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Painful neuropathy is one of the most frequent complica-
tions of diabetes mellitus. This neuropathy involves complex 
mechanisms that affect both peripheral nerves and the CNS 
and can be difficult to treat efficiently. Streptozotocin (STZ)-
induced diabetes in rodents has been extensively used to study 
neuropathic pain and to explore the efficacies of new potential 
therapeutic drugs by using sensory behavioral tests. The current 
study used the well-characterized STZ injection model, which 
results in toxicity to pancreatic islet β cells and rapidly produces 
diabetes. Diabetic neuropathy can be easily identified and fol-
lowed in this model through associated sensory dysfunctions, 
including prolonged (several weeks) thermal hyperalgesia and 
mechanical allodynia of the plantar hindpaw in rats.6,10,15

In human clinical practice, painful neuropathy is treated 
based pharmacologically. Sodium channels blockade is one 
of the best-known treatments for relieving diabetes-induced 
pain.14,32 Several studies have shown the importance of voltage-
dependent sodium channels in the initiation and propagation 
of action potentials during both normal nerve conduction4,13 
and the development of neuropathic states.40,44,46

At least 9 different identified voltage-dependent sodium-
channel subtypes (Nav1.1 to 1.9) have been identified in the 
nervous system, and each subtype can be classified functionally 
as either tetrodotoxin-sensitive (fast-inactivating) or -resistant 
(slow-inactivating).7,12,46 Seven of these subtypes are expressed 
in sensory neurons in the dorsal root ganglion, and peripheral 
nerve injury can alter the expression pattern of several voltage-
gated sodium channel types.2,31,38 Of the sodium channels 
expressed, most of the tetrodotoxin-sensitive types (that is, 
Nav1.1, Nav1.2, Nav1.6, and Nav1.7) and both of the tetrodo-
toxin -resistant types (Nav1.8 and Nav1.9) are downregulated 
in dorsal root ganglia after nerve damage.1,11,30

The expression of Nav1.8 is decreased in many neuropathic 
pain models, and Nav1.8 may play a key role in the generation 
of hyperalgesia and allodynia in nerve-injured animals.9,25,30 
Recent work has suggested that A803467 (5-[4-chloro-phenyl]-
furan-2-carboxylicacid [3, 5-dimethoxy-phenyl]-amide) is a 
potent and highly selective blocker of Nav1.8 channels.23,24,33 
A803467 is 300- to 1000-fold more potent at blocking Nav1.8 
channels than any other voltage-dependent sodium channel.23 
Previous studies have demonstrated the efficacy of A803467 
in a variety of animal pain models, including models of acute, 
inflammatory, neuropathic, and visceral pain.23-25 However, its 
effects on diabetes-induced painful neuropathy are unknown.

Changes in the functions of Nav1.8 channels can contribute 
to diabetes-induced behavioral indicators, such as thermal 
hyperalgesia and mechanical allodynia, in painful diabetic 
neuropathy. In the current study, our criteria for determining 
that rats had diabetic neuropathy was based on the pronounced 
mechanical allodynia and thermal hyperalgesia that develops 
after STZ injection and the subsequent rapid rise in blood glu-
cose levels. We tested the efficacy of systemic (intraperitoneal) 
or local (intraplantar) injection of A803467 in reducing diabetes-
induced thermal hyperalgesia and mechanical allodynia in rats 
and compared these effects with those of lidocaine, a nonspecific 
sodium-channel blocker.

Materials and Methods
The experimental protocols used were IACUC-approved and 

were consistent with the guidelines of the ethical committee of 
the International Association for the Study of Pain.45

Animals and induction of diabetes. The study population 
comprised adult female albino Wistar rats (Rattus norvegicus, 
Hsd:WI, weight, 260 to 280 g) that were obtained from the Medi-
cal Sciences Research Centre of Cukurova University (Adana, 
Turkey) and that were certified free of common rat pathogens. 
Female rats were used because they are less aggressive than 
are adult male rats, easier to handle during behavioral test-
ing, and more sensitive to many pain conditions.5 In addition, 
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Both paws of all rats (injected right paw and noninjected left 
paw) were tested for all experimental groups. The ipsilateral 
(right) hindpaw was tested to determine local effects of injected 
drugs and the contralateral paw left paw to determine systemic 
effects of drugs. Due to the obvious physical traits of the diabetic 
rats, the experimenter was not blind to experimental group but 
was blinded to drug and dose.

