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Abstract: Existing methods of interpreting fluorescence lifetime imaging
microscopy (FLIM) images are based on comparing the intensity and
lifetime values at each pixel with those of known fluorophores. This method
becomes unwieldy and subjective in many practical applications where there
are several fluorescing species contributing to the bulk fluorescence signal,
and even more so in the case of multispectral FLIM. Non-negative matrix
factorization (NMF) is a multivariate data analysis technique aimed at ex-
tracting non-negative signatures of pure components and their non-negative
abundances from an additive mixture of those components. In this paper,
we present the application of NMF to multispectral time-domain FLIM data
to obtain a new set of FLIM features (relative abundance of constituent
fluorophores). These features are more intuitive and easier to interpret
than the standard fluorescence intensity and lifetime values. The proposed
approach, unlike several FLIM data analysis methods, is not limited by
the number of constituent fluorescing species or their possibly complex
decay dynamics. Moreover, the new set of FLIM features can be obtained
by processing raw multispectral FLIM intensity data, thereby rendering
time deconvolution unnecessary and resulting in lesser computational time
and relaxed SNR requirements. The performance of the NMF method was
validated on simulated and experimental multispectral time-domain FLIM
data. The NMF features were also compared against the standard intensity
and lifetime features, in terms of their ability to discriminate between
different types of atherosclerotic plaques.
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1. Introduction

Despite several studies showing the potential of multispectral FLIM as a promising clinical
optical imaging modality [1–4], its utility has not yet been fully established. One of the main
reasons for this is the element of subjectivity involved in interpreting multispectral FLIM im-
ages. Existing methods of interpreting multispectral FLIM images are based on a qualitative
comparison of spectral intensity and lifetime values at each pixel in a FLIM image with those of
known fluorophores. Such comparison-based interpretation of FLIM images is satisfactory only
when the fluorescence decay at each pixel can be attributed to just one fluorophore. However,
in most practical applications, there are often more than one fluorescing species contributing to
the bulk fluorescence signal. In such cases, it becomes imperative to develop a method that can
quantitatively characterize the type and relative abundance of fluorophores present in a sample.
This is of particular interest in the context of biomedical diagnosis, since the progression from
normal to pathological tissue is often characterized by changes in the relative abundance of
tissue fluorophores.

Several studies reported in the literature that attempt to quantify the contributions of con-
stituent fluorophores to bulk fluorescence signal are based on lifetime measurements [5, 6]. In
the general approach, it is assumed that the constituent fluorophores have mono-exponential
decay dynamics with known lifetimes, and consequently the mixture fluorescence dynamics is
modeled as multi-exponential decay wherein each exponential component corresponds to a spe-
cific fluorophore. The sample fluorescence decay at each pixel is thus fitted to the corresponding
multi-exponential model, and the estimated pre-exponential weights are used as surrogates for
the relative contributions of the constituent fluorophores to the bulk signal. When the lifetime
values of the fluorophores are not known a priori, the global analysis approach is applied, in
which the global fluorophore lifetimes are also estimated from the complete FLIM data [5].

Although generally used, these methods suffer from several limitations. First, the assumption
of mono-exponential decay for each fluorophore is quite often inaccurate, since many exoge-
nous and endogenous fluorophores show more complex decay profiles. For instance, Flavin
Adenine Dinucleotide (FAD), which is an important cofactor in many enzymatic reactions, is
known to have a non-exponential decay [7]. Similarly, for a single tryptophan protein, the dis-
tribution of protein conformations results in a complex decay profile [8]. Second, most of these
methods are restricted to two-component models [5,9]; thus, they can only handle experimental
FLIM data in which at most two fluorescent species are being simultaneously monitored. These
two major limitations have been identified in a number of publications. In particular, Veerver
et al. have addressed these issues in [5], where the authors have stated that the “resolution of
fluorophores with complex decays and separation of more than two fluorophores continues to
be a topic of research”. Third, from a computational aspect, accurate fitting of fluorescence
decay data to a multi-exponential model requires signal-to-noise levels that are in many cases
impractical for FLIM measurements [7]. Fourth, unless extremely short excitation light pulses
are used, time deconvolution of the instrument response from the fluorescence decay data is re-
quired prior to lifetime estimation, which results in an additional computational burden. Lastly,
all these methods are applicable to single spectral channel FLIM data and are thus unable to
exploit the spectral information contained in the multispectral FLIM data [6, 10].

In this study we present the application of non-negative matrix factorization (NMF) to mul-
tispectral FLIM data analysis. NMF is a multivariate data analysis technique that aims at ex-
tracting non-negative signatures and relative contributions of pure components from an additive
mixture of those components; a process commonly referred to as unmixing [11]. In the context
of FLIM data analysis, unmixing amounts to expressing the bulk fluorescence signal obtained
from a sample as a weighted sum of fluorescence signals of the constituent fluorophores present
in that sample, where the weights correspond to the relative contribution of each constituent
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fluorophore to the bulk fluorescence signal. Unlike most other approaches mentioned earlier
that make assumptions about the functional form of the constituent fluorophore decay profiles
and are restricted to two-component models, NMF is able to handle more than two fluorescent
species showing complex decay dynamics (i.e. non-monoexponential decay). Another impor-
tant advantage of the proposed method is that NMF can be directly applied to raw multispectral
FLIM intensity data obviating the need to perform time deconvolution, resulting in lesser com-
putational time and relaxed SNR requirements.

