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Abstract

Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually
the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however,
make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic
issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in
other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric
descriptions and linear optimization methods have become rather popular in systems biology. However, despite being
useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the
regulatory signals involved. Targeting more complex biological systems requires the application of global optimization
methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic
networks that are described by a special class of models based on the power-law formalism: the generalized mass action
(GMA) representation. Our goal is to develop global optimization methods capable of efficiently dealing with several
biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the
optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational
burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To
facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory,
we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness
of our approach by means of a case study that optimizes the ethanol production in the fermentation of Saccharomyces
cerevisiae.
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Introduction

Genetic manipulation of microorganisms for obtaining im-

proved strains involves expensive and time consuming experiments

that have typically relied on trial-and-error mutagenesis and

selection of promising variants. Nowadays, mathematical models

of cell metabolism and gene regulation circuits have become

reliable enough for metabolic engineering applications [1–3].

These models can be coupled with optimization algorithms in

order to identify the most promising genetic manipulations leading

to an enhanced phenotype in a given microorganism. This

approach requires defining a suitable objective function, for

instance the maximum yield or flux of interest. Optimization is

then performed by considering the model equations describing the

microorganisms’ metabolism and a set of constraints relevant for

cell viability [4–8]. This method provides, a sound theoretical basis

for experimentalists on the best strategies for manipulating the

biological system, either by changing enzyme levels through

genetic manipulations or by altering environmental conditions [9].

The selection of an appropriate mathematical model is a crucial

step towards success in this field. Two main strategies can be

followed at this stage. On the one hand, one can choose

mathematical simplicity and a genome-wide scope. In this context,

flux balance analysis (FBA) provides an appropriate solution (for a

full list of abbreviations used in this paper, please refer to

Nomenclature S1). This method makes use of stoichiometric

models to represent the metabolic networks, which gives rise to

mixed-integer linear formulations (MILP) that are easy to solve

with standard techniques [10]. This MILP approach, however,

fails at capturing the regulatory loops existing in metabolic

networks [11]. On the other hand, one can choose a kinetic

detailed description, which necessarily will be limited to relatively

few pathways at a time. Detailed kinetic models can deal with all

kind of regulatory signals and reaction mechanisms, but involve

PLOS ONE | www.plosone.org 1 September 2012 | Volume 7 | Issue 9 | e43487



nonlinear equations (e.g., Michaelis-Menten, Hill or power-law,

etc.) required to appropriately represent the reaction rates as a

function of the involved metabolite concentrations. These

nonlinearities give rise to nonconvexities which in turn lead to

the potential existence of multiple local optima (i.e., multi-

modality). This may prevent standard algorithms from identifying

the global optimum, as they can get trapped in local wells during

the search. Global optimization strategies overcome this limitation,

guaranteeing convergence to the global optimum within a desired

tolerance. It should be emphasized that global optimization is of

paramount importance in these theoretical biological studies since

misidentifying a local optimum as the global one may lead to

spurious conclusions [12,13].

For S-Systems models, a particular class of power-law models,

Voit [4] proposed a reformulation strategy based on a logarithmic

transformation that brings the model to an LP/MILP form,

making it possible to apply standard optimization methods that

ensure global optimality. This reformulation cannot be applied to

other non-linear models, such as GMA models or detailed kinetic

models. These last models must be tackled though using global

optimization methods. One such method for GMA models based

on an outer approximation algorithm was proposed by Polisetty et

al. [8]. Guillén-Gosálbez and Sorribas [12] presented further

developments using an outer approximation-based algorithm [14]

and related advanced strategies [12,15] to globally optimize GMA

models. These methods have been recently extended further to

deal with detailed kinetic models through a mathematical

reformulation framework termed recasting that converts them

into GMA models [13].

Biotechnology studies typically seek optimizing a single flux in

the metabolic network as unique criterion. In practice, however,

there are other criteria of interest for experimentalists, such as

minimizing the number of enzymatic changes, metabolic concen-

tration of intermediates [16] or transient times [17]. Despite the

importance of such additional criteria, the majority of works in

metabolic engineering are based on single-objective formulations.

Although some of these functional criteria can be treated as

constraints ensuring cell viability, they should be treated as

additional objectives [18]. This would eventually allow for the

identification of solutions in which cell viability is further improved

at the expense of marginal reductions in other objectives such as

growth.

The importance of multiobjective optimization in metabolic

studies has been pointed out by several authors [19–21].

Technically, the solution of a multiobjective optimization

(MOO) problem is given by a set of points known as the Pareto

set. All these solutions feature the property that it is not possible to

find another one that improves any of them in one objective

without worsening at least one of the others (see Figure 1). Because

of the presence of continuous variables, optimization problems

arising in metabolic engineering may have an infinite number of

Pareto-optimal solutions. Clearly, testing all these alternatives in

the laboratory would be prohibitive in terms of time and resources.

Multi-criteria decision-making (MCDM) can be of great help at

this stage to rank and/or screen alternatives, ruling out the less

promising and keeping the best. Unfortunately, the complexity of

both, MOO and MCDM, increases with the number of objectives.

In practice, the visualization and analysis of the Pareto set

becomes highly difficult in problems with more than three

objectives. The need for advanced methods to support these tasks

in biochemical systems has already been acknowledged [21,22].

