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Abstract: BioluminescenceTomography attempts to quantify 3-
dimensional luminophore distributions from surface measurements of the
light distribution. The reconstruction problem is typically severely under-
determined due to the number and location of measurements, but in certain
cases the molecules or cells of interest form localised clusters, resulting
in a distribution of luminophores that is spatially sparse. A Conjugate
Gradient-based reconstruction algorithm using Compressive Sensing was
designed to take advantage of this sparsity, using a multistage sparsity
reduction approach to remove the need to choose sparsity weighting a
priori. Numerical simulations were used to examine the effect of noise on
reconstruction accuracy. Tomographic bioluminescence measurements of a
Caliper XPM-2 Phantom Mouse were acquired and reconstructions from
simulation and this experimental data show that Compressive Sensing-based
reconstruction is superior to standard reconstruction techniques, particularly
in the presence of noise.
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1. Introduction

The insertion of genes coding for bioluminescent compounds allows the labelling of cells of
interest such as cancerous cells. Such labelling typically provides a low output of biolumines-
cence photons but is specific, leading to very little background signal. Bioluminescent sources
on the surface of a subject can be straightforwardly localised and quantified, but due to the
optical scattering and absorption of tissue, the localisation and quantification of an internal bi-
oluminescent source from surface measurements is non-trivial and it is necessary to perform
Bioluminescence Tomography (BLT). BLT uses prior information about the optical properties
of the subject to reconstruct the location and concentrations of internal bioluminescent sources
from surface fluence measurements.

The tomographic reconstruction process requires that the propagation of bioluminescent light
through tissue can be modelled. This can be accomplished through analytical and numerical
methods [1]. If the image space (the spatial distribution of bioluminescence in the subject) is
discretised into a number of finite and disjoint regions (analogous to pixels in a digital photo-
graph) then the linearity of light propagation allows the propagation model to be formulated
as a system of linear equations. This system can be expressed asJx = y, whereJ is a matrix
representing the physics of light propagation in tissue [2],x is a vector representing the bio-
luminescent source distribution (the image), andy is a vector representing the resulting light
distribution (the surface measurements). TheJ matrix is commonly called a Jacobian or weight
matrix, and is constructed from prior knowledge of the optical properties of the subject.

Given knowledge ofy through measurement, and prior knowledge ofJ, it is necessary to
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reconstructx. However, BLT problems are typically strongly underdetermined as a result of
limitations on the number of measurements, and correlation between measurements. For ex-
ample, in the experimental data examined in this paper it is necessary to reconstruct 10171
unknowns from 526 measurements.

Restrictions on the number of measurements arise primarily from the imaging setup which
itself is limited by the duration for which a subject can be sedated, coupled with the typically
low signal strength of bioluminescence which necessitates long measurement integration times.
Strong correlations between measurements arise from the diffusive nature of light propagation
in tissue and the practical constraint of taking measurements only on the surface of the subject.
For these reasons, if more measurements are acquired at a particular wavelength, the set of
measurements tends to become more correlated, limiting the benefit of increasing the number
of measurements. In order to produce accurate images it is then necessary to develop and use
reconstruction methods that are robust in the presence of this degree of non-uniqueness. Given
small numbers of measurements in comparison to the number of unknowns, prior knowledge
about BLT can help reduce the problem of non-uniqueness and so guide the reconstruction
process. For example, BLT images the concentrations of bioluminescent chemicals in tissue.
As concentrations are non-negative, constraining the unknowns to be non-negative halves the
solution space in each dimension. In addition, BLT is commonly used in examinations of can-
cer growth, many of which grow in a fashion that preserves compactness of the bioluminescent
tumour. The very low bioluminescence background in conjunction with the small size and com-
pactness of the bioluminescent tumour result in a spatially sparse bioluminescence distribution,
which can be used to further reduce the solution space.

Compressive Sensing (CS) allows the reconstruction of images that are sparse in a known
representation given fewer measurements than unknowns [3], provided certain conditions on the
measurements are satisfied [4,5]. It has the property of producing exact reconstruction with high
probability, through maximisation of reconstruction sparsity whilst minimising measurement
error. The measurement conditions require measurements to be:

• independent, so that each measurement provides unique information about the image.

• distributed, so that each measurement provides information about the entirety of the im-
age.

If the set of measurements are sufficiently independent and distributed given the sparsity of
the bioluminescence distribution being imaged, then there is a unique solution with maximum
sparsity that matches the measurements, and that solution is the desired image. Sparsity max-
imisation can be used to extract the image from the measurements. In the case of BLT, the
restriction of measurements to the subject surface and the diffusive nature of tissue limits the
independence of measurements, and light absorption by tissue drastically reduces the sensitiv-
ity of measurements to bioluminescent sources deep within tissue. However, the large degree of
sparsity possible in BLT images suggests that CS may nonetheless provide benefits over other
reconstruction algorithms.

