
Enrichment of HP1a on Drosophila Chromosome 4 Genes
Creates an Alternate Chromatin Structure Critical for
Regulation in this Heterochromatic Domain
Nicole C. Riddle1., Youngsook L. Jung2., Tingting Gu1., Artyom A. Alekseyenko3, Dalal Asker4,5,

Hongxing Gui4, Peter V. Kharchenko2, Aki Minoda6,7, Annette Plachetka3, Yuri B. Schwartz4,8,

Michael Y. Tolstorukov2, Mitzi I. Kuroda3, Vincenzo Pirrotta4, Gary H. Karpen6,7, Peter J. Park2*,

Sarah C. R. Elgin1*

1 Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America, 2 Center for Biomedical Informatics, Harvard Medical School,

Boston, Massachusetts, United States of America, 3 Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, and Department of Genetics, Harvard

Medical School, Boston, Massachusetts, United States of America, 4 Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United

States of America, 5 Food Science and Technology Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt, 6 Department of Molecular and Cell

Biology, University of California Berkeley, California, United States of America, 7 Department of Genome Dynamics, Lawrence Berkeley National Lab, Berkeley, California,

United States of America, 8 Department of Molecular Biology, Umea University, Umea, Sweden

Abstract

Chromatin environments differ greatly within a eukaryotic genome, depending on expression state, chromosomal location,
and nuclear position. In genomic regions characterized by high repeat content and high gene density, chromatin structure
must silence transposable elements but permit expression of embedded genes. We have investigated one such region,
chromosome 4 of Drosophila melanogaster. Using chromatin-immunoprecipitation followed by microarray (ChIP–chip)
analysis, we examined enrichment patterns of 20 histone modifications and 25 chromosomal proteins in S2 and BG3 cells, as
well as the changes in several marks resulting from mutations in key proteins. Active genes on chromosome 4 are distinct
from those in euchromatin or pericentric heterochromatin: while there is a depletion of silencing marks at the transcription
start sites (TSSs), HP1a and H3K9me3, but not H3K9me2, are enriched strongly over gene bodies. Intriguingly, genes on
chromosome 4 are less frequently associated with paused polymerase. However, when the chromatin is altered by
depleting HP1a or POF, the RNA pol II enrichment patterns of many chromosome 4 genes shift, showing a significant
decrease over gene bodies but not at TSSs, accompanied by lower expression of those genes. Chromosome 4 genes have a
low incidence of TRL/GAGA factor binding sites and a low Tm downstream of the TSS, characteristics that could contribute
to a low incidence of RNA polymerase pausing. Our data also indicate that EGG and POF jointly regulate H3K9 methylation
and promote HP1a binding over gene bodies, while HP1a targeting and H3K9 methylation are maintained at the repeats by
an independent mechanism. The HP1a-enriched, POF-associated chromatin structure over the gene bodies may represent
one type of adaptation for genes embedded in repetitive DNA.
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Introduction

In eukaryotes, initial gene regulation is achieved through the

interaction of transcription factors and the transcriptional

machinery with DNA packaged into chromatin. The basic unit

of chromatin is the nucleosome, 147 bp of DNA wrapped

around a histone octamer [1,2]. Post-translational modifications

of histones, and the presence of core histone variants and

additional chromosomal proteins, characterize various chroma-

tin states that determine the accessibility of DNA for transcrip-

tion. A subset of modifications, such as histone 3 lysine 9

(H3K9) methylation, is associated with gene silencing, while

other modifications, such as histone 3 lysine 4 trimethylation

(H3K4me3), correlate with gene activity. (For a recent review

see [3].) Chromatin states and transcriptional activity are highly

regulated to ensure gene activity at the proper developmental

time and in the appropriate cell type while maintaining silencing

at other, often tightly linked, sequences, including transposable

elements (TEs). This need for regulation is particularly evident

in genomes similar to the human, where TEs and genes are
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interspersed, with these repetitious elements found both within

and between genes.

In Drosophila melanogaster, the small chromosome 4 has an

organization that is reminiscent of mammalian genomes. Its

1.2 Mb distal arm hosts approximately 80 genes and has a repeat

density of ,30% [4]. (While the entire chromosome 4 is 4.2 Mb

[5], we will refer here to the 1.2 Mb distal arm of chromosome 4

as ‘‘chromosome 4’’, as the other 3 Mb are composed of highly

repetitive sequence for which no genome assembly is available.)