Several approaches have been proposed for identifying a subset

of Pareto solutions of special interest for decision-makers. For

instance, Branke et al. [23] and later Deb [24] suggested either to

specify the extreme pair-wise trade-off information about objec-

tives or to attach relative weights to them, in order to concentrate

the search in a particular region of the Pareto set. Branke and Deb

[25] proposed a projection-based method to obtain a biased

distribution of Pareto solutions. Farina and Amato [26] introduced

a more restrictive dominance concept that produces less number

of Pareto solutions. Branke et al. [27] introduced a method for

obtaining those Pareto solutions with a significantly different slope

(i.e., ‘‘knee’’ solutions). Deb and Gupta [28] focused on identifying

robust (i.e. less sensitive to parameter changes) solutions. The

concept of Pareto filter was also employed by several authors for

eliminating non-Pareto or locally optimal Pareto solutions [29–

33].

MOO and MCDM have been extensively studied in the context

of a wide variety of engineering problems (for instance, refer to

[34]). In contrast, their application to metabolic engineering has

been quite scarce [35]. In this work, we address the MOO of

metabolic networks. Our study assumes a GMA model of the

target metabolic network where all model parameters are known.

These include the stoichiometric coefficients of the reactions

involved in the production/consumption of each internal metab-

olite; and the parameters of the power-law formalism that model

the kinetics of each reaction at the basal state. Then, we will seek

the optimization of a given flux assuming two important

complementary objectives: (i) We assume that any increment in

gene expression is a limiting factor for the cell as it involves an

important metabolic burden; (ii) We also consider that an excessive

increment in intermediate concentrations compromises cell

viability. These two criteria will be used as complementary

objectives that should be minimized when possible.

Under these conditions, we aim to develop a systematic

framework to (i) calculate the Pareto front of the kinetic metabolic

model in this multi-objective problem and (ii) identify from it a

small enough set of the most promising changes in enzyme activity

to be tested in the laboratory. In other words, the goal of this

analysis is to determine a set containing the preferred enzymatic

Figure 1. Generic Pareto front. Full blue points indicate members of
the pareto set. Point (a) is the optimum for objective function OF1 for a
given value of OF2 (red points). Point (b) minimizes OF2 for another
value of OF1 (compared to green points). For a member of the Pareto
set, say (c), any attempt to improve a goal involves worsening the other,
point (d) for comparison. Empty blue points are other possible solutions
that are worse than those in the Pareto set.
doi:10.1371/journal.pone.0043487.g001
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profiles that optimize the synthesis rate of a metabolite at

minimum cost (minimum number of changes in these activities,

i.e. minimum change in gene expression) and minimum increase

in the concentration of intermediate metabolites.

Note that there are two main difficulties associated with the

identification of such set. First, we need to solve a high

dimensional non-convex multiobjective optimization problem in

which several criteria must be simultaneously minimized. This

problem is challenging not only because of the high number of

objectives, but also due to the existence of non-convexities.

Second, even if a sufficiently large number of Pareto solutions can

be identified, there is still the issue of analyzing and interpreting

them, in order to keep the most promising for further evaluation in

the laboratory. Deb and Saxena [36] reviewed the main difficulties

associated with the calculation and analysis of the Pareto solutions

of MOO problems with large number of objectives, like those

arising in metabolic engineering. As will be shown later in the

paper, our systematic approach allows overcoming some of these

difficulties.

In particular, our strategy relies on the combined use of

multiobjective global optimization and Pareto filters, which are

both applied to metabolic networks described using the GMA

formalism. The method presented builds upon our global

optimization framework for single-objective models of metabolic

networks [14,37], which is adequately modified herein to handle

multiple objectives. This method is based on an outer approxi-

mation algorithm that decomposes the target problem into a

master MILP and a slave NLP, which respectively provide lower

bounds (LB) and upper bounds (UB) on the global optimum.

These bounds tend to approach as iterations proceed until a given

tolerance is satisfied.

Note that our methodology shares some common features with

that presented by [35] for S-Systems models. However, while the

former strategy ends with the generation of the Pareto optimal

front, ours goes one step beyond by suggesting a subset of

preferred alternatives that are identified using Pareto filters.

Hence, this work presents advances in two main fronts: (i) the

generation of Pareto optimal solutions for multiobjective GMA

models, and (ii) the identification of the most promising

alternatives using systematic filters.

The capabilities of the proposed methodology are illustrated in

the optimization of the fermentation of Saccharomyces cerevisiae
considering 14 objectives. This process has been already studied in

the past by several authors. For instance, Sendı́n et al. [35] used an

ad-hoc model of this metabolic pathway to address by means of

different MOO methods a 6-objective MOO problem considering

the ethanol synthesis rate and the concentration of 5 dependent

metabolites. Most of the approaches compared therein show some

limitations, as they either rely on local solvers (this is the case of

weighted sum, attainment goal and NBI) or employ stochastic

optimization methods (MOEA) that are unable to guarantee

convergence to the global optimum in a finite number of

iterations, which may result in a spurious Pareto front. The other

method studied in that work (MIOM) requires the transformation

of the original model into an S-Systems representation, which is

something unnecessary when relying directly on GMA models.

Furthermore, we address here a more complex problem that

accounts for 14 objectives (the fold-change in 8 different enzyme

activities, expressed as the absolute value of the natural logarithm

of the enzyme activity fold-change; the concentration of 5

dependent metabolites; and the ethanol synthesis rate). This

represents a significant advance compared to traditional biotech-

nological approaches that maximize the ethanol yield and impose

biological constraints for maintaining metabolites and enzymes

levels around their basal state so as to preserve cell homeostasis

[9].