In the present study, the following two specific aims were accomplished. First, we proposed
a new set of features to characterize multispectral FLIM images. This feature set (henceforth
referred to as NMF FLIM features) comprises the relative abundance of constituent fluorophores
derived via NMF of multispectral FLIM data. We also showed how these features are more
intuitive and easier to interpret than the standard bulk intensity and lifetime features (henceforth
referred to as standard FLIM features), which are currently used to characterize multispectral
FLIM data. Second, we compared the performance of the NMF FLIM features against the
standard FLIM features derived from multispectral FLIM data obtained by imaging of human
coronary arteries, in terms of their ability to discriminate between three types of atherosclerotic
plaques.

2. Materials and methods

2.1. FLIM instrumentation

The coronary segments were imaged using an in-house built high speed bench-top multispectral
FLIM system reported in [12]. Briefly, the scanning FLIM system was implemented following
a direct pulse-recording scheme, in which the pixel rate could be equal to the laser repetition
rate. A frequency tripled Q-switched Nd:YAG laser was used as the excitation source (355 nm,
30 kHz max. repetition rate, 1 ns pulse FWHM). The fluorescence emission was separated into
three spectral channels using a set of dichroic mirrors and filters (390±20 nm for collagen,
452±22.5 nm for elastin, and 550±20 nm for lipids). The emission from each channel was
launched into fibers with different lengths (1 m, 10 m and 19 m) chosen to provide 45 ns
interval between each emission band decay. The three consecutive decays were detected with a
MCP-PMT (rise time: 150 ps) and sampled with a high bandwidth digitizer (1.5 GHz, 4 GS/s).
The system’s lateral resolution was measured to be 100 µm. Each multispectral FLIM image
(FOV: 2×2 mm2 at 60×60 pixels) was acquired in ∼7 s.

2.2. Tissue sample preparation and histopathological evaluation

Fresh human coronary artery tissues were obtained within 48 hours of autopsy after 6 post-
mortem examinations, according to a protocol approved by the Texas A&M University Institu-
tional Review Board. The arterial tissues were segmented and longitudinally opened to acquire
multispectral FLIM images. In total, 58 segmented tissues were imaged over a 2×2 mm2 area.
During the experiment, each tissue specimen was placed on a quartz slide with the internal lu-
men directly facing the microscope objective. Imaged region of the specimen tissue was imme-
diately marked for histopathological processing after imaging. Each tissue specimen was then
sectioned every 500 µm and the sections were stained with Movat Pentachrome for histopatho-
logical evaluation. Based on the histopathological evaluation, each section was classified as:
intimal thickening (IT), pathological intimal thickening (PIT), fibroatheroma (FA), thin-cap
fibroatheroma (TCFA), calcified plaque (CA), and/or plaque with significant foam-cell (FC)
infiltration [13]. A total of 21 segments showing similar and uniform histopathological char-
acteristics in all consecutive sections were selected and grouped either as High-Collagen (HC;
including FA and PIT), High-Lipids (HL; including TCFA and PIT with significant foam-cell
infiltration or FC-PIT) or Low-Collagen/Lipids (LCL; including IT and CA). We shall refer to
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these datasets as the homogeneous datasets while the remaining 37 datasets shall be called the
heterogeneous datasets.

2.3. Problem statement: multispectral FLIM data in NMF framework

Before setting out to describe the problem statement, the following notations are in order. We
shall denote the multispectral fluorescence intensity decay measured at a given pixel (x,y) as a
function of time (t) and wavelength band (λi) by I(x,y, t;λi). If we linearly index, say N pixels
in a multispectral FLIM image as i = 1,2, . . . ,N, such that the i th. index corresponds to the
pixel (x,y), and if we denote the spectro-temporal FLIM profile at the i th. pixel by xi, then we
define this spectro-temporal decay as a concatenation in time of the fluorescence decays for all
emission bands; i.e., xi ≡ I(x,y, t;λ1,λ2, . . . ,λP) = [ I (x,y, t;λ1) , I(x,y, t;λ2), . . . , I(x,y, t;λP) ],
where P denotes the number of emission bands. Let us also assume that in a sample there are
K fluorophores, termed end-members having multispectral time resolved fluorescence decays
denoted by sk ∈ RT , for k = 1,2, . . . ,K, where T denotes the length of the spectro-temporal
signals. In accordance with the hyperspectral imaging terminology, we shall interchangeably
refer to these end-member profiles as end-member signatures. If we denote the multispectral
time resolved fluorescence signal recorded at a given pixel (say n th. pixel) in a FLIM image by
xn, then under the linear mixing assumption, xn can be expressed as a linear combination of the
K end-member signatures, i.e.

xn = a1,n s1+a2,n s2+ · · ·+aK,n sK ⇔ xn = San, (1)

where S ≡ [s1, s2, · · · ,sK ] ∈ RT×K and an ≡ [a1,n, a2,n, · · · ,aK,n]
T ∈ RK . In such a case, the

weights: a1,n,a2,n, . . . ,aK,n represent the contributions or abundances of the K end-members at
the n th. pixel. We we can then express the data matrix: X≡ [x1,x2, · · · ,xN ]∈RT×N , containing
the recorded spectro-temporal fluorescence decays from N pixels along its columns (henceforth
referred to as data vectors) in matrix notations as X = SA. We shall call: S≡ [s1, s2, · · · ,sK ] the
mixing matrix, which holds the K end-member signatures in its columns, and A ∈ RK×N shall
be referred to as the abundance matrix, which contains the contributions of K end-members
(along rows) for each of the N pixels (along columns). Taking into account the fact that matrices
X,S and A contain non-negative elements (denoted by: X,S,A < 0), the problem we attempt
to address can be stated as follows: Given a non-negative data matrix X and the number of
fluorophores: K contributing to the bulk fluorescence signal, find the mixture and the abundance
matrices S,A < 0 such that the product SA best approximates X; i.e. X ≈ SA. This problem
is more generally known as non-negative matrix factorization and appears in several research
areas under different names, most notably, spectral unmixing or blind source separation in
hyperspectral image analysis and multivariate curve resolution in chemometrics [14, 15].