Sensory testing procedure. Sensitivities of diabetic animals to 
noxious and nonnoxious stimulation are altered due to sensory 
dysfunction.6,8 To assess sensory abnormalities that include 
hyperalgesia to noxious thermal and allodynia to innocuous 
mechanical stimuli,19,26,34,43 we used thermal plantar test and a 
dynamic plantar aesthesiometer, respectively.

All sensory tests were performed in a quiet room maintained 
at 23 to 25 °C, beginning at 0900 and according to the same 
time schedule to avoid diurnal variation. To avoid procedure-
associated stress that might affect measurements, the same 
experimenter performed all experiments in a test room close 
to the colony room. Rats were acclimated to the experimental 
environment for 1 wk before STZ administration. Habituation 
to the experimental setup was accomplished by placing the rats 
on the test apparatus 3 times for at least 30 min each.

Testing of thermal hyperalgesia. The presence of thermal 
hyperalgesia was determined by measuring paw withdrawal 
latency in a thermal stimulation system consisting of a clear 
plastic chamber (10 × 20 × 24 cm) that sits on a clear smooth glass 
floor, with the temperature regulated at 30 °C.19,34 Rats were 
placed individually in the chamber and allowed approximately 
15 min to acclimate to the testing environment.

A radiant heat source (8-V, 50-W halogen bulb) mounted on a 
movable holder below the glass pane was positioned to deliver 
a thermal stimulus to the midplantar region of the left or right 
hindpaw. The intensity of the heat stimulus was maintained 
constant throughout all experiments. When the rat felt pain and 
withdrew its paw, a photocell detected interruption of a light 
beam reflection, the infrared generator was switched off auto-
matically, and the timer stopped, determining the withdrawal 
latency. This method has a precision of 0.1 s for the measurement 
of paw withdrawal latency. The thermal source was discontin-
ued automatically after 25 s (cut-off latency) whenever a rat 
failed to withdraw its paw.

Testing of mechanical allodynia. Mechanical allodynia was 
determined by quantifying the withdrawal threshold of the 
hindpaw in response to mechanical stimulation. An automated 
version of the von Frey hair test (Dynamic Plantar Aesthesiom-
eter, Ugo Basile, Comerio, Italy) was used for the assessment of 
sensitivity to a nonnoxious, light touch of the paw. A significant 
decrease in the threshold necessary to elicit a brisk paw with-
drawal in response to mechanical stimulus was interpreted as 
mechanical allodynia.26,34

Rats were placed in individual acrylic boxes on a stainless 
steel mesh floor and allowed to acclimate for at least 15 min 
before testing. A straight metal filament (diameter, 0.5 mm) was 
used to apply force (force ramp, 2.5 g/s) to the plantar surface of 
the hindpaw until the rat lifted its foot, at which point the paw 
withdrawal threshold was digitally recorded in grams. A cut-off 
of 50 g was imposed to prevent significant tissue damage.

Statistical analysis. Post hoc power analysis, with an α level of 
0.05, showed that a sample size of 7 rats for each experimental 
group was sufficient to establish significant differences for pa-
rameters measured with a power of 0.80 or greater.

In the data displayed, each point is an average of 7 rats and 
values are presented as mean ± 1 SD. Results were evaluated 
by using ANOVA (Statistical Package for Social Sciences 15.0, 

although most pain sufferers are women,18 only about 8% to 
10% of available animal pain studies have been performed with 
female animals.5,18 Therefore, studies of female pain sensitivity 
could be important for the improvement of new approaches to 
management.

The rats were maintained in a climate-controlled and sound-
isolated room (22 to 24 °C) under a 12:12-h light:dark cycle (0600 
to 1800), with 40% to 60% relative humidity, 8 to 12 air changes 
hourly throughout the course of the study, and ad libitum pro-
vision of feed (pellets) and water. Rats were housed 4 per cage 
in solid-floored polycarbonate cages (46 × 25 × 20 cm) with a 
deep layer of poplar–aspen sawdust; cages were changed daily 
because of diabetes-mellitus–induced polyuria and diarrhea. 
Bedding materials were free of dust and contaminants, non-
traumatic, moisture-absorbent, and ammonia binding.