Results

In order to illustrate the capabilities of our approach we solved a

case study that optimizes the ethanol production in the fermen-

tation of Saccharomyces cerevisiae. For this, steps 2 and 4 of the

algorithm proposed (refer to the Methods Section for further

details) were coded in GAMS 23.2.0, while the normalization step

3 was implemented off-line using Microsoft Excel. Numerical

experiments were performed on an Intel 1.2 GHz. The GMA

model (Step 1) was retrieved from [8]. The reader is referred to

this paper for further technical details. Bounds on metabolite

concentrations and changes in enzyme activities were the same as

those reported in [14].

Note that we assume that the GMA model is given. If this was

not the case, a previous step would be necessary to construct such

a model from dynamic profiles using parameter estimation

methods. We should note also that the modeling software GAMS

is a versatile tool that allows implementation of all the framework’s

steps, offering standard coding capabilities and interfacing with

powerful optimization solvers.

Obtention of the Pareto set
The MOO problem was solved using the epsilon constraint

method, which was enhanced through a heuristic procedure based

on generating solutions for all possible bi-criteria subproblems. We

defined 10 epsilon parameters for each objective, which gave rise

to 910 single iterations (note that the same number of objectives

and epsilon intervals would lead to more than 1:1014 instances

using the traditional epsilon constraint approach). The outer

approximation-based algorithm [14,37] was then employed to

solve these instances to global optimality. CPLEX 11.2.1 was used

as MILP solver for the lower bounding master problem, and

CONOPT 3.14 s for the slave NLPs. All the sub-problems of the

algorithm were solved to global optimality within a tolerance of

0.2%, which is the same tolerance that we used in [14] for the

analogous single objective problem. A set of Pareto optimal

solutions was finally obtained through the above commented

procedure. Figure 2 shows the 2D Pareto set for the maximization

of Vethanol vs minimization of hexose transporters (i.e. K1) changes.

As observed, as we increase the value of K1 (recall that we are

representing Dln(K1)D), the ethanol synthesis rate increases. In the

same Figure, we have also projected the points resulting from the

other bi-criteria optimizations, that is, in Figure 2 we have

included also the points obtained from the optimization of Vethanol-

K2, Vethanol-K3, …, Vethanol-K8. As observed, while there is a clear

tendency in the points coming from one bi-criteria optimization,

the same is not true when we consider the remaining solutions

generated by the other bi-criteria results. Hence, while we can

‘‘easily’’ analyze the trade-off between two single objectives, it is

difficult to perform the same analysis when several criteria come

into play.

The Pareto set was next normalized (see the Section ‘‘Normal-

ization of the Pareto optimal solutions’’ in Methods) assuming a

normal distribution for all objectives. We further assumed that the

mean and standard deviation are the same as those of the samples

(i.e., the solutions generated with the epsilon constraint method).

Note that this brings the data to the [0,1] range. Figure 3 shows

the box plot associated with the normalized Pareto solutions. As

seen, objective K2 shows a very small variability (the 25th and 75th

percentiles correspond to the same value, around 0.34, as the

median). This implies in turn that it is easy to obtain a good (i.e.

Multiobjective Global Optimization of GMA Models
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small) value for this objective. The same happens in the case of

objectives K5, K7, X1, X3 and X4, for which the median and 25th

percentile are also rather close, indicating that the solutions are

concentrated around their minimum values. On the contrary,

most solutions are allocated at high (i.e., poor) values of objectives

K4, K8 and Vethanol , while very few are close to their minimum

values.

Selection of preferred subset of solutions
The Smart filter was applied next in order to remove

indistinguishable solutions from the pool. The application of this

algorithm has also the effect of providing a more uniform spread of

points. Note that choosing larger values of tolerance Dt will allow

discarding more solutions from the pool, but this may come at the

expense of loosing valuable solutions (i.e., promising enzymatic

profiles). To illustrate this, we performed the calculations for two

different values of Dt. In particular, selecting a Dt~0:01 allowed

to reduce the size of the Pareto set from 910 to 611 solutions,

whereas only 321 solutions were retained for a Dt~5:00. We

found that using a Dt~5:01 resulted in an excessive loss of

information in this case study, and hence, kept the results obtained

with a Dt~0:01.

We next resort to the second type of Pareto filter: the order of

efficiency filter. We started by imposing a Q~13 (i.e.,

Q~NO{1), and searched for nondominate solutions in any of

the Q-elements subsets of objectives. This narrowed down the

number of Pareto solutions from 611 to 214 alternatives. The

procedure was repeated for decreasing values of Q until an empty

set of solutions was identified, which occurred for a value of

Q = 10. In particular, 14 solutions were found to be efficient of

order 12, while only 1 solution was efficient of order 11.

Figure 4 shows the minimum and maximum objective values

among those solutions retained for a given Q. This plot provides

valuable insight on how much quality is lost as we decrease

efficiency order. The closer the lower bound curve of a set of

solutions is to the lower bound curve of the original set, the better

is the quality of the set, as this implies that such set contains

solutions with objective function values close to the best possible

performance that can be attained in each criterion.

Particularly, the lower and upper limits of the 214 solutions

efficient of order 13 are quite close to the bounds corresponding to

the 611 solutions of the Pareto set obtained using the Smart filter,

showing a small decrease (about 2%) in the ethanol synthesis rate

with respect to the maximum possible value. There are 14

solutions efficient of order 12 with a curve rather close in most

objectives to that of the 611 original solutions. In this set, however,

the ethanol synthesis rate drops by an additional 69%, which is

consistent with the trend observed in Figure 3. We should clarify

that it is possible to artificially add in the final pool of solutions any

other alternative for further consideration, with special interest on

those with good performance in one criterion and poor in the

others that are not efficient of order 12.