2.4. Geometrical interpretation, preprocessing and NMF algorithms

2.4.1. Geometrical interpretation

The solution to the NMF problem stated in the previous section can be better understood
by resorting to a geometrical interpretation of NMF [17]. For meaningful interpretation, the
rows of A are interpreted to represent the relative abundance of different end-members, in
which case they are assumed to follow a full-additivity constraint, i.e. ∑

K
k=1 ak,n = 1 for n =

1,2, . . . ,N (in the following section, we discuss how a simple normalization procedure can
be employed to make sure that the data always follows the full-additivity constraint). Under
the non-negativity, linear mixing and full-additivity constraints, it then follows that the set
X ≡

{
xn∈ RT : xn=San, 1T an = 1, n = 1,2, . . . ,N

}
represents a K − 1 dimensional simplex

and estimating S amounts to finding the vertices of such a simplex. This is shown in Fig. 1 and
Fig. 2 for the case when K = 2 and K = 3, respectively.
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Fig. 1: All possible non-negative linear combinations of s1 and s2 lie in the blue shaded un-
bounded area contained within s1 and s2. xn represents one such data vector. Normalizing data
vectors to unit L1-norm length amounts to rescaling them such that the tip of the rescaled data
vectors lie on the portion of the unit L1 norm circle (shown in dotted lines) contained between
the normalized end-member signatures s̃1 and s̃2, i.e. on the line S′1S′2, which represents a 1-D
simplex.

2.4.2. Data preprocessing

The full-additivity constraint described in the previous paragraph is not always satisfied in
many practical situations. This may happen when either the imaged area is large or in situations
where it is desired to use data acquired from different imaging sessions. In the former case
it is mainly the variations in physical and chemical conditions, while in the the latter case, it
is the differences in experimental conditions that results in the violation of the full-additivity
constraint. This effect is commonly referred to as signature variability in hyperspectral imaging
literature and is characterized by what is called spectral shape invariance, which means that
although the shapes of the end-member signatures do not vary much across different pixels,
their scaling or amplitude vary significantly over the imaged area [16]. In such a case, instead
of being contained on a K−1 dimensional simplex, the data lies within a region of the positive
orthant of the T dimensional space enclosed by a convex polygonal cone spanned by K columns
of S. This is shown in Fig. 1 and Fig. 2 for the case when K = 2 and K = 3, respectively, where
the data vectors lie within the cone (shown as blue shaded region) spanned by the end-member
signatures, as opposed to lying on a line (K = 2) and a triangular plane (K = 3), respectively.

In cases like these, a normalization technique inspired from the dark point fixed transform
(DPFT) can be performed to ensure that the normalized data satisfies the full-additivity con-
straint [17,18]. This normalization involves scaling the data vectors xn to have unit length in the
L1-norm sense, i.e. if x̃n denotes the normalized data vector, then x̃n = xn/‖xn‖1, where ‖x‖1
for a vector x = (x1,x2, . . . ,xn) is defined as: ‖x‖1 := |x1|+ |x2|+ · · ·+ |xn|. The linear mixing
model stated in Eq. (1) can then be reformulated as:

x̃n =
xn

‖xn‖1
=

∑
K
k=1 ak,nsk
‖xn‖1

=
K

∑
k=1

(
ak,n

‖sk‖1
‖xn‖1

)(
sk

‖sk‖1

)
=

K

∑
k=1

ãk,ns̃k, (2)

where, s̃k = sk/‖sk‖1 denotes the rescaled end-member signatures and ãk,n = ak,n‖sk‖1/‖xn‖1
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Fig. 2: In the general case, all possible non-negative linear combinations of s1 s2 and s3 lie in
the blue shaded unbounded volume enclosed by s1 s2 and s3. On imposing the full-additivity
constraint all possible non-negative linear combinations of s1 s2 and s3 are constrained to lie on
the triangle S1S2S3, which represents a 2-D simplex.

denotes the corresponding rescaled contributions. Observing that ‖xn‖1 = ∑
K
k=1 ak,n‖sk‖1, it

follows immediately that ∑
K
k=1 ãk,n = 1. The meaning of the term “relative abundance” can

now be better understood if we reconsider the NMF problem: X = SA, where it is assumed
that the row entries of a given column of S sum to 1; an assumption that follows from the
preceding discussion on normalization. In this case, the relative abundance of an end-member
(say k th.) at a given pixel (say n th.) is a kind of a weighting factor interpreted to signify the
relative contribution of its signature signal (k th. column of A) to the possibly normalized signal
measured at the n th. pixel (n th. column of X).

The aforementioned normalization technique can be understood intuitively by considering a
simple case where we have a mixture of 2 end-members (K = 2), for which the end-member
signatures s1 and s2 are represented as vectors OS1 and OS2 in Fig. 1. In 2-D space, the unit
L1-norm circle (set of vectors of norm 1) is a square, which is shown in dotted lines in Fig. 1.
Now, under the non-negativity and linear mixing assumptions, a data vector xn, denoted by
OX lies inside the blue shaded region spanned by OS1 and OS2. The effect of normalizing a
vector to unit length in L1-norm sense can be thought of as scaling the length of that vector
so that the tip of the vector falls on the unit L1-norm circle, without changing the direction of
that vector. Thus, the normalized vector x̃n is simply a scaled version of the original vector xn
and is denoted by OX ′. By similar reasoning, the normalized end-member signatures, s̃1 and s̃2
(denoted by vectors OS′1 and OS′2) also lie on the unit L1-norm circle, whence it follows that
any vector expressed as a non-negative linear combination of s1 and s2 (or lying in the blue
shaded region) upon normalization will fall on the line joining S′1 and S′2, which represents a
1-D simplex.