Diabetes was induced by a single intravenous injection of 
STZ (45 mg/kg, with 23-gauge needle) into the tail vein after 
light anesthesia with 1% to 2% isoflurane in oxygen. STZ was 
prepared freshly by dissolving in 0.9% sterile saline. Control 
animals were age-matched and treated with saline rather than 
STZ. Induction of diabetes was confirmed after 3 d on the 
basis of blood glucose levels as determined by a commercial 
glucometer and test strips (Accutrend GCT, Roche, Mannheim, 
Germany) used on a small drop of blood obtained by tail prick 
under light isoflurane anesthesia. A blood glucose level of 300 
mg/dL was defined as the minimum for a diagnosis of diabetes. 
Body weights and blood glucose levels were monitored every 
2 wk at the same time of the day (0900 to 1000) throughout the 
experiment. Care was taken during the induction of diabetes to 
avoid general illness in the rats. General health was monitored, 
and all animals demonstrated appropriate behavior during the 
entire study.

Drugs and experimental procedures. All chemicals used in 
the experiments were purchased from Sigma–Aldrich (Munich, 
Germany). A803467 and lidocaine were dissolved in DMSO 
and saline, respectively. Drug solutions were vortexed until 
complete dissolution. For intraperitoneal administration, a 
dose of 2 mL/kg was used. Intraplantar injections (volume, 
100 µL) were made into the plantar side of the right hindpaw. 
For vehicle-only control groups, equal volumes of DMSO or 
saline were injected intraperitoneally or intraplantarly. All rats 
were handled in accordance with institutional guidelines. The 
experimenter (same experimenter during the all experiments) 
acclimated rats by handling them at least 3 times for 20 to 30 
s for 3 d before the experiment. On the day of the experiment, 
no rats reacted adversely during handling.

Optimal hyperalgesia and allodynia in rats occurred at 4 
wk after STZ injection, at which time the effects of systemic 
(intraperitoneal, with 25-gauge needle) or local (intraplantar, 
with 30-gauge hypodermic needle) administration of A803467 
or lidocaine were examined. The doses of drugs administered 
were chosen in accordance with our previous studies34,35 and 
several pilot studies, thus enabling us to minimize the number 
of rats used in the current study. We injected 7 rats (age-matched 
diabetic and nondiabetic) at each dose and route: A803467, 5 
and 10 mg/kg intraperitoneally and 0.5 and 1 mg intraplantarly; 
and lidocaine, 10 and 30 mg/kg intraperitoneally and 0.5 mg 
and 1 mg intraplantarly. All rats were monitored closely for 
potential adverse effects, including muscle paralysis, respiratory 
distress, sedation, and unusual behavior. All rats remained free 
of signs of respiratory distress, displayed symptoms of motor 
impairment, sedation, and paralysis at all doses and routes 
throughout the experiment.
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The antiallodynic potency of intraperitoneal A803467 was 
higher than that of lidocaine (Figure 3 A). A803467 significantly 
(P < 0.05) increased the mechanical thresholds of diabetic rats 
with painful neuropathy in a dose- and time-dependent man-
ner, reaching a maximum 30 min after treatment with 10 mg/
kg (baseline, 19.9 ± 0.7 g; 30 min, 34.9 ± 1.1 g, and gradually 
returning to baseline within 90 min. Lidocaine similarly induced 
a maximal antiallodynic response at 30 min but at a dose of 30 
mg/kg (baseline, 20.1 ± 1.1 g; 30 min, 43.3 ± 1.6 g); this effect 
disappeared within 90 min (Figure 3 A). At the same antiallo-
dynic effect, the required intraperitoneal doses of A803467 (5 
mg/kg) and lidocaine (10 mg/kg) differed 2-fold.

Effects of intraplantarly administered A803467 or lidocaine. 
Thermal latencies and mechanical thresholds after intraplantar 
administration of solvent only (DMSO or saline) to diabetic or 
age-matched nondiabetic rats did not differ from those in un-
manipulated animals. In contrast, intraplantar administration of 
only 1 mg/kg A803467 or lidocaine into the paws of nondiabetic 
rats produced significant transient increases (P < 0.05 at 30 min) 
in both thermal latency (Figure 4 B) and mechanical threshold 
(Figure 5 B).