Remarkably, the only solution efficient of order 11 (which is not

included in Figure 4) is not the closest to the utopia point, that is, it

Figure 2. Pareto curve (blue circles) of the bi-criteria problem considering Vethanol and K1 (Hexose transporters). The other points
represent projections of the same variables obtained during other bi-criteria optimization problems: Vethanol -K2 (red squares), Vethanol -K3 (magenta
triangles), Vethanol -K4 (black stars), Vethanol -K5 (blue diamonds), Vethanol -K6 (red plus signs), Vethanol -K7 (magenta cross signs) and Vethanol -K8 (black
asterisks). Fold-Change factors correspond to: K1 : Hexose transporters, K2 : Glucokinase/Hexokinase, K3: Phosphofructokinase, K4 : Trehalose 6-
phosphate syntase complex (+Glycogen production), K5 : Glyceraldehyde-3-phosphate dehydrogenase, K6: GOL (Glycerol production), K7 : Pyruvate
kynase, K8 : ATPase.
doi:10.1371/journal.pone.0043487.g002
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Figure 3. Box plot for the normalized Pareto set. In the bottom axis the fourteen objectives are represented. Objectives 1–8 correspond to K1–
K8 (see legend in Figure 2), objective 9 is indeed Vethanol whereas the remaining 5 objectives represent X1–X5 . X1: Internal glucose, X2 : Glucose-6-
phosphate, X3 : Fructose-1,6-diphosphate, X4 : Phosphoenolpyruvate, X5: Adenosine triphosphate.
doi:10.1371/journal.pone.0043487.g003

Figure 4. Lower and upper bounds for objectives among the values attained by the set of Pareto solutions of order Q. In particular,
611 solutions are efficient of order 14 (i.e., these are indeed the solutions obtained after applying the Smart filter); 214 solutions are efficient of order
13; and 14 solutions are efficient of order 12. Objectives are ordered as in Figure 3. See legends in Figure 2 and 3.
doi:10.1371/journal.pone.0043487.g004

Multiobjective Global Optimization of GMA Models

PLOS ONE | www.plosone.org 5 September 2012 | Volume 7 | Issue 9 | e43487



is not the one with the minimum Euclidean distance to the utopia

point, which is a common criterion for selecting a single final

candidate from a Pareto set.

Table 1 shows the values obtained for the 14 objectives in the

solutions efficient of order 12. It can be seen that some of the

solutions are very close to the ethanol production rate of the basal

solution (i.e., solution with the Kr values fixed to one), which turns

out to be 30.11 mM min21 [8]. The best solution comprising only

three changes in enzyme activity achieves a ethanol production

rate of 37.68 mM min21 and involves a 2.3 fold increase in E3

(which corresponds to a D ln (K3)D = 0.84), and about a 5 fold

increase in E5 and E7. A ethanol production rate of

42.88 mM min21 can be achieved by changing four enzymes.

This leads to a 42% increase over the basal production rate. In this

case, E3 must be modified by a factor of 3.5, E4 5 times, E7 2.1

times, and E8 1.7 times approximately. Further increases in

ethanol production would require manipulating a larger set of

enzymes. Single objective optimization focusing on maximizing

the ethanol production would obtain better yields, but would entail

higher (costly) enzyme changes and probably higher metabolic

concentrations that would compromise the cell viability.

Discussion

In this paper, we have introduced a systematic framework for

the multiobjective deterministic global optimization of metabolic

networks modeled through the GMA formalism. The proposed

strategy integrates the epsilon constraint method, deterministic

global optimization tools, and a set of Pareto filters that narrow

down the final number of candidate solutions to be tested in the

laboratory. The method presented does not rely on any

visualization procedure, being therefore suitable for problems

with a large number of objectives. The capabilities of the proposed

approach were illustrated by means of a benchmark problem that

addressed the optimization of the ethanol synthesis rate in

Saccharomyces cerevisiae.

Biological objectives, such as the concentration of intermediate

metabolites and the enzymatic changes were considered in

addition to the ethanol synthesis rate. By selecting the auxiliary

problems of the epsilon constraint method in a smart way, we

could reduce the computational burden considerably. Further-

more, the Pareto filters allowed reducing the number of promising

alternatives significantly from 910 to 14 (i.e., 98% reduction),

illustrating the usefulness of the approach in the post optimal

analysis of the candidate solutions. In different test problems, the

outer approximation algorithm integrated in our systematic

framework efficiently solved problems with up to 30 independent

metabolites and 60 reactions in short CPU times (i.e., few

minutes). Hence, we expect the method to scale up smoothly when

tackling more complex models, even though we have yet to

explore its limits. Note, however, that genome-wide scale problems

are still beyond the capabilities of current deterministic global

optimization methods. First, there is a lack of kinetic data to build

realistic genome scale models. Second, assuming the existence of a

detailed enough kinetic model, there is still the issue of solving it to

global optimality in short CPU time. For these reasons, genome

scale models are usually solve via FBA, despite the known

limitations of this method. Nevertheless, we think that advances in

deterministic global optimization theory and software applications

will pave the way for more efficient algorithms leading to

significant CPU savings, which will make it possible to tackle

complex genome scale kinetic models.