2.4.3. NMF algorithms

A class of algorithms to perform NMF is based on the above mentioned geometrical inter-
pretation of linear mixing model. These algorithms can be broadly grouped into two cate-
gories. The first category includes algorithms that are based on the assumption that the set
containing the end-member signatures S ≡ {sk ∈ RT , k = 1,2, . . . ,K} is a subset of the set
X ≡ {xn ∈ RT , n = 1,2, . . . ,N} containing the data vectors. This means that there are at least
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K pixels denoted by n1,n2, . . . ,nK such that xni = si, for i = 1,2, . . . ,K. This assumption is
commonly referred to as the pure pixel assumption and it simply means that the vertices of
the simplex described by the set of points in X are contained in X. The problem of estimating
end-member signatures is then reduced to finding the data vectors that form the vertices of the
simplex. Some popular algorithms based on this assumption are Vertex Component Analysis
(VCA), Pixel Purity Index (PPI) and N-FINDR [19–21]. The second category of NMF algo-
rithms deal with a more realistic and difficult situation where the end-members appear rarely as
pure pixels or in other words, the observed pixels are mostly a mixture of end-members. In such
a case, the data does not span the entire simplex and not many observed pixels are found at the
vertices of the simplex. The basic idea behind these algorithms is that even in the absence of
pure pixels, it may be possible in many cases to deduce the simplex structure of the data. This
idea was described in [22], where the author introduced a Minimum Volume Transform (MVT)
to infer the simplex structure in the absence of pure pixels. Following the idea of MVT, several
unmixing algorithms based on the same idea have been proposed in the literature [18, 23, 24].
In this research, we present the application of Simplex Identification via Split Augmented La-
grangian (SISAL) [25] to find the vertices of a minimum volume simplex that encloses the
multispectral FLIM data subject to the non-negativity and full-additivity constraints. To state
this condition mathematically, let us assume that the T dimensional data vectors are represented
in a K dimensional subspace. If we denote the lower dimensional analogues for matrices X and
S by X and S , then the volume of the K−1 dimensional simplex embedded in K dimensions
is |det (S )|. Furthermore, if we define Q ≡ S −1, then the optimization problem that SISAL
attempts to address can be mathematically expressed as:

argmax
Q

−log |det (Q)|

subject to: QX < 0, 1T
KQX = 1T

N .
(3)

In order to account for outliers and noise in the data, the full-additivity hard constraint is re-
placed by a soft constraint which results in the following modified optimization problem:

argmax
Q

−log |det (Q)|+λ‖QX ‖h

subject to: 1T
KQX = 1T

N ,
(4)

where ‖Y‖h ≡∑i j max{−[Y ]}i j, 0} and λ > 0 is the regularization parameter. The optimization
problem stated in Eq. (4) is solved using a set of sequential quadratic programming problems as
discussed in [25]. An efficient MATLAB implementation of SISAL algorithm is made publicly
available by the authors of [25] on their website.

2.5. Feature extraction and classification

2.5.1. Feature extraction

A total of 58 arterial tissue samples were imaged over 2 mm × 2 mm field of view by the mul-
tispectral FLIM system described earlier, generating a database of 58 multispectral FLIM data
cubes of size 60 × 60 × 768 (x× y× t;λ1,λ2,λ3). The 3-D multispectral FLIM image cubes
were then processed to obtain two sets of 2-D feature maps, namely, the standard FLIM fea-
tures and the NMF FLIM features. The process of obtaining these features from multispectral
FLIM images is outlined in Fig. 3 and Fig. 4 respectively. The normalized intensity and life-
time maps constitute the first set of features (standard FLIM features). In order to obtain these
features, the first step was splitting the spectro-temporal FLIM data cube into different tempo-
ral FLIM cubes, one for each wavelength band. These temporal FLIM data cubes are denoted
by I(x,y, t;λ1), I(x,y, t;λ2) and I(x,y, t;λ3) in Fig. 3; where the process of extracting standard

(C) 2012 OSA 1 September 2012 / Vol. 3,  No. 9 / BIOMEDICAL OPTICS EXPRESS  2251
#172009 - $15.00 USD Received 6 Jul 2012; revised 19 Aug 2012; accepted 20 Aug 2012; published 24 Aug 2012



FLIM features is illustrated for the case of a 3 wavelength multispectral FLIM data cube. Next,
intensity map for each wavelength band was obtained by integrating in time, the measured fluo-
rescence decay signals in the temporal FLIM data cube for a given wavelength. The normalized
intensity maps were then obtained by dividing the intensity value at each pixel in an intensity
map by the sum of the intensity values at that pixel in the intensity maps for each wavelength
band. This process of normalization is illustrated by dashed arrows in Fig. 3. Finally, to obtain
lifetime maps for each wavelength band, the measured temporal decays in a FLIM data cube
for each wavelength band was deconvolved from the instrument response using the Laguerre
deconvolution method and the lifetime was estimated by finding the expected value of the de-
convolved decay [26]. The deconvolution process is illustrated by solid black arrows in Fig. 3.
The set of normalized intensity and lifetime maps, denoted by In(x,y;λ1), In(x,y;λ2), In(x,y;λ3)
and τ(x,y;λ1),τ(x,y;λ2),τ(x,y;λ3) respectively in Fig. 3 comprise the standard FLIM features.