Standard reconstruction techniques attempt to solve Eq. (1):

x = min
x
‖y−Jx‖22 (1)

where‖x‖p = (∑N
i=1 |xi|

p)
1
p is the Lp norm. In the case discussed here where the solution is

expected to be spatially sparse, CS uses the insight that the most spatially sparse solution satis-
fying Eq. (1) is the exact solution with high probability (if the problem satisfies the necessary
conditions [4, 5]). This is equivalent to finding a solution to‖y−Jx‖22 = 0 that minimises the
L1 norm‖x‖1, which induces sparsity in the solution. The L0 norm, which essentially counts
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the number of non-zero components ofx, induces sparsity even more strongly, but is a discon-
tinuous function and so more difficult to minimise. In general, Lp norms forp≤ 1 can be used
to maximise sparsity.

Given the presence of noise in the measurements, minimizing the measurement error ex-
actly is undesirable due to overfitting, and it becomes useful to consider L1 minimization and
measurement error minimization as objectives to be optimized jointly, with specified weights
on each objective, as in Eq. (2):

x = min
x
‖y−Jx‖22 +λ ‖x‖1 (2)

whereλ is a term that weights the sparsity constraint against the measurement error. It can be
shown [6,7] that Eq. (2) is equivalent to solving Eq. (3):

x = min
x
‖x‖1 such that‖y−Jx‖22 < ε (3)

where the measurement error threshold,ε, is some function ofλ .
A number of CS-inspired reconstruction algorithms have been applied to BLT. Lu et al. [8]

used a differentiable approximation of L1 regularisation. He et al. [9] used an incomplete vari-
ables truncated Conjugate Gradient method, to solve sub-problems involving dynamic subsets
of the problem unknowns, in conjunction with L1 regularisation. Cong et al. [10] used a phase
approximation simplification of the Radiative transport equation, permissable region approach
and a constrained L1 sparsity minimisation algorithm, with the constraint being a measure of
the measurement discrepancy. Yu et al. [11] used L1 regularisation. Gao et al. [12,13] used the
full Radiative Transport Equation, with both angularly-averaged and angularly-resolved data,
in conjunction with both L1 and Total Variation-based regularisation, to solve for sub-problems
on meshes of different resolution and with an adaptive region of interest. The solution they
proposed to choose the correct balance of L1 and Total Variation weighting required additional
prior knowledge of the bioluminescence distribution. He et al. [14] used an adaptive region of
interest approach with L1 regularisation. Liu et al. [15] used a dynamic quadratic approximation
to the Lp norm, and explored how sensitive the reconstruction process is to the particular regu-
larisation weight used. Zhang et al. [16] used a primal-dual interior-point approach, which does
not need a regularisation weight, and employed an algorithm termination scheme which can be
noise dependent. However, multiple termination criteria were used with the same termination
threshold, and so its relationship to noise is non-trivial.

One issue not fully addressed in previous works [8, 9, 11–15] is that of choosing a regu-
larisation/sparsity weighting, which is the subject of the presented work. Sparsity weighting
is equivalent to the imposition of a measurement noise constraint, via the equivalence of Eq.
(2) and Eq. (3). However, the mapping of sparsity weighting to a desired measurement noise
measure (such as sum squared error) or vice versa is non-trivial. Sparsity weighting is also im-
portant when using regions of interest, as the sparsity of a given bioluminescence distribution
is linked to the size and shape of the region of interest. As the region of interest shrinks around
the non-zero parts of the bioluminescence distribution, the distribution necessarily becomes less
sparse within the region of interest, and accordingly the sparsity weighting should be changed
to account for this.

This work uses the iterative solution of a number of instances of Eq. (2), with decreasing
sparsity weighting, to address this problem (section 2). Firstly, a measurement discrepancy
termination threshold is given (based on the instrumental noise statistics). An initial sparsity
weighting is generated that heavily favours the sparsity term. A solution to this problem is
found, and then used as an initial solution to a new problem with slightly smaller sparsity
weighting. This process repeats until the measurement discrepancy termination threshold is
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satisfied, or the measurement discrepancy term is heavily favoured over the sparsity term. This
leadsto one of two possible end states:

• The measurement discrepancy threshold is satisfied, and so the result is a local solution
of Eq. (3).

• The measurement discrepancy term heavily outweighs the sparsity term, and so the result
is a local solution of Eq. (1).