In summary, our approach allows for the global optimization of

metabolic networks on different objectives simultaneously. The

method presented reduces the computational burden associated

with the generation of solutions, and facilitates the post-optimal

analysis of these alternatives by systematically identifying the best

ones (i.e., more balanced) for subsequent experiments in the

laboratory. Hence, our method is particularly suited for problems

of moderate size. Larger kinetic models could be tackled with

stochastic methods, but even if they are the method of choice, it

will be still possible to use the Pareto filters introduced in our work.

However, we will not have any information on the quality of the

solution found. Finally, for genome-wide scale models, FBA might

be the method of choice, despite having some limitations already

discussed in the literature.

Methods

Our systematic framework comprises the following steps (see

Figure 5):

1. Model building and parameter estimation (optional): construct

a GMA model for the targeted metabolic network.

2. Global optimization of the GMA model on several biological

criteria.

3. Normalization of the solutions obtained in step 2.

4. Application of Pareto filters to identify the preferred subset of

alternatives.

The sections that follow describe in detail each of these steps.

Mathematical model: GMA representation
The optimization of the metabolic network is posed in

mathematical terms as a multiobjective NLP (i.e., moNLP) that

embeds GMA equations. Note that there are different possible

ways to obtain this GMA model. Particularly, we can follow a top-

down approach, that is, find the parameters of a GMA model that

make it consistent with dynamic data by solving a parameter

estimation problem. On the contrary, we might be interested in

following a bottom-up strategy and acquire the GMA model of

interest from the literature. In what follows, we describe briefly the

GMA formalism before presenting the details of the moNLP.

We assume that the concentration Xi of every metabolite i
present in a metabolic network varies with time t as a result of the

action of p flows:

dXi

dt
~
Xp

r~1

mirvr i~1,:::,n ð1Þ

The stoichiometric coefficient, mir, appearing in Eq. 1 is an integer

parameter accounting for the number of molecules of metabolite

Xi that are involved in the process r. It is positive when the

reaction r produces metabolite Xi and negative when r consumes

Xi. Note that not all the p processes in the metabolic network are

directly involved in the production of every single metabolite Xi,

which implies that some parameters mir are zero (mir = 0) for some

particular combinations of i and r. The velocity at which process r
occurs, is represented using the so-called power-law formalism

[38–40] as in Eq. 2.

vr~cr P
nzm

j~1
X

frj
j r~1,:::,p ð2Þ

Here, cr is a parameter denoting the basal state activity of the

enzyme governing process r, whereas frj is the kinetic order of

metabolite Xj in process r. This representation accounts for the n

Multiobjective Global Optimization of GMA Models
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internal dependent and m external (i.e., independent) metabolites.

At this point, the concentration of the external metabolites will be

considered fixed. Thus, the term X
frj
j behaves as a variable for

i~1,:::,n and as a parameter for i~nz1,:::,nzm. By combining

Eq. 2 and Eq. 1, we obtain a GMA model (Eq. 3).

dXi

dt
~
Xp

r~1

mircr P
nzm

j~1
X

frj
j

� �
i~1,:::,n ð3Þ

To model the effect of genetic manipulations performed on the

strain, we introduce an auxiliary continuous variable, Kr that

accounts for the fold-change over the basal state enzymatic level cr

as follows:

vr~Krcr P
nzm

j~1
X

frj
j r~1,:::,p ð4Þ

Recall that, in Eq. 4, the product Krcr denotes the actual enzyme

activity. Hence, the values of Kr in the optimal solution will dictate

the modification to be performed in the strain: Krw1 indicates

overexpression of enzyme r, Krv1 denotes its downregulation,

and a value of 1 means that enzyme r is not manipulated.

Furthermore, bounds KLB
r and KUB

r are imposed on this variables

as stated in Eq. 5.

KLB
r ƒKrƒKUB

r r~1,:::,p ð5Þ

Similarly, metabolite concentrations are allowed to change within

given bounds (X LB
i and X UB

i , respectively):

X LB
i ƒXiƒX UB

i i~1,:::,n ð6Þ

Since we are interested in solving the steady state, the time

dependence can be dropped from the formulation:

dXi

dt
~
Xp

r~1

mirKrcr P
nzm

j~1
X

frj
j

� �
~0 i~1,:::,n ð7Þ

For demonstrative purposes, we assume that the main objective

is to maximize the synthesis rate of a desired product. This rate is

calculated by summing up the velocities of those processes

contributing to its synthesis, as illustrated in Eq. 8.

min f1~{
X
r[FPi

mirvr i[FP ð8Þ

Here, FP is the set of metabolites i that are regarded as final

products and FPi is the set of processes r contributing to the

synthesis of metabolite i (i.e., those processes for which mirw0).

Note that, for simplicity, we have posed the problem as a

minimization one by reversing the sign of the objective function.

Two additional criteria are appended to the objective function.

The first is the minimization of the metabolites concentrations,

proposed as an optimality principle for metabolic networks [16].

Genetic manipulation of many genes at once may be costly and

technically difficult. To take this into account, the model seeks to

minimize the individual changes in enzyme activities. The

resulting MOO problem that embeds the GMA equations can

be expressed in compact form as follows:

(moGMA) min (f1,:::,fNO)

s:t: Eqs:1,4{6
ð9Þ

Thus, model moGMA seeks the appropriate changes in enzyme

activities (continuous variable Kr) that maximize simultaneously

the synthesis rate of the desired product and minimize the

Table 1. 14 solutions efficient of order 12 in decreasing order of Vethanol .