The process of obtaining the second set of features (NMF FLIM features) is shown in Fig. 4.
To perform NMF on multispectral FLIM data, the first step was “unfolding” the multispectral
FLIM data cube, which involved reshaping the 3-D data cube (x× y× t;λ1,λ2,λ3) to form a
2-D data matrix (t;λ1,λ2,λ3×xy). The data matrix thus obtained was then normalized by using
the DPFT and subsequently factorized using the SISAL algorithm to yield a mixing matrix that
contains the end-member signatures and an abundance matrix, rows of which were reshaped to
yield relative abundance maps for the end-members as shown in Fig. 4. The relative abundance
maps for the end-members constitute the NMF FLIM features.

The performance of the two sets of features was evaluated in terms of their ability to charac-
terize multispectral FLIM images by training and testing a multinomial logistic regression clas-
sification model (described in the next section) on a subset of 21 out of 58 multispectral FLIM
datasets (homogeneous datasets). Furthermore, to obtain pixel level classification, each pixel
of a FLIM image was considered to be a data-point, yielding a labeled data set of 21×60×60
data-points. The classification performance for the logistic regression model obtained from each

FLIM  Image  Cube 

Normalized Intensity  

Maps 

Lifetime 

Maps 

Intensity 
Normalization 

Deconvolution 

Fig. 3: Schematic illustrating the process of obtaining the normalized intensity maps and lifetime
maps from a 3 channel multispectral FLIM data cube. The first step in this process is splitting
the spectro-temporal cube into three temporal cubes: one cube per wavelength channel, shown
in blue arrows. The normalized intensity and lifetime maps are then obtained from the temporal
cubes by a normalization procedure (dashed lines, also see legend) and time deconvolution (solid
lines) respectively. These maps constitute the standard FLIM features.
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End-member Relative
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………

Fig. 4: Schematic showing the process of performing NMF on a multispectral FLIM data cube.
The 3-D spectro-temporal cube is unfolded and normalized to obtain a 2-D data matrix X. The
data matrix is then factorized to yield the mixing matrix S and the relative abundance matrix
A, columns of which are reshaped to obtain end-member relative abundance maps. These abun-
dance maps constitute the NMF FLIM features.

set of features was compared by estimating the 10 fold cross-validation misclassification error.

2.5.2. Multinomial logistic regression

Supervised classification is the problem of deriving a set of rules from a set of pre-classified
data and using that rule to classify a new data-point. The set of pre-classified data-points along
with the class for each data-point is called the training set T = {(z1,y1),(z2,y2), . . . ,(zN ,yN)},
where zn is referred to as the feature vector for the n th. data point and yn = [yn,1,yn,2, . . . ,yn,C]
is a 1×C vector such that yn,c = 1 if the n th. data point belongs to c th. class and 0 otherwise.
Multinomial logistic regression is one such supervised classification method that models the
posterior probability of a data point belonging to one of the C possible classes as a linear
function of z [27, 28]. By fixing one of the classes as the baseline class, the conditional log-
odds of other classes with respect to the baseline class have the form:

log
Pr(Class = c|Z = z)
Pr(Class = C|Z = z)

= βc,0 +βββ
T
c z, c = 1,2, . . . ,C−1, (5)

where the C th. class is assumed to be the baseline class. The special form of logistic regres-
sion model ensures that the posterior probabilities sum to 1, i.e. ∑c Pr(Class = c|Z = z) = 1.
The problem of fitting a logistic regression model amounts to solving the maximum likelihood
problem defined as:

`(βββ ) =
N

∑
n=1

C−1

∑
c=1

yn,c log
exp(βc,0 +βββT

c zn)
1+∑c exp(βc,0 +βββT

c zn)
, (6)

where the maximum likelihood estimate for the model parameter βββ ≡
(β1,0,βββ 1,β2,0,βββ 2, . . . ,βC−1,0,βββC−1) is obtained through an iterative optimization proce-
dure like Newton-Raphson method [28,29]. The model thus obtained is then used to predict the
posterior probability of a given data point belonging to one of the C classes and consequently
assigning it to the class with the maximum probability.
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simulation study discussed in the text. The profiles are plotted on a semilog (y) axis to highlight
the differences between the two profiles that were indistinguishable on a linear scale

3. Results

3.1. Validation on simulated data

The proposed method was first validated on simulated multispectral FLIM data, to which effect
10000 data vectors (N = 10000) representing artificial mixtures of collagen, lipids and elastin
(K = 3) were generated. Collagen, lipids and elastin are the dominant endogenous fluorophores
in artery tissue and are thus relevant to the present study. The end-member profiles for collagen,
lipids and elastin (T = 510) were simulated based on the expected intensity and lifetime values
for these fluorophores obtained from a time resolved fluorescence study [30]. These profiles
constituted the S matrix and are referred to as the “true end-member profiles”. To form the
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Fig. 6: Scatter plot showing good agreement between the estimated and true relative abundances.
Black dashed line represents the line of perfect fit (y = x).
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Fig. 7: (a) Normalized intensity and (b) lifetimes in the three channels for the true and estimated
end-member profiles. Results indicate good agreement between the spectro-temporal character-
istics of the two profiles

relative abundance matrix A, values for relative abundances were obtained by sampling from
a uniform distribution and subsequent normalization to enforce full-additivity. To ensure that
the data does not contain any pure pixel, data vectors having relative abundance greater than
0.7 for any end-member were discarded. Finally, an additive white Gaussian noise was added
to obtain a SNR of 15 dB. To quantify the performance of the algorithm on simulated data,
5 realizations of the noisy data were generated and the weighted mean absolute percent error
(WMAPE), defined as:

WMAPE =

N

∑
n=1

∣∣∣∣xn− x̃n

xn

∣∣∣∣ · xn

N

∑
n=1

xn

×100% (7)

was calculated for S and A for each realization. The WMAPE in estimating A and S was
found to be 15.81±0.42 and 9.67±0.81 (mean ± standard error) respectively, indicating a good
agreement between the actual and estimated values. Figure 5 shows the true end-member pro-
files plotted along with the estimated profiles for one of the realizations of the noisy data. The
profiles are plotted on a semilog (y axis) graph to highlight the differences between the two
profiles that were not evident on a linear scale. The plot indicates good agreement between the
two profiles. Likewise, a scatter plot shown in Fig. 6 also indicates good match between the
estimated and true relative abundances. To further compare the estimated profiles with the true
profiles, the normalized intensity and lifetimes in the three channels estimated from the profiles
are plotted in Fig. 7(a) and (b) respectively. These plots suggest a good match between the
spectro-temporal characteristics of the true and estimated end-members. The large mismatch
between collagen’s lifetime in the third channel is possibly a result of the sensitivity of lifetime
estimation to SNR which is a consequence of low signal level in collagen’s spectro-temporal
profile in the third channel.

3.2. Validation on experimental data: feature extraction

The method was also validated on experimental multispectral FLIM data obtained from fresh
human postmortem atherosclerotic coronary plaques. Standard and NMF FLIM features were
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Fig. 8: End-member signatures obtained from the artery multispectral FLIM data. Based on the
spectro-temporal characteristics, the end-members were identified as collagen (red, solid line),
lipids (green, dotted line) and elastin (black, dashed line)

extracted from the multispectral FLIM database through the procedure outlined in the meth-
ods section. The end-member profiles obtained via NMF are shown in Fig. 8. The profile in
red (solid line) has maximum emission intensity in the first channel followed by a relatively
lower intensity in the second channel and least intensity in the last channel. This intensity trend
is characteristic of collagen. Likewise, the green (dotted line) and black (dashed line) profiles
have relatively same intensity in the first two channels but a lower intensity in the third channel,
which is characteristic of both lipids and elastin as shown in the steady state spectra in Fig. 10(a)
(see also [30]). To identify the end-members, we deconvolved the decay profile corresponding
to the dominant emission band for each end-member and estimated the average lifetime from
the deconvolved decays. This is shown in Fig. 10(b), where the log-transformed deconvolved
profiles, loge(I(t)) are plotted against time, t. In the case of a simple mono-exponential de-
cay, the log-transformed plots would be straight lines. Deviation from a straight line indicates
complex nature of decay kinetics. To estimate average lifetime from such a plot, a straight line
fit based on least squares estimation was obtained and the average lifetime was estimated by
calculating -1/slope of the best fit line. Based on the intensity trends and lifetime values, the
three end-member profiles were identified as collagen (red, τavg= 7.1 ns), lipids (green, τavg=
10.8 ns) and elastin (black, τavg= 2.6 ns).

The two sets of features corresponding to a representative HC, HL and LCL plaque from the
homogeneous datasets are shown in Fig. 9. In each sub-figure, the top row (A)-(C) shows the
normalized fluorescence intensity maps for the three spectral channels. Likewise, the second
row (D)-(F) shows the lifetime maps for the three channels. The relative abundance maps of the
three end-members, namely, collagen, lipids and elastin, constitute the NMF FLIM features that
are shown in the third row (G)-(I). Representative histopathological sections for each plaque
type are also shown in the last row (J) of each sub-figure.

For the HC plaque (Fig. 9(a)) the fluorescence intensity was stronger in channel 1 than in
channels 2 and 3, and the average lifetime varied between ∼5-6 ns, which resembles the flu-
orescence emission characteristics of collagen. In the histopathological section, the light blue
stain color indicates the presence of collagen. The relative abundance maps in this case, showed
higher abundance of collagen (0.61±0.04) as compared to that of lipids (0.25±0.04) and elastin
(0.17±0.02). For the HL plaque (Fig. 9(b)), the fluorescence intensity, as compared to the HC
plaque, was lower in channel 1, similar in channel 2 and higher in channel 3. The averaged life-
time gradually increased from∼5 ns in channel 1 to∼8 ns in channel 3. In the histopathological
section empty areas indicate lipids. The relative abundance maps in this case showed the largest
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Fig. 9: Standard FLIM features: normalized intensity and lifetime maps (A-C & D-F resp.) and
NMF FLIM features: relative abundance maps (G-I) for three homogeneous samples, one from
each (a) High Collagen, (b) High Lipids and (c) Low Collagen/Lipids class. Also shown are the
representative histology sections for each class (J).

abundance of lipids (0.57±0.09) along with some collagen (0.33±0.09) but significantly lower
amount of elastin (0.10±0.05). Lastly, for the LCL plaque (Fig. 9(c)), the fluorescence inten-
sity had a similar trend in channels 1 and 2 as HL plaque (due to the similar emission intensity
profiles for elastin and lipids, see Fig. 10(a)). However, unlike HL, the lifetime maps in the case
of LCL were similar in the three channels (between ∼3-4 ns). The relative abundance maps for
LCL type of plaque suggested presence of collagen (0.41±0.02) and elastin (0.40±0.02) but a
significantly lower amount of lipids (0.21±0.03).
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Fig. 10: (a) Steady state spectra for collagen, lipids (LDL) and elastin obtained from time-
resolved measurements (b) log-transformed fluorescence decays for collagen, lipids and elastin
fitted to straight lines, where the negative inverse slope is equal to a fluorophore’s average life-
time. Deviation from a straight line indicates the non-mono-exponential nature of the decay.
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3.3. Classification performance on homogeneous dataset