This process of solving a number of sub-problems using a previous solution as a starting point
is similar to the approach used by Figueiredo et al. [6] to improve performance by “warm
starting”.

This algorithm was tested against two other algorithms, using simulated and experimental
measurements, and its performance quantitatively analysed (section 3).

2. Methods

A Conjugate Gradient approach to solve Eq. (3) was implemented [7] (see Fig. 1), and shall be
referred to as Compressive Sensing Conjugate Gradient (CSCG). A differentiable approxima-
tion of the L1 norm in the form of Eq. (4) was used to simplify reconstruction:

‖x‖1≈∑
i
(x2

i + µ)
1
2 (4)

with the magnitude ofµ insignificant relative to the magnitudes of non-zeroxi. The algorithm
solves a number of sub problems for decreasing values ofλ , using the solution to the previous
sub problem as a prior for the next. Asλ becomes small, the problem tends to Eq. (1), and so the
solution produced by CSCG is also locally optimal in terms of measurement error. The initial
value ofλ is chosen as Eq. (5) so that the sparsity term is much larger than the measurement
error term:

λ0 = 105 ‖y‖
2
2

‖JTy‖1
(5)

The constant of 105 was selected empirically to ensure that the sparsity term dominates the
measurement error term. If the value is higher than necessary then the reconstruction result is
unaffected, but the reconstruction time may display a small increase, asλ is decreased during
the reconstruction. If the value is too low then the reconstruction process may be affected as
the measurement error can reach the termination threshold before the solution is maximally
sparsified. A set of sub-problems are then solved with decreasingλ until the measurement
discrepancy condition is satisfied orλ satisfies inequality (6):

λn ≤
λ0

1020 (6)

The value of 1020 was also selected empirically to ensure that in the case where the measure-
ment error threshold cannot be met, the reconstruction process does not terminate before it is
reduced to solving Eq. (1). CSCG is also constrained to be non-negative, due to the physi-
cal non-negativity of luminophore distributions. This constraint is implemented via projection
within the algorithm, where the projected solutionx′ is calculated as Eq. (7).

x′i = max(xi,0) (7)
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(a) Algorithm

Require: A measurement matrixJ
Require: A measurement vectory
Require: An initial weighting of sparsity and measurement error termsα
Require: A minimum sparsity weighting threshold at which to terminate the reconstructionβ
Require: A minimum measurement error threshold at which to terminate the reconstructionε
Require: A minimum objective function improvement threshold at which to reduce the spar-

sity weightingδ
Require: A constant by which to reduce the sparsity weightingη
Ensure: A reconstructed image vectorx

1: x← 0
2: λ ← α ‖y−Jx‖22

‖JTy‖1

3: d← ∇φ(x,λ )

4: while (λ ≥ β ) & (‖y−Jx‖22 > ε) do
5: d̃← f(d, ∇φ(x,λ ))
6: γ ←minγ φ(x+ γd̃,λ )
7: x̃← x+ γ∇φ(x,λ )

8: if φ(x,λ )−φ(x̃,λ )
φ(x,λ ) ≤ δ then

9: λ ← ηλ
10: end if
11: x← x̃
12: end while
13: return x

(b) Flow chart

Fig. 1. (a) CSCG algorithm pseudocode.φ(x,λ ) is the objective function (see Eq. (2)).f is
a vector function that generates a new search direction using the gradient ofφ(x,λ ) and the
previous search direction.α was chosen in this work to be 105. β was chosen in this work
to be 10−20 of the initial value ofλ . η was chosen in this work to be 2−1/2. (b) Flowchart
of CSCG algorithm.
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Two standard algorithms were used to provide a reconstruction performance comparison.
Thesebenchmark algorithms are Gauss-Newton (GN) and Non-negative Least Squares [17]
(NNLS). The GN and NNLS algorithms have been implemented to solve Eq. (8):

x = min
x
‖y−Jx‖22 +α ‖Ix‖22 such thatxi ≥ 0 (8)

which includes identity-matrix-based Tikhonov regularisation with regularisation weightα.
As GN is not non-negative, it is constrained to be non-negative via projection (see Eq. (7)).

Unconstrained GN is a non-iterative algorithm, but the projection step necessitates an iterative
approach, where the error introduced by projection is iteratively minimised via GN.

NNLS is intrinsically non-negative and so no modification is necessary to induce non-
negativity. Although NNLS solves the same equation as GN, it does so in a very different
manner. A support set (initially consisting of one dimension) is defined such that the solution to
the equation on this support set is non-negative, and the equation is solved on this support set.
Dimensions are then iteratively chosen and added to the support set in a manner that preserves
the non-negativity of the solution, until the equation is solved to the desired accuracy. Due to
the use of a small and increasing support set this algorithm can be well suited to reconstructing
sparse solutions, assuming that the algorithm chooses the correct support set.

