molecular mechanisms for
enhanced metastasis and invasion by PPARγ agonist clarified
until now.

(1) Upregulation of Expression of VEGF and VEGF Receptors.
It was shown that the mRNA expression of VEGF was
augmented by 15d-PGJ2 and troglitazone in vascular smooth
muscle cell, human monocytes/macrophages, human col-
orectal cancer cells and human coronary artery endothelial
cells [112, 113]. More recently, 15d-PGJ2 and troglitazone
have been reported to increase the expression of VEGF and
its receptors (Flt-1 and KDR) in myofibroblasts [114].

(2) Upregulation of MMP-1. Kim et al. reported that 15d-
PGJ2 enhances the angiogenesis by upregulation of MMP-
1 [115]. MMP-1 is a major proteinase degrading native
fibrillar collagens. MMP-1 is produced by a variety of cell
types, including endothelium. It is implicated in several
pathological processes such as tumor invasion and restenosis
[120]. In addition, Kim et al. suggested that iron may
contribute to increased metastasis and invasiveness by 15d-
PGJ2 in human breast cancer cells [115]. Thus, these studies
suggest the regulation of MMP-1 expression by 15d-PGJ2

may be more complex than expected.

4. The Role of PPARβ/δ in Colorectal Cancer

PPARβ/δ is also expressed in the colon and can be activated
by fatty acids. In recent studies, it was shown that PPARβ/δ
plays a central role in the differentiation of Paneth cells and
innate immunity [121]. The role of PPARβ/δ in colorectal
cancer is more controversial than that of PPARγ. Recent
studies have shown that PPARβ/δ is involved in the patho-
genesis of colorectal cancer [122]. Inactivation of APC up-
regulates PPARβ/δ expression in colorectal cancer cells [122].
It has also been reported that PPARβ/δ levels increase in
colorectal tumor after treatment with the potent carcinogen
azoxymethane (AOM) [123]. The increased expression of
PPARβ/δ could potentially be activated by endogenous
ligands such as COX-derived prostacyclin [123]. It was pro-
posed that PPARβ/δ activation would initiate the expression
of target genes, which still remain to be identified, and
enhance cell growth. In support of this model, PPARβ/δ-null
HCT116 cells have reduced tumorigenecity in a xenograft
model [124]. PPARβ/δ expression levels in colorectal cancers
are higher than in normal mucosa, supporting the hypothesis
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Figure 3: Potential molecular mechanisms for PPARγ as tumor promoter in colorectal cancer.

that APC suppresses activity of β-catenin/Tcf-4 transcription
of target genes, including PPARβ/δ, c-myc, and cyclin D1
[122, 123]. PPARβ/δ expression and activity are also induced
by oncogenic K-ras in rat intestinal epithelial cells [125].
These studies support a procarcinogenic role of PPARβ/δ in
colorectal cancer.

A few mechanisms have been proposed to explain the
procarcinogenic effect of PPARβ/δ. Di-Poı̈ et al. suggested
that PPARβ/δ activation increases the expression of 3-
phosphoinositide-dependent-protein kinae 1 (PDPK1) and
integrin-linked kinase (ILK), and decreases the expression of
PTEN, causing increased phosphorylation of AKT, leading
to antiapoptotic signaling and enhanced cell survival [126].
Another related mechanism is derived from the observation
that ligand activation of PPARβ/δ increases the expression of
VEGF through a PPARβ/δ-dependent mechanism, causing
increased phosphorylation of AKT, which promotes cell
survival by blocking apoptosis [127]. In addition, Kwak
et al. [128] demonstrated that PPARβ/δ-binding aptamers
suppressed transcription from natural promoters of VEGF-
A and COX-2 and inhibited tumorigenic potential of colon-
cancer cells. These data suggest that PPARβ/δ play an
important role in transcription of tumor-promoting genes
such as VEGF-A and COX-2.

However, other studies conflict with those reports.
Targeted deletion of APC alleles reduces PPARβ/δ expression
in mouse intestine [129]. PPARβ/δ expression in human
colorectal cancers or intestinal polyps of APCMin/+ mice
are either unchanged or downregulated as compared with
normal controls (reviewed in [130, 131]).

The conflicting results about the effect of PPARβ/δ
on intestinal tumorigenesis in APCMin/+- and AOM-treated

mice may be related to differences in the specific targeting
strategy employed to delete PPARβ/δ [127]. Deletion of
PPARβ/δ exon 4 and/or 5, which encodes an essential portion
of the DNA-binding domain, is thought to disrupt PPARβ/δ
function as a nuclear transcriptional factor and to inhibit
colonic carcinogenesis [127, 132]. Increased expression of
VEGF in colon tumors was suppressed by loss of PPARβ/δ
expression [133]. These findings indicate that PPARβ/δ has
an important role in promoting colonic tumorigenesis. The
deletion of exon 8 [134, 135], the last PPARβ/δ exon, is
postulated to generate a hypomorphic PPARβ/δ protein that
remains at least partly functional.

In a mouse mammary tumor model, treatment with the
PPARβ/δ agonist GW501516 accelerated tumor formation,
while a PPARγ agonist GW7845 delayed tumor growth [136].
This observation suggests that there are distinct mechanistic
differences between PPARγ and PPARβ/δ in regulating
tumor progression. A recent study showed that PPARβ/δ
confers resistance to PPARγ-induced apoptosis by increasing
the expression of survivin [49].

Recently, Yang et al. [137] showed that the specific
knockdown of PPARβ/δ in colon-cancer cell lines results in
more malignant morphologies, larger colonies and less CEA
production, and enhances cell-fibronectin adhesion, without
effects on cell invasion and migration. These findings
indicate that PPARβ/δ may facilitate differentiation and
inhibit the cell-fibronectin adhesion of colon cancer, having a
protective role in the carcinogenesis and progression of colon
cancer. Further immunohistochemistry data reveal that the
expression of PPARβ/δ is closely associated with the differ-
entiation and tumor-node-metastasis stage of rectal cancer.
It was also shown that PGI2 and L-165041, a synthetic PPARδ
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ligand, activate PPARδ and upregulate PPARδ-mediated
14-3-3ε expression. 14-3-3ε binds and sequesters Bad in
cytosol. PGI2-induced 14-3-3ε upregulation is accompanied
by augmented Bad sequestration and protects HT-29 cells
from Bad-triggered mitochondrial leakage of proapoptotic
factors and the consequent apoptosis [138].

5. Conclusion and Future Directions

Even though the extensive studies to clarify the role of
PPARs in colorectal cancer using several PPAR agonists and
gene knockout experiments were performed, there are still
many controversies about them. PPAR ligands induce many
physiological changes, including increased oxidation of fatty
acids, which contributes to decreasing serum lipids and
reducing body weight; and inhibition of inflammatory sig-
naling. There are good reasons to suggest that PPAR agonists
should be potential candidates for treating and preventing
colorectal cancer, because obesity and chronic inflammation
are major risk factors for colorectal cancer. It is interesting
to note that there is an overlap in target genes regulated
by each PPAR, but the physiological effects induced by
selective PPAR agonists are unique owing to the complexity
of the PPAR-dependent and the PPAR-independent effects
that each agonist induces. To completely understand the
role of PPARs in colorectal cancer, it is necessary to dissect
the complex regulation of PPAR expression and to examine
interactions of each PPAR with other nuclear receptors and
signalling molecules involved in cell proliferation and cell
death in the near future.
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