Intraplantar A803467 or lidocaine at a dose level of 0.5 mg/
kg had no effect on thermal latency or mechanical threshold in 
nondiabetic rats but significantly (P < 0.05) decreased diabetes-
induced hyperalgesia and allodynia. The antihyperalgesic 
potencies of A803467 and lidocaine were equivalent in diabetic 
rats (Figure 4 A). The antihyperalgesic efficacy of these drugs 
increased (P < 0.05) in a dose-dependent manner and decreased 
(P < 0.05) in a time-dependent manner. At 1 mg/kg, the anti-
hyperalgesic effects of both drugs reached maximum within 30 
min after treatment (baseline, 5.2 ± 0.2 s; A803467 at 30 min, 4.7 
± 0.2 to 16.9 ± 0.7 s; lidocaine at 30 min, 19.5 ± 0.9 s. These effects 
gradually returned to baseline within 90 min (Figure 4 A).

In contrast, the antiallodynic effects of intraplantar A803467 
and lidocaine were very different (Figure 5A). The doses of 
A803467 (1 mg) and lidocaine (0.5 mg) that caused the same 
antiallodynic effect differed by 2-fold. At a dose 1 mg, the antial-
lodynic potency of lidocaine (baseline, 19.8 ± 0.4 g; 30 min, 48 ± 
1.2 g) was greater (P < 0.05) than that of A803467 (baseline, 18.9 
± 0.5 g; 30 min, 34.9 ± 0.7 g). Whereas the antiallodynic action 
of lidocaine lasted for 120 min, A803467-induced increases (P 
> 0.05) in mechanical thresholds persisted for 60 min (Figure 5 
A). Intraplantar A803467 or lidocaine did not alter paw with-
drawal latencies in the contralateral control paws of diabetic 
rats (data not shown).

Discussion
The current study confirmed previous findings6,10,15 that STZ-

induced diabetes in rats alters pain sensitivity and produces 
clinical signs such as allodynia and hyperalgesia. Our data sug-
gest that Nav1.8 sodium channels contribute to the hyperalgesia 
and allodynia in diabetic rats with painful neuropathy. A803467, 
a selective blocker of Nav1.8 sodium channels, has antinocicep-
tive effects in diabetic rats with painful neuropathy.

Behavioral and physiologic studies involving rodents have 
revealed indices of sensory dysfunction in animal models of 
diabetes that include hyperalgesia to thermal stimuli and al-
lodynia to light touch.10,16,42,43 Tests of thermal hyperalgesia 
and mechanical allodynia are used widely to assess the efficacy 
of drugs aimed at alleviating painful neuropathy. The current 
study showed that rats with STZ-induced diabetes exhibited 
shorter withdrawal latencies to noxious thermal stimuli, illus-
trating thermal hyperalgesia.3,34 In addition, the paws of diabetic 

SPSS, Chicago, IL). Multifactor experimental data were analyzed 
by using 2-way ANOVA; single-factor, multiple treatment data 
were analyzed by using one-way ANOVA. Two-way ANOVA 
models were used to analyze the effects of agent treatments; 
thermal latency or mechanical threshold measured during test-
ing served as the dependent variable.

To evaluate the efficacies during agent treatment, thermal 
latencies and mechanical thresholds were compared between 
drug-injected and vehicle-injected groups across all posttreat-
ment test sessions by using Kruskal–Wallis test followed by 
the Dunn multiple range test. We also evaluated the effects of 
drug treatments by conducting one-way, repeated-measures 
ANOVA on the withdrawal latencies measured in the injected 
paw before and after drug treatment. A P value of less than 0.05 
was considered statistically significant.

Results
Diabetic complications in STZ-treated rats. STZ-injected rats 

developed at least a 3-fold increase (P < 0.05) in blood glucose 
levels, as compared with nondiabetic weight-matched rats. STZ 
injection caused a rapid elevation of average whole-blood glu-
cose levels within 2 wk, which then did not change significantly 
throughout the experiments (Figure 1 A). Another important 
sign in STZ-induced diabetes is weight loss. Compared with 
their starting weights, the body weights of STZ-treated rats 
decreased (by an average of 14.7% overall; P < 0.05), whereas 
nondiabetic weight-matched control rats gained weight (P < 
0.05; Figure 1 B).

After STZ injection, rats exhibited diabetes-induced thermal 
hyperalgesia. To determine thermal hyperalgesia, all rats were 
examined for their behavioral responses to noxious thermal 
stimulation before and after STZ administration. Compared 
with those of control rats and before STZ, the paw withdrawal 
latency of diabetic rats was significantly (P < 0.05) reduced 
(Figure 2 C). The hindpaws of STZ-injected rats also became 
more sensitive to nonnoxious mechanical stimuli, an indicator 
of mechanical allodynia. The mean threshold to response was 
shorter (P < 0.05) in STZ-treated rats than in control rats (Figure 3 C)
Nondiabetic weight-matched control rats exhibited no changes 
in either thermal latency or mechanical threshold.