Modeling of light transport in tissue was carried out using the NIRFAST software package
[18], which solves the Diffusion Approximation to the Radiative Transport Equation through
Finite Element Analysis.

An XPM-2 Phantom Mouse (Caliper Life Sciences, Hopkinton, MA, USA) was imaged
using a Computed Tomography (CT) and Fluorescence Tomography (FT) instrument at Dart-
mouth College [19], which acquires data in rings around the circumference of the subject. A
mesh of the mouse torso was created from CT data (see Fig. 2), and was used, in addition to the
instrumental setup, in reconstructions involving both simulated or experimental measurements.

Fig. 2. Caliper XPM-2 Phantom Mouse and the torso region used in reconstructions. The
XPM-2 is shown in light blue, and the torso region used is overlaid in dark blue. The
positions of the measurements acquired are shown as red spheres.

2.1. Simulation

Simulations were conducted using the XPM-2 torso mesh with two embedded bioluminescent
sources, and the measurement positions that were used in the imaging at Dartmouth College
(see Fig. 2). The measurement process was simulated in the presence of normally distributed
noise. Simulated measurements were calculated using a higher resolution version of the torso
mesh than the one used for reconstruction. Five monochromatic wavelengths (560nm, 585nm,
602nm, 630nm, and 650nm) were used in simulations. Noise, where applied, was additive,
drawn from a normal distribution with a mean of 0, and independently and identically distrib-
uted for each measurement. Three values of noise standard deviation were tested: 0%, 1% and
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5% of the magnitude of the maximum simulated measurement (see Fig. 3, Fig. 4, and Fig. 5
respectively). For each noise level 30 samples of noise were generated and used. The noise
threshold for CSCG (seeε in Fig. 1) was set to zero to be consistent with the experimental re-
construction, and measurements were removed to leave the same subset of measurements that
was used in the experimental reconstruction (see section 2.2). A single regularisation weight
for GN and NNLS of 10−5 was chosen empirically from simulations and used for all tests, as
in practice one cannot know the best regularisation weight for data sets whose solution is un-
known. The regularisation value was chosen to minimise regularisation whilst reducing artifacts
at all noise levels.

2.2. Experiment

Measurements of the XPM-2 Phantom Mouse were acquired using the instrument at Dartmouth
college, from five light bands centred around 560nm, 585nm, 602nm, 630nm, and 650nm, with
widths of 10nm, resulting in 1120 measurements. The measurement noise statistics were un-
known and so the noise threshold for CSCG (seeε in Fig. 1) was set to zero. As the quantity
being measured is the number of photons arriving at the detectors, all measurements should be
positive. However, due to instrumental error some measurements were negative. The maximum
negativity of measurements was used to estimate which measurements were noise dominated.
All measurements with magnitudes less than five times the absolute value of the most negative
measurement were considered noise-dominated and removed, leaving a total of 526 measure-
ments from which to reconstruct 10171 unknowns.

3. Results and discussion

Examples of simulated reconstructions (see Fig. 3, Fig. 4, and Fig. 5) show qualitatively that
CSCG reconstructs well, and with reduced noise artifacts at all noise levels compared to GN
and NNLS. Figure 3 shows reconstructions in the absence of noise. None of the algorithms
succeed in reconstructing the target sources exactly. This is to be expected as modelling error
was introduced by reconstructing from the measurements using a coarser mesh than was used
to generate them. It is not possible for the coarser mesh to represent the target sources ex-
actly. GN reconstructs the sources, but with much noise. This could potentially be reduced by
increasing the regularisation weight. NNLS reconstructs with little noise, although more than
CSCG, but with significant source broadening. This could potentially be reduced by decreasing
the regularisation weight. As noise of 1% and 5% is added in Fig. 4 and Fig. 5 respectively, it
can be seen that the performance of all algorithms degrades as the level of noise increases. GN
shows the greatest level of degradation, with image artifacts dominating the target sources at
both noise levels. At 1% noise, both NNLS and CSCG are visually very similar to the noiseless
case, although the maximum intensity of the CSCG reconstruction drops significantly. At 5%
noise both NNLS and CSCG show significant changes in reconstruction quality in terms of
source localisation and size, although NNLS displays greater change.