Despite a high gene density, similar to that in euchromatic

domains in Drosophila, chromosome 4 exhibits hallmarks of

heterochromatin. It replicates late [6] and lacks recombination in

the laboratory setting, although there is evidence of recombination

events over evolutionary time [7,8]. In most cases reporter

transgenes inserted into chromosome 4 are silenced by position

effect, resulting in a variegating phenotype [9–11]; the entire

chromosome is highly enriched for heterochromatic marks such as

heterochromatin protein 1a (HP1a) and H3K9 di- and trimethyla-

tion [12,13]. Recent work has demonstrated that chromosome 4

displays distinct chromatin profiles compared to both pericentric

heterochromatin and euchromatic regions [14,15].

How genes are regulated in TE-rich domains with dense

heterochromatic marks remains elusive, and Drosophila chromo-

some 4 provides a system to study the mechanisms involved.

Chromosome 4 also provides a potential example of domain-wide

regulation with the presence of the painting of fourth (POF)

protein, which exclusively binds to the distal 1.2 Mb portion of

chromosome 4 [16]. POF binds to gene bodies, and expression of

chromosome 4 genes is decreased in its absence [17]. In addition,

compensation of gene expression in aneuploid chromosome 4

animals is mediated by POF, supporting its role in gene regulation

on this chromosome [18]. Recent work has shown that POF binds

nascent RNAs of chromosome 4 genes and that its association with

chromosome 4 is dependent on active transcription [19].

Intriguingly, HP1a is enriched in gene bodies with POF, and

polytene chromosome analysis has suggested that HP1a and POF

are interdependent for deposition on chromosome 4 [17]. Also

present on chromosome 4 are two H3K9 histone methyltransfer-

ases (HMTs), EGG – a SETDB1 class enzyme – and SU(VAR)3-9

[13,20–22]. SU(VAR)3-9 has been suggested to be enzymatically

inactive on chromosome 4 (its main function appears to be in

pericentric heterochromatin), while EGG appears responsible for

maintaining the bulk of the H3K9me2 and H3K9me3 in this

domain [20–22]. Co-immunoprecipitation experiments indicate

that POF can interact with EGG [22], suggesting that regulation

of gene expression on chromosome 4 involves EGG, POF, and

HP1a.

To further explore how genes function in a heterochromatin-

like milieu in general, and on Drosophila chromosome 4

specifically, we examined the enrichment profiles of 20 histone

modifications and 25 chromosomal proteins, drawing on new as

well as previously published datasets profiled by the model

organism Encyclopedia of DNA Elements (modENCODE)

Drosophila group [23]. In addition, we mapped H3K9me2/3,

H3K36me3, HP1a, POF, and RNA polymerase II (RNA pol II)

by chromatin immunoprecipitation-microarray (ChIP-chip) tech-

nology in mutant larvae lacking HP1a, POF, or EGG. Our results

indicate that chromosome 4 genes are governed by a unique

regulatory system characterized by a lack of RNA polymerase

pausing, which may be a consequence of the presence of HP1a.

We find that efficient POF recruitment is dependent on EGG, but

not HP1a. Our results argue that HP1a is recruited to

chromosome 4 by two mechanisms: the majority of HP1a

(associated with genes) is dependent on POF, while a smaller

fraction (associated with TE-rich regions) is POF-independent. We

suggest a model where EGG, POF, and HP1a bind to active genes

on chromosome 4 and together positively regulate their expres-

sion.

Results

Mapping of additional chromatin components confirms
that chromosome 4 is a distinct heterochromatic domain,
rich in transcribed genes

Earlier studies of chromosome 4 using cytological approaches

established the enrichment of HP1a and noted a banded pattern,

suggesting interspersed domains of low HP1a density that might

favor gene expression. However, while low-resolution mapping

with an hsp70-white reporter transgene indicated a few permissive

domains (allowing full expression, red eye), the bulk of the

insertions, including 12 within genes, resulted in a variegating

phenotype, indicating heterochromatin packaging [9–11].

More recently, we used high-resolution genome-wide enrich-

ment profiles of 16 histone marks and two proteins to identify and

map predominant combinatorial chromatin states within hetero-

chromatin [15]. Here, we expand this analysis to include four

additional histone marks and 18 additional chromosomal proteins,

whose enrichment in the original five predominant combinatorial

chromatin states of heterochromatin is shown in Figure 1A.