Effects of intraperitoneal A803467 and lidocaine. The thermal 
latencies and mechanical thresholds obtained from unma-
nipulated age-matched nondiabetic and diabetic rats did not 
differ from those of the vehicle-only control rats that received 
intraperitoneal DMSO or saline.

Intraperitoneal administration of A803467 to nondiabetic 
animals did not significantly change thermal latencies (Figure 
2 B) but had transient effects (P < 0.05; maximum, 30 min) on 
mechanical thresholds at its highest doses (Figure 3 B). However, 
lidocaine at only 30 mg/kg caused transient increases (P < 0.05 
at 30 min) in both the thermal latency and mechanical threshold 
of nondiabetic rats (Figures 2 B and 3 B).

After intraperitoneal administration, A803467 had a more 
pronounced antihyperalgesic effect than did lidocaine (Figure 
2 A). The antihyperalgesic effect of A803467 at 10 mg/kg in 
diabetic rats peaked within 30 min after treatment (baseline, 5.1 
± 0.2 s; 30 min, 14.2 ± 0.6 s) and gradually returned to baseline 
within 120 min (Figure 2 A). A 10-mg/kg dose of lidocaine did 
not significantly change latency; the antihyperalgesic effect of 
lidocaine first appeared at a dose of 30 mg/kg. The antihyper-
algesia of a 5-mg/kg dose of A803467 was similar to that of 30 
mg/kg lidocaine at the all time points. These results show a 
6-fold difference in doses of A803467 and lidocaine that produce 
the same antihyperalgesic effect.
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Changes in the activities of sodium channels, particularly 
tetrodotoxin-resistant Nav1.8 sodium channels, can play an 
important role in progression of diabetes-induced signs of pain, 
such as thermal hyperalgesia and mechanical allodynia.21,31 In 
the current study, antihyperalgesic and antiallodynic actions of 
systemically or locally administered A803467, a specific Nav1.8 
blocker, were compared with those of lidocaine, a nonspecific 
voltage-dependent sodium channel blocker, in diabetic rats 
with painful neuropathy. Systemic A803467 was more antihy-
peralgesic and antiallodynic in diabetic rats than was lidocaine, 
suggesting that Nav1.8 channels contribute to progression of 
diabetes-induced pain. This hypothesis is in agreement with 
previous studies.20,21,36

rats were more sensitive to nonnoxious mechanical stimuli, 
indicating mechanical allodynia in these animals.6,26,34

Previous studies in experimental animals and humans 
have shown that diabetes alters the function of many types of 
voltage-dependent sodium channels.20,46 Numerous factors can 
contribute to changes in functions of these channels in diabetic 
neuropathy, such as structural changes and various metabolic 
abnormalities. Hyperglycemia can be one such factor and is 
the primary pathophysiologic mechanism in various diabetes-
associated conditions.28 Hyperglycemia-induced activation of 
the polyol pathway can cause a decrease in sodium currents 
due to Na+–K+ pump hypofunction in nerves.29,36 Therefore, 
voltage-dependent sodium channels may be an important target 
for the therapy of diabetic peripheral neuropathic pain.

Although nonselective sodium channel blockers such as tet-
rodotoxin have been important to understanding the functions 
of sodium channels, several clinically relevant nonselective 
blockers, such as lidocaine and carbamazepine, are used for 
the treatment of pain.17,39 These agents have complex inhibi-
tory actions on voltage-gated sodium currents and can produce 
both tonic and use-dependent blockage of sodium currents.41 
Although these drugs are useful clinically, they do not always 
show high specificity for sodium channels over other types of 
ion channels, and in general have only slight differences in their 
effects on the different channel isoforms.22,39

Figure 1. General metabolic indicators of saline-treated (nondiabetic) 
and STZ-treated rats. (A) Blood glucose levels were elevated after 
treatment with STZ compared with those in nondiabetic rats. (B) STZ 
induction caused significant decreases in body weight. Each point rep-
resents the mean value of 7 rats, and the vertical bars indicate 1 SD. 
*, Significant (P < 0.05; repeated-measures ANOVA and the posthoc 
Dunn test) differences between diabetic and nondiabetic groups.