To compare the performance of the two sets of features (standard FLIM vs. NMF features)
in terms of their ability to discriminate between the three plaque types (HC, HL, LCL), two
multinomial logistic regression models, one from each feature set, were trained and tested on
the homogeneous dataset. In the case of standard FLIM features, the decision boundaries are
hypersurfaces in a 5 dimensional feature space and cannot be visualized. However, in the case
of NMF features, the decision boundaries are lines in a 2-D feature space as shown in Fig. 11.
As can be seen in Fig. 11, the classifier partitions the feature space into 3 regions corresponding
to the three classes. In order to quantify the classification performance of the classifier trained
and tested on the two sets of features, we computed the confusion matrices via 10 fold stratified
cross validation shown in Fig. 12. The overall classification accuracy for the standard FLIM
features was estimated to be 98.3% and 96.1% for the NMF features.

3.4. Validation on heterogeneous plaques

We also compared the performance of the two classifiers trained on the standard FLIM
and NMF features extracted from the homogeneous datasets by testing them on datasets of
plaques showing heterogeneous histopathology. Three examples of such validation are shown

Predicted Class

HC HL LCL

Tr
ue

C
la

ss HC 13622 434 344

HL 507 13887 6

LCL 57 0 50343

Predicted Class

HC HL LCL

Tr
ue

C
la

ss HC 12963 510 927

HL 636 13600 164

LCL 763 54 49583

Fig. 12: Confusion matrix for the standard FLIM features (left) and the NMF FLIM features
(right). The diagonal entries indicate the number of pixels that were correctly classified, while
the off-diagonal entries indicate the misclassified pixels.
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Fig. 13: Standard FLIM features: normalized intensity and lifetime maps (A-C & D-F resp.)
and NMF FLIM features: relative abundance maps (G-I) for three heterogeneous samples with
regions of: (a) HC and LCL (b) HC, HL and LCL, and (c) HL and LCL. Also shown are the
histology sections from the center of the sample (K) with matching regions in the classification
maps obtained from the NMF features (J) and the standard FLIM features (L) shown in orange
arrows. Pixels in the classification maps are color coded as red for HC, green for HL and black
for LCL
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in Fig. 13(a)-(c). The first two rows: (A)-(C) & (D)-(F) in each sub-figure show the normalized
intensity and lifetime maps respectively. The abundance maps for collagen, lipids and elastin
are shown in the third row (G)-(I). The classification maps for classifier trained on standard
FLIM and NMF features are shown in panel (J) and (L) respectively. For both classification
maps, the probability of each FLIM image pixel belonging to HC or HL class is color coded
in red and green, respectively. We also display a matching histology section for each plaque in
panel (K) of each sub-figure.

Fig. 13(a) shows the feature and classification maps for a plaque with regions of LCL (top)
and HC (bottom). The matching histology section for this sample confirmed that the LCL region
was IT and the HC region was fibrotic PIT. A plaque showing regions of HC, HL and LCL is
shown in Fig. 13 (b); a histology section corresponding to the middle of the plaque confirmed
that the HC region was fibrotic PIT, the HL region showed foam cell infiltration, and the LCL
region was IT. Finally, a plaque showing regions of HL (top-left) and LCL (bottom-right) is
shown in Fig. 13 (c); a histology section corresponding to the middle of the plaque confirmed
that the HL region was PIT highly infiltrated by foam cells, and the LCL region was IT.

4. Discussion

In this study, we presented an application of NMF to identify the type of constituent fluo-
rophores and their relative contributions to the bulk multispectral FLIM signal measured from
a sample. We also demonstrated the potential application of the proposed method for multi-
spectral FLIM based tissue characterization using the coronary atherosclerotic plaques as a
test model. In the following, we discuss the main advantages and limitations of the proposed
method over the standard methods of interpreting multispectral FLIM images.

The conventional method of interpreting multispectral FLIM images is based on comparing
the average spectral intensity and lifetime values of a sample with a set of possible known flu-
orophores. This method is in most cases very subjective, especially when there are more than
one fluorescing species contributing to the bulk fluorescence signal. In contrast, the NMF fea-
tures provide a more direct and intuitive way of interpreting FLIM images, because fluorophore
abundance maps can be directly related to tissue biochemistry. The application of NMF to the
multispectral FLIM data from human coronary plaques clearly demonstrated this aspect of the
proposed method, where it was shown how the NMF approach was not just able to identify
the main endogenous tissue fluorophores (i.e. elastin, collagen and lipids), but was also able to
quantify their relative abundance maps, allowing for direct biochemical characterization of the
atherosclerotic plaques.

To provide quantitative interpretation of FLIM images based on the intensity and lifetime
values, the most commonly used method assumes that all the constituent fluorophores in a sam-
ple have mono-exponential decay kinetics. The sample fluorescence decay is then expressed as
a multi-exponential model, in which each exponential component is associated to each con-
stituent fluorophore. The sample fluorescence decay at each pixel is thus fitted to the multi-
exponential model, and the estimated normalized pre-exponential weights are interpreted as
the relative contribution of each constituent fluorophore to the bulk fluorescence signal [6, 31].
While such an interpretation of FLIM images can be more informative than the analysis based
on single average lifetime value, it is restricted in a way, because many fluorophores are known
to exhibit non-monoexponential decays thereby violating the assumption of a mono-exponential
decay associated to each constituent fluorophore. This is even more pertinent when analyz-
ing endogenous multispectral FLIM data, because many endogenous fluorophores show non-
monoexponential decay dynamics [7]. This however, is not a problem with the NMF approach,
because it does not make any assumption about the functional form of the end-member profiles
(i.e. decay dynamics of the constituent fluorophores). This is evident from the log-transformed
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fluorescence decay profiles for collagen, lipids and elastin retrieved via NMF and shown in
Fig. 10 (b), where the deviation of these plots from straight lines (dashed lines) indicate the
complex nature of the decay dynamics.