[Throughout this article, we will define pericentric heterochro-

matin by enrichment in H3K9me2 as described in [15].] Several

of the new proteins are enriched in heterochromatin states

preferentially found on chromosome 4 (Figure 1A, states B–E). For

example, chromosome 4 contains higher levels of POF, JIL-1,

MOD(MDG4), HIS2AV (Figure 1A, states B–D), and some

Polycomb-associated proteins (Figure 1A, state E) compared to

pericentric heterochromatin in BG3 cells (Figure 1B). (For S2 cell

data see Figure S1.) Compared to the pericentric heterochromatin

Author Summary

How DNA is packaged into chromatin has profound
implications for gene regulation. While certain chromatin
conformations are accessible to RNA polymerase and allow
expression, other chromatin structures prevent transcrip-
tion. In many genomes, genes that need to be expressed
and repetitive sequences that need to be silenced are
interspersed at close intervals. We use Drosophila melano-
gaster chromosome 4 as one example of such a complex
domain and ask how the genes on this chromosome are
packaged and regulated. While the transcription start sites
of active genes on chromosome 4 exhibit the expected
pattern of chromatin marks, we see an unusual combina-
tion of marks over expressed gene bodies, including
enrichment of HP1a and H3K9me3. Deposition of HP1a
over the gene bodies is dependent on POF (painting of
fourth), while its association with intergenic repeat clusters
is accomplished by a different mechanism. In this
environment, promoter proximal RNA polymerase pausing
is largely absent, despite the fact that genome-wide,
approximately 10%–15% of all active genes display
pausing. A redistribution of polymerase on chromosome
4 genes, including depletion in the gene body, is observed
on HP1a depletion. These findings demonstrate how gene
regulation mechanisms can be modulated in specific
domains of the genome and illustrate the necessity of
examining regulatory pathways within chromatin sub-
domains, rather than relying on genome-wide averages or
on a limited set of reporter genes.

Drosophila Chromosome 4 Chromatin Structure
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of other chromosomes, chromosome 4 contains less chromatin in

state A, which represents the classical heterochromatin enriched

for H3K9me2, H3K9me3, HP1a, HP2, SU(VAR)3-7, and

SU(VAR)3-9 (Figure 1A, panel 5). Mapping these chromatin

states across the karyotype (Figure 1B and 1C) and at higher

resolution across chromosome 4 (Figure 1D) suggests a distinct

domain with a higher gene (exon) density in the distal portion of

chromosome 4.

Interestingly, we do not see any evidence for euchromatic

domains, as defined by depletion of H3K9me2/H3K9me3/HP1a

and association with activation marks. Such domains had been

suggested by the full expression of an hsp70-white transgene

reporter (red eye phenotype) at certain sites [10,24]. Rather, we

observe a strong correlation between these permissive sites and

regions regulated by the Polycomb (PcG) system (Figure 1C and

Figure S2). PcG regulated genes can be associated with a number

of alternative chromatin states, including a repressive state

(enriched for Polycomb [PC]), an active state (enriched for

ASH1 and TRX), and a void state (lacking PC, ASH1, and TRX)

[25]. The insertion sites of all red-eyed reporters correspond to

four regions that in some cell types lack H3K9 methylation and

HP1a, but contain H3K27me3 and PC. In contrast, none of the

24 hsp70-white reporter lines with a variegating eye phenotype are

found in regions associated with PC in the cells and tissues

examined to date (Figure S2B). While it is unknown which PcG

chromatin state is present at the insertion sites of red-eyed reporter

lines in the developing eye, our results confirm that HP1a and PC

occupy separate domains on chromosome 4 and suggest that the

domains regulated by the Polycomb system are transcription-

permissive for hsp70-white reporters in the critical cell type. In

contrast, the bulk of the genes on chromosome 4 are associated

with HP1a, a well-established mark of heterochromatin, correlated

with silencing. To explore how these genes function, we looked

further at the distribution of chromosomal proteins associated with

these genes.

Active genes on chromosome 4 are characterized by a
distinct combination of POF, H3K36me3, HP1a, and
H3K9me2/3

Previous work by us and by others has indicated that HP1a

correlates well with H3K9me2 and H3K9me3 in pericentric

heterochromatin [14,15]. However, H3K9me2 and H3K9me3

have distinct distributions on chromosome 4 (Figure 1A, compare

states A–E), leading us to re-examine the correlation of these

marks as well as a few others in chromosome 4 and pericentric

heterochromatin. While pericentric heterochromatin maintains

the expected association among silencing marks, we find that

HP1a and H3K9me3 correlate positively with active marks POF

and H3K36me3 on chromosome 4 (Figure 2). Other marks

associated with silencing (H3K9me2, SU(VAR)3-9, SU(VAR)3-7,

and HP2) show little or no correlation on the chromosome 4.