Figure 2. Paw withdrawal latency after thermal stimulus. Antihyper-
algesic effects of intraperitoneal administration of A803467 and lido-
caine to (A) diabetic and (B) nondiabetic rats. (C) Time course of ther-
mal hyperalgesia after STZ treatment. Each point represents the mean 
value of 7 rats, and the vertical bars indicate 1 SD. D, time of drug 
injection; arrow, pretreatment value; *, significant (P < 0.05; Kruskal–
Wallis repeated-measures ANOVA with Dunn multiple-comparison 
tests) difference from values of DMSO only and saline groups at each 
time point; #, significant (P < 0.05; Kruskal–Wallis repeated-measures 
ANOVA with Dunn multiple-comparison tests) difference from values 
after 10 mg/kg A803467 and 10 mg/kg lidocaine at each time point.
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fibers, whereas thermal hyperalgesia is mediated by unmyeli-
nated C fibers.6,27 Furthermore, previous studies have shown 
that Nav1.8 channels are concentrated in thinly myelinated and 
unmyelinated nerve fibers and the terminals of central primary 
afferent nerves.2,13,38

Local injection of drugs into the plantar surface of the hind-
paw is a useful method for determining direct pharmacologic 
effects on peripheral nerve endings. In the current study, with-
drawal latencies in both the ipsilateral (treated, right) paw and 
noninjected contralateral (control, left) paw were measured after 
intraplantar administration in all experimental groups. With-
drawal latencies of the ipsilateral paw assess the direct effects of 
the agent tested, whereas those of the contralateral paw assess 
systemic effects of the injection. In the current study, neither 
intraplantar A803467 nor lidocaine had any effect on withdrawal 
latencies in the contralateral paw. Therefore, antinociceptive or 
antihyperalgesic effects of intraplantar injection were not due 
to systemic absorption of the drug.

Intraplantar A803467 and lidocaine both produced significant 
antihyperalgesic and antiallodynic activity in diabetic rats, 
again indicating that Nav1.8 sodium channels in peripheral 
nerve endings contribute to the reception and transmission 
of painful signals in diabetic rats with neuropathy. Although 
antihyperalgesic effects of intraplantar A803467 and lidocaine 
were the same, the lidocaine-induced antiallodynia was 2-fold 
higher than that of A803467. This high potency of lidocaine 
may indicate that sodium channels in addition to Nav1.8 are 
important in diabetes-induced allodynia. Furthermore, data 
indicated that the effects of A803467 are concordant with its 
systemic activity. Similarly, the antihyperalgesic efficiency of 
locally administered A803467 was higher than its antiallodynic 

A 2-fold difference between the antiallodynic potencies of 
A803467 and lidocaine was accompanied by a 6-fold difference 
in their antihyperalgesic potencies. These results imply that, 
compared with lidocaine, A803467 more effectively prevents 
the transmission of pain signals in unmyelinated C fibers. Me-
chanical allodynia is mediated by the large dorsal root ganglion 
cells of the myelinated Aα/β fibers and thinly myelinated Aδ 

Figure 3. Changes in mechanical threshold to mechanical stimulus. 
Antiallodynic efficacies of intraperitoneal administration of A803467 
and lidocaine to (A) diabetic and (B) nondiabetic rats. (C) Time course 
of mechanical allodynia after STZ treatment. Each point represents 
the mean value of 7 rats, and the vertical bars indicate 1 SD. D, time 
of drug injection; arrow, pretreatment value; *, significant (P < 0.05; 
Kruskal–Wallis repeated-measures ANOVA with Dunn multiple-com-
parison tests) difference from values of DMSO only and saline groups 
at each time point; #, significant (P < 0.05; Kruskal–Wallis repeated-
measures ANOVA with Dunn multiple-comparison tests) difference 
from values after 10 mg/kg A803467 and 10 mg/kg lidocaine at each 
time point.

Figure 4. Effects of intraplantar A803467 and lidocaine on thermal hy-
peralgesia in diabetic (A) and nondiabetic rats (B). Each point repre-
sents the mean value of 7 rats, and the vertical bars indicate the SD. 
D, time of drug injection; arrow, pretreatment value; *, significant (P < 
0.05; Kruskal–Wallis repeated-measures ANOVA with Dunn multiple-
comparison tests) difference from values of DMSO only and saline 
groups at each time point.
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