K1 K2 K3 K4 K5 K6 K7 K8 Vethanol X1 X2 X3 X4 X5

0.00 0.00 0.86 1.61 1.16 0.00 1.16 1.61 43.27 0.06 0.26 3.27 ,0.01 0.34

0.00 0.00 1.26 1.61 0.00 0.00 0.75 0.56 42.88 0.05 0.26 16.93 ,0.01 0.94

0.00 0.00 1.14 1.61 1.52 0.00 0.15 0.82 41.95 0.05 0.26 1.49 0.01 0.70

0.00 0.00 0.97 1.61 0.00 1.31 0.39 1.07 38.36 0.05 0.26 16.59 0.01 0.44

0.00 0.00 0.84 0.00 1.61 0.00 1.59 0.00 37.68 0.04 0.47 0.91 ,0.01 1.48

0.00 0.00 0.59 1.61 0.00 0.00 0.81 0.20 35.83 0.04 0.55 12.15 ,0.01 1.14

0.00 1.61 0.56 1.61 0.00 1.57 0.25 1.58 34.97 0.01 0.29 16.53 0.01 0.22

0.00 1.00 1.17 1.61 1.61 1.61 0.05 0.28 34.43 0.01 0.26 0.91 0.01 0.74

0.00 1.18 0.00 0.00 1.48 0.00 0.00 1.22 33.53 0.01 0.64 1.25 0.01 0.37

0.00 0.00 0.00 0.00 0.00 1.30 0.53 1.35 32.20 0.04 0.58 13.66 ,0.01 0.29

0.00 0.00 0.00 0.00 0.00 1.29 0.55 1.30 32.17 0.04 0.59 13.50 ,0.01 0.31

0.00 0.00 0.57 0.00 1.61 1.61 0.00 0.86 31.46 0.05 0.36 0.91 0.01 0.37

0.00 1.61 0.45 1.61 0.00 1.29 0.16 0.02 30.54 ,0.01 0.60 9.69 0.01 0.98

0.00 0.00 0.44 1.61 0.00 1.61 0.44 0.00 30.24 0.04 0.61 9.54 ,0.01 0.98

Recall that columns labeled as Kr represent indeed jln(Kr)j. Enzyme 1: Hexose transporters, enzyme 2: Glucokinase/Hexokinase, enzyme 3: Phosphofructokinase, enzyme
4: Trehalose 6-phosphate syntase complex (+Glycogen production), enzyme 5: Glyceraldehyde-3-phosphate dehydrogenase, enzyme 6: GOL (Glycerol
production),enzyme 7: Pyruvate kynase, enzyme 8: ATPase, metabolite 1: Internal glucose, metabolite 2: Glucose-6-phosphate, metabolite 3: Fructose-1,6-diphosphate,
metabolite 4: Phosphoenolpyruvate, metabolite 5: Adenosine triphosphate.
doi:10.1371/journal.pone.0043487.t001
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concentration of the metabolites and changes in enzyme activities.

Objective f1 represents the synthesis rate targeted, while f2 to fNO

denote the metabolites concentrations Xi and individual changes

in enzyme activities. To quantify deviations in enzyme activities

from the basal state, we use the absolute value of the natural

logarithm of the fold-change in enzyme activities. The enzyme

activities calculated by the model can be later implemented in the

real system by tuning the expressions of the corresponding genes.

The optimization problem takes the form of a nonconvex NLP,

in which multiple local optima may exist. We employ global

optimization techniques to ensure global optimality within a

desired tolerance.

Multiobjective global optimization of metabolic
networks described by a GMA model

In general, the Pareto set of a GMA model may be nonconvex

due to the nonlinear kinetic equations. Different MOO algorithms

could be used to calculate this set (i.e., NBI [41], NNC [42]). We

use herein the epsilon-constraint method because unlike other

methods, such as the weighted sum one, it can identify points

located in the nonconvex part of the Pareto set. Note that this

property is also shared by the more complex NBI and NNC

methods, which also offer the appealing property of providing a

uniform spread of Pareto points. However, this limitation of the

epsilon constraint is alleviated by coupling it with a Smart filter

(refer to Section ‘‘Smart filter’’ in Methods). We should clarify,

however, that our global optimization approach could work with

other deterministic MOO algorithms, such as the NBI or NNC.

In the epsilon constraint technique, one objective is regarded as

main objective, while the rest are transferred to auxiliary

constraints that impose upper bounds ee
b on their values:

(ecGMA) min fb b~1

s:t: fb’ƒee
b’ e~1,:::,Ez1 b’~2,:::,NO

Eqs:1,4{6

ð10Þ

The ee
b values appearing in the auxiliary constraints are

commonly obtained as follows:

1. Solve problem moGMA for each individual objective sepa-

rately.

2. Store the best (fb) and worst (fb) values obtained in step 1 for

each objective. These values are the limits within which the

auxiliary epsilon parameters must fall (i.e., ee
b [ ½fb,fb�Ve).

3. Split the epsilon interval into E subintervals to generate

parameters ee
b (i.e.,. ee

b~fbz(e{1):
(fb{fb)

(E)
).

Note that step 1 provides the so-called anchor points, that is, the

extreme solutions of the Pareto frontier.

In the traditional epsilon constraint approach, problem ecGMA
is solved for all possible combinations of ee

b, which leads to a total

of (Ez1)NO instances. The complexity of this approach grows

exponentially with the number of objectives. As an example, for 3

objectives and 4 sub-intervals, we have 125 iterations; for 4

objectives and the same number of sub-intervals, we have 625, and

for 5 objectives and identical number of sub-intervals, we have

3125 iterations.