Kremers et al. recently proposed a method capable of handling fluorophores showing non-
monoexponential decays; however, its application was limited to two species [6], like many
other earlier studies [5,9]. This is mainly because the SNR requirement for fitting a multiexpo-
nential model with more than two lifetimes is very demanding. Thus, these methods can handle
experimental FLIM data where only two molecules can be simultaneously monitored. More-
over, in most of these studies only the fluorescence lifetime but not the spectral information
is used in the unmixing process [6, 10]; e.g. in the method proposed by Kremers et al., only
one emission band was considered. Schlachter et al. recently proposed a method capable of
handling multispectral FLIM data; however, its application was limited to mono-exponential
fluorescence decays and to two species [10]. The NMF approach, on the other hand, can handle
multispectral FLIM data originating from more than two constituent fluorophores that is meas-
ured across an arbitrary number of emission spectral bands. This can facilitate the identification
of the underlying constituent fluorophores, since the end-member profiles obtained via NMF
contain both spectral and temporal information which makes it possible to identify them with
adequate confidence. This was clearly demonstrated in our analysis of the multispectral FLIM
data from the human atherosclerotic plaques, where the three fluorophores were correctly iden-
tified as elastin, collagen and lipids, as expected based on the well characterized histopathology
of atherosclerosis [30]. In this case, the identification of the constituent fluorophores was per-
formed based on both the spectral and lifetime values of the estimated end-member profiles
at three different emission bands. This is in contrast to the standard FLIM analysis method,
where only one lifetime value is available for making such an identification. In such a case, un-
less guided by strong evidence derived from tissue biochemistry, the identification of the latent
fluorophores can at best be only hypothesized.

Another advantage of the NMF approach over the standard FLIM data analysis methods is
that the NMF features (abundance maps) can be obtained directly from the spectro-temporal
FLIM intensity data in a computationally efficient manner without the need for time deconvo-
lution. The time complexity of SISAL algorithm is estimated to be of the order O(NK) in [25],
wherein the authors have also compared the time performance of SISAL against other NMF
algorithms. Furthermore, once the end-member profiles have been derived from a pre-recorded
dataset, the abundance maps for a new sample can be obtained quickly by performing a simple
inversion. This is unlike in the case of standard FLIM features, where unless extremely short
excitation light pulses are used, time-deconvolution of the instrument response from the fluo-
rescence decay data is required to obtain lifetime maps [7]. The deconvolution coupled with
multi-exponential model fitting involve iterative optimization, which is both computationally
expensive and time consuming. This advantage of the proposed method, however, necessitates
that the data is recorded by the same system, i.e. the instrument response for all the data is the
same.

The above stated advantages of the NMF method however, come with the need of having
enough diversity in data such that the simplex formed by the data vectors is filled adequately
to enable the inference of the underlying simplex structure. It is only in such a case, that NMF
algorithms are able to estimate the end-member profiles and the corresponding relative abun-
dances with confidence.

An important aspect of the proposed technique is the estimation of the number of compo-
nents (end-members) present in the linear mixing model. Several methods for determining the
number of end-member are reported in the literature, ranging from relatively simple techniques
like principal component and independent component analysis to more complicated techniques
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like virtual dimensionality [32], maximum noise fraction [33] and noise adjusted principal com-
ponents [34] and many more. While these techniques have been applied with varying degrees
of success in different applications, there is no single approach generally accepted to work in
all cases. In our case, the choice of three end-members (K = 3) was primarily based on the
biochemical understanding of the underlying tissue. However, in cases where there is no prior
knowledge about the possible number of end-members, any or more than one of the above
techniques can be used in conjugation with the interpretation of the end-member signatures
obtained by NMF to decide on an appropriate number of end-members.

Finally, we also validated the performance of the new set of FLIM features in terms of their
ability to discriminate between three types of atherosclerotic plaques. The classification maps
and the confusion matrices presented in the results section, suggested that the NMF features are
comparable to the standard FLIM features in terms of their discriminatory power to differentiate
between the three plaque types. With the added advantage of ease of interpretation, we believe
that the NMF features can facilitate the translation of multispectral FLIM from predominantly
a lab imaging modality to clinical setting.

5. Conclusions

To summarize, we presented the application of NMF to multispectral FLIM data to derive a
set of NMF features that provides an intuitive and objective way of characterizing latent tissue
fluorophores and their abundances. The method presented in this study made no assumption
about the functional form of decay kinetics of the fluorophores under study and was applied
directly from the recorded multispectral FLIM intensity data thereby obviating the need for
deconvolution. As discussed earlier, several studies on the application of FLIM to tissue di-
agnosis use the difference in lifetime values to distinguish normal tissue from a pathological
tissue; however, the scope of such studies has been severely restricted to those two ends of the
disease-progression spectrum. We believe that this is mainly due to the absence of techniques
that can objectively characterize the latent tissue fluorophores and quantify the changes in their
abundance during the pathogenesis of a disease. The method proposed in this study is an at-
tempt in this direction, which would expand the scope of FLIM in clinical graded diagnosis by
providing an easy and objective way of interpreting multispectral FLIM data. More generally,
the method detailed in this study can also be helpful in advancing the field of molecular imaging
and may find broad applicability in basic, pre-clinical and clinical research.
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