Given that chromosome 4 is distinguished from pericentric

heterochromatin by its higher gene density, we hypothesized that

the change in the correlation patterns is related to genes

specifically. Thus, we examined the ‘‘metagene’’ profiles for active

and silent genes on chromosome 4, within pericentric heterochro-

matin, and in euchromatin. (Active and silent genes were defined

by RNA-seq data, as described in Materials and Methods.) Indeed,

the correlated histone modifications and proteins noted above map

together only on chromosome 4, enriched over the body of active

genes, in contrast to what is observed at other active loci (Figure 3,

results from BG3 cells; see Figure S3 for data from S2 cells). This

difference is not due to the relatively small number of genes

present on chromosome 4, but is also seen when the same number

of genes are compared for chromosome 4, heterochromatin, and

euchromatin (metagenes in Figure S4 and S5, heatmaps in Figure

S6). H3K9me2 is the only mark on chromosome 4 preferentially

associated with repressed gene bodies. The high levels of POF and

HP1a associated with transcribed genes on chromosome 4 confirm

prior findings by Johannson and colleagues [17]. The enrichment

of H3K9me3 in these regions of active transcription is unexpected

and suggests a unique mechanism regulating H3K9 methylation

on chromosome 4.

Chromosome 4 genes rarely display RNA polymerase
pausing

As previously reported, silencing marks are depleted at the TSSs

[15]. Figure 3 compares the chromatin composition at the TSS

and the gene body for chromosome 4 genes. The distinctive

enrichment patterns observed for TSSs and gene bodies suggested

a possible role for this chromatin structure in regulation at the

TSS. Given the anticipated difficulty in transcribing through a

region with HP1a and H3K9me3, we considered changes in

polymerase dynamics, such as pausing, to be likely affected. For a

significant number of active genes, RNA pol II initiates

transcription but pauses after 25–50 nt, remaining there until

pausing is relieved. We investigated polymerase association with

genes and polymerase pausing on chromosome 4 using global run-

on followed by sequencing (GRO-seq) with data from S2 cells

produced by Larschan and colleagues [26]. First, we compared the

association of polymerase with genes in euchromatin, pericentric

heterochromatin, and chromosome 4. RNA-seq data derived from

steady state mRNA revealed that, while pericentric heterochro-

matin has a lower gene density, the fraction of active genes is

roughly the same between heterochromatin (pericentric hetero-

chromatin and chromosome 4) and euchromatin (54% vs. 52% in

Figure 1. The chromatin composition of D. melanogaster chromosome 4 shows distinct patterns of enrichment. A. Enrichment levels for
all histone marks/chromosomal proteins (green asterisks indicate newly reported marks) are shown for the five main combinatorial chromatin states
within heterochromatin as defined in Riddle et al [15]. Panel 1- histone marks; panel 2- chromosomal proteins; panel 3- repeat enrichment and
expression status; panel 4- the fraction of chromatin within each state associated with various structural features of genes; panel 5- enrichment/
depletion of states for each chromosome arm, with the numbers to the right reflecting the percentage of the heterochromatin assigned to each
state. Chromatin source: BG3 cells. B. Karyotype view of the assembled heterochromatic domains defined by the five combinatorial chromatin states
in A. The distal 1.2 Mb region of chromosome 4 exhibits a higher density of transcriptionally active genes (states B, C, D) and polycomb-dominated
domains (state E). Chromatin source: BG3 cells. C. hsp70-white transgenes leading to a red eye phenotype are preferentially found in state E. Triangles
mapped onto the expanded chromosome 4 indicate the insertion sites for hsp70-white transgenes exhibiting a red (red triangle) or variegating
(dotted triangle) eye phenotype [9]. D. Browser shot illustrating the relationship between histone marks and chromosomal proteins on chromosome
4. The silent gene CG1909 shows correlations typical of pericentric heterochromatin (dashed blue box; enriched H3K9me2, H3K9me3, HP1a; state A),
while the expressed gene Ephrin shows the patterns typical for chromosome 4 active genes (dashed red box; upstream promoter regions, depleted
for H1 and H4, state D; regions immediately downstream from TSSs, enriched for H3K4me2/3 and depleted of H3K9me2/3, state C; and regions across
the body of the gene, enriched for H3K36me3, H3K9me3, HP1a and POF, state B). Silent gene zfh shows the chromatin pattern typical for genes under
the regulation of Polycomb system, enriched in H3K27me3 and depleted of HP1a.
doi:10.1371/journal.pgen.1002954.g001
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S2 cells). GRO-seq data confirmed this assessment, indicating that

47.6% of euchromatic genes were being actively transcribed in S2

cells, compared to 40.4% of those in heterochromatin. On

chromosome 4, 54.3% of the genes were associated with GRO-seq

signal, a fraction slightly higher but not significantly different from

that of euchromatin (p = 0.147; Figure 