Here, we follow a heuristic approach for generating Pareto

solutions that consists of solving a set of bi-criteria problems

corresponding to all possible combinations of any two objectives.

This strategy presents some advantageous features. First, the

Pareto points generated in the two-dimensional space are also

Pareto optimal in higher dimensional spaces [34], and hence in the

original NO-dimensional space. Second, this approach requires

solving
NO

2

� �
:(Ez1) single-objective models, rather than

(Ez1)NO, which dramatically reduces the computational effort.

For instance, it would reduce the number of iterations required in

the previous example from 125 to 15, from 625 to 30 and from

3125 to 60, respectively.

The epsilon constraint method transforms the MOO problem

into a set of single-objective problems. This is very convenient,

since it makes it possible to apply our global optimization methods

devised for single-objective GMA models [14,37] to multiobjective

problems. In particular, in this work we use the outer-approxi-

mation-based algorithm we developed in [14], which was inspired

by the works of Polisetty et al. [8] and Bergamini et al. [43].

Following this approach, the original problem (i.e., ecGMA in

this case) is divided into two subproblems at two different

Figure 5. Proposed algorithm for the multiobjective global
optimization of metabolic networks. This method allows not only
to generate a Pareto set, but also to systematically select the most
promising subset of enzymatic profiles embedded therein.
doi:10.1371/journal.pone.0043487.g005

Multiobjective Global Optimization of GMA Models

PLOS ONE | www.plosone.org 8 September 2012 | Volume 7 | Issue 9 | e43487



hierarchical levels. A master problem consisting of a linear

relaxation of ecGMA is solved in the upper level to predict a LB

on the global optimum. A slave problem based on the original

model is then solved locally in the lower level using the solution of

the master problem as starting point in order to predict an UB.

The solutions computed during the first iteration are used to

tighten the relaxation of the master problem, which will produce

better LBs in subsequent iterations. The algorithm proceeds in this

manner until the optimality gap (OG, defined as the relative

difference between the UB and the LB) is reduced below a given

tolerance.

The most important step of the outer approximation is the

construction of the master MILP problem. This MILP is built by

applying an exponential transformation that brings the model into

a canonical form that can be relaxed in a straightforward manner

using piecewise linear approximations and supporting hyper-

planes. For the sake of brevity, technical details about this

procedure are omitted herein. The interested reader is referred to

the original works by Pozo et al. [14,37] for further details.

Normalization of the Pareto optimal solutions
A normalization procedure is applied to the Pareto set of

solutions in order to bring them to the same scale and units, so

they become readily comparable. A plethora of alternative

methodologies are available for this purpose. One of the main

drawbacks of normalization methods is that they tend to

concentrate the points in some regions of the feasible domain.

In a recent work, Cloquell et al. [44] presented a normalization

methodology previously proposed in another work [45] that aims

at overcoming this limitation. According to this strategy, the

normalized value of a given solution s is calculated as follows:

fns,b~PDF(fb)(fbƒfs,b) ð11Þ

Where fns,b is the normalized value associated with the non-

normalized value fs,b, and DF(fb) is the probability distribution

function of the objective variable fb. The form of this distribution

is assumed beforehand, with the normal distribution being the

common choice.

Pareto filters
The previous steps provide as output a set of normalized Pareto

points. As mentioned previously, an infinite number of such points

may exist for problems involving continuous variables. Testing all

of them in the laboratory would be highly expensive and time

consuming. Hence, a method is required for screening and ranking

then, narrowing down their total number. We explore the

application of two different Pareto filters. A Smart filter [46] is

applied first to remove indistinguishable alternatives from the pool.

A second filter based on the order of efficiency of the Pareto

solutions [47] is then employed to identify solutions that are well-

balanced, that is, they show ‘‘good’’ performance simultaneously

in all of the objectives.

Smart filter. Two arbitrary solutions that are rather close in

the objective space might be equally appealing for decision-

makers, despite representing completely different experimental

manipulations. If any of these is preferred over the other because

of differences in any of the required changes, this differentiating

feature should then be regarded as an additional objective [46]. A

possible way to reduce the size of the Pareto set is to eliminate

solutions which are within a given tolerance in the objectives

space, that is, solutions which entail insignificant differences

compared to others. Figure 6 illustrates the underlying idea behind

this filter. As seen in Figure 6a, a region is defined around each

normalized solution FNs. Any other solution FNs’ falling inside

this region is said to be indistinguishable from FNs, and

automatically removed from the pool. Consider for instance the

example presented in Figure 6b where a small set of solutions is

presented. We start by comparing solution FN1 with the rest, and

then removing those contained inside the shaded region defined

around the reference point. After comparing all the points, we pick

the next candidate solution and repeat the procedure again. In this

particular example, solution FN2 is found within the specified

tolerance of FN1 and FN5 is within the region defined by FN4.

To this end, we use the following algorithm, which is based on

that presented by Mattson et al. [46]:

Let FNs be one of the NS normalized solutions of the

normalized Pareto set (i.e., FNs~fns,1,:::,fns,NO) obtained through

steps 2 and 3 of the solution approach, and let SOS be the set

containing all these solutions. The application of the filter

comprises the following steps.

1. Define tolerance Dt, a set of rejected solutions SOR~1, a set

of candidate solutions SOC~1 and start iteration counters

s~0 and ss~0.

2. While svNS,

(a) s~sz1

(b) If FNsDFNs [ SOS, return to 2.a. Else:

(c) While ssvNS,

i. ss~ssz1

ii. If FNssDFNss [ SOS, return to 2.c.i. Else:

iii. If s~ss, return to 2.c.i. Else, if fns,b{fnss,bƒDt Vb, let

SOR~SOR
S

F Nss and SOS~SOS\SOR.