Examining reconstruction performance quantitatively, Table 1 shows that CSCG displays
superior localisation performance to both GN and NNLS, with localisation better or equal to
the other algorithms at all noise levels and for both sources, with a maximum localisation error
of 1.7mm. GN shows markedly inferior localisation performance to the other two algorithms
at all noise levels and for both sources, with a maximum localisation error of 5.3mm. NNLS
shows similar performance for source A, but consistently inferior performance for source B,
with a maximum localisation error of 1.7mm as compared to 1.1 mm for CSCG. Reconstruction
quality for both NNLS and CSCG is broadly similar, and degrades as noise increases, but both
algorithms achieve localisation on average within 2mm of the true location.

Table 2 gives the reconstructed source size, and the trend here is consistent with the qual-
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Fig. 3. Reconstructions of two bioluminescent sources using simulated measurements in
theabsence of measurement noise. (a)Target (b)GN (c)NNLS (d)CSCG

Fig. 4. Reconstructions of two bioluminescent sources using simulated measurements, as
Fig. 3, in the presence of 1% normally distributed noise.

itative observations. Here NNLS performance is inferior in all tests except for 5% noise and
source A, with a minimum volume of 82% of the true volume, and a maximum volume of
740%, and displays great variation as the level of noise changes. GN uniformly underestimates
the size of the sources, with a minimum volume of 43% of the true volume, and a maximum
volume of 86%, but given the poor localisation performance the volumes given may be those
of image artifacts. CSCG reconstructs both sources well and shows the greatest resilience to
noise, with a minimum volume of 57% of the true volume, and a maximum volume of 230%. It
is possible that the performance of GN and NNLS could be improved by tuning the regularisa-
tion parameters for each instance of noise separately, but this is not practical in an experimental
situation as one does not know the true image. No hyperparameters of CSCG were changed
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Fig. 5. Reconstructions of two bioluminescent sources using simulated measurements, as
Fig. 3, in the presence of 5% normally distributed noise.

Table 1. Simulation localisation error (mm) of mean reconstructed source centre. Source
locations were calculated by taking the centres of fitted Gaussian distributions. Source A
is the left-most source, and source B is the right-most source, as displayed in Fig. 3, Fig.
4, and Fig. 5. At each noise level, 30 samples of noisy measurements were generated. The
location of each source was taken to be the location of the maximum value in a region (a
sphere of radius 8mm) around the true source centre.

Source A SourceB

Noise GN NNLS CSCG GN NNLS CSCG

0% 1.8 0.6 0.6 3.6 1.6 0.9
1% 4.0 1.0 0.5 2.9 0.9 0.7
5% 5.3 1.7 1.7 2.8 1.7 1.1

before any of the reconstructions at any noise level, indicating that CSCG performs well and is
robust to noise.

The reconstruction performance of the three algorithms in an experimental situation can be
found in Fig. 6. The locations and sizes of two sources in the XPM-2 Phantom Mouse are
unfortunately not known sufficiently precisely to the authors to allow a quantitative analysis,
but qualitatively CSCG is again superior. The CSCG reconstruction displays improved source
compactness and reduced noise artifacts compared to GN and NNLS. GN fails to reconstruct
either source. The reconstructions display significantly different intensities for the two sources,
which may result from measurement artifacts or inadequate prior knowledge of the optical
properties of the phantom material.

4. Conclusion

CSCG demonstrates increased robustness to noise in comparison to GN and NNLS in both
simulation and experiment, in terms of reduced noise artifacts and consistent reconstructed
values across different levels of noise. The multi-level reconstruction of CSCG removes the
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Table 2. Simulation mean volume (mm3) (see Table 1) as a percentage of the true volume.
The volume of each source was taken to be the connected volume enclosed by half the
maximum value in the region, containing the location of the maximum value.

Source A SourceB

Noise GN NNLS CSCG GN NNLS CSCG

0% 43% 340% 74% 86% 740% 96%
1% 36% 290% 110% 72% 660% 150%
5% 26% 82% 57% 58% 330% 230%

Fig. 6. Reconstructions of experimental measurements of an XPM-2 Phantom Mouse
(CaliperLife Sciences, Hopkinton, MA, USA). (a)GN (b)NNLS (c)CSCG

need to empirically select regularisation values whilst still providing good quality reconstruc-
tions, which makes the reconstruction process more objective. However, CSCG does not neces-
sarily converge on a global minimum, and is not optimised for efficiency, which are two areas
for possible improvement.

CS improves reconstruction quality, and allows robust reconstruction from minimal data sets.
Whether, and in what circumstances, BLT measurements are sufficient to allow true CS recon-
struction is an open question. By design of instrumentation and measurement schemes to better
satisfy the CS conditions, such as through optimisation of measurement location and wave-
length, superior reconstruction fidelity is achievable.
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