(d) End while

(e) Restart iteration counter ss = 0.

3. End while

4. Make SOC~SOS

We should clarify that this algorithm is a special case of the one

proposed by Mattson et al. [46], in which the original Dt and Dr
are assumed to be equal to Dt. Furthermore, note that the value of

this control parameter is the same in all of the objectives, since the

Pareto points are normalized prior to the application of the filter.

This filter is particularly useful when coupled with the epsilon

constraint method, as it alleviates its tendency to concentrate

points in given regions of the Pareto front, thus giving rise to a

more uniform spread of points.

Figure 6. Illustration of the smart Pareto filter. a) Indistinguish-
ability region. b) Algorithm performance example.
doi:10.1371/journal.pone.0043487.g006
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Order of efficiency filter. The filter described above allows

reducing the number of Pareto solutions. Further reductions can

be attained by applying the concept of order of efficiency, as

introduced by Das [47]. A solution is said to be efficient of order Q
if it is not dominated by any other solution in any of the possible

Q-elements subsets of objectives. In mathematical terms, a solution

Fs is said to be efficient of order Q, if and only if, Fs’DFs’[Fs for

any subset of objectives of cardinality Q. In this definition, we

consider that a solution Fs dominates Fs’ (i.e., Fs[Fs’) if and only

if, fs,bƒfs’,b Vb with at least one b in which fs,bvfs’,b.

Figure 7 provides an illustrative example of the concept of

Pareto efficiency of order Q. Consider we have a MOO problem

with 5 biotechnological criteria: final product yield, aggregated

cost of changing the enzyme activities via gene expression, and

concentration of 3 different metabolites (X1{X3). Assume that the

values of 3 different solutions (blue, read and green) have already

been normalized as described previously, so that the minimum

value of each of the 5 objectives represents their individual optima.

As seen, the three solutions plotted are Pareto optimal since none

of them can improve any of the others simultaneously in all of the

objectives. At this point, one can start eliminating solutions which

are not efficient of order Q~4 by identifying sets of 4 objectives in

which a given solution is dominated. For instance, the blue

solution is dominated by the green and red ones in the set

fyield,X1,X2,X3g. On the other hand, the red solution is not

efficient of order 3, since it is in turn dominated by the green one

in fyield,X1,X2g. Hence, the green solution is the only one that is

efficient of order 3, while none of them is efficient of order 2 (i.e.,

the green solution is dominated by the red one in fcost,X3g).
According to the definitions previously exposed, if a solution is

efficient of order Q, it is also efficient of order QzL with

L~1,:::,NO{Q (see [47] for proofs). Note that the concept of

efficiency of order Q is stronger than the Pareto optimality

condition [47], and can thus be used to discern between efficient

alternatives. Furthermore, this concept avoids the use of any

arbitrary ‘‘criterion of merit’’ or visualization technique, making it

suitable for high-dimensionality problems [47].

We propose to apply this filter for searching efficient solutions of

order NO{1, and then repeat the process recursively for

successively inferior orders of efficiency until either an empty set

is found or the number of solutions retained is sufficiently small. As

pointed out by Das [47], solutions with lower order of efficiency

are expected to be well-balanced. This is because solutions

behaving well in some objectives but poorly in others are expected

to be dominated at least in the subsets including the latter criteria

[47].
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and-bound framework for the global optimization of kinetic models of metabolic

networks. Industrial and Engineering Chemistry Research 50(9): 5225–5238.

38. Savageau M (1969) Biochemical systems analysis. i. some mathematical

properties of the rate law for the component enzymatic reactions. J Theor Biol

25: 365–369.

39. Savageau M (1969) Biochemical systems analysis. ii. the steady-state solutions for

an n-pool system using a power-law approximation. J Theor Biol 25: 370–379.

40. Voit E (2000) Computational Analysis of Biochemical Systems. A Practical

Guide for Biochemists and Molecular Biologists. Cambridge: Cambridge

University Press.

41. Das I, Dennis J (1998) Normal-boundary intersection: A new method for

generating the pareto surface in nonlinear multicriteria optimization problems.

SIAM Journal on Optimization 8(3): 631–657.

42. Messac A, Mattson C (2004) Normal constraint method with guarantee of even

representation of complete pareto frontier. AIAA Journal 42(10): 2101–2111.

43. Bergamini M, Aguirre P, Grossmann I (2005) Logic-based outer approximation

for globally optimal synthesis of process networks. Computers and Chemical

Engineering 29: 1914–1933.

44. Cloquell V, Santamarina M, Hospitaler A(2001) Nuevo procedimiento para la

normalizacin de valores numricos en la toma de decisiones. In: XVII Congreso

Nacional de Ingeniera de Proyectos - Murcia 2001.

45. Cloquell V (1999) Contribucin al desarrollo de un modelo generalizado y

sistemtico de localizacin de actividades econmicas. Ph.D. thesis, Universidad

Politcnica de Valencia.

46. Mattson C, Mullur A, Messac A (2004) Smart pareto filter: obtaining a minimal

representation of multiobjective design space. Engineering Optimization 36(6):

721–740.

47. Das I (1999) A preference ordering among various pareto optimal alternatives.

Structural Opti-mization 18: 30–35.

Multiobjective Global Optimization of GMA Models

PLOS ONE | www.plosone.org 11 September 2012 | Volume 7 | Issue 9 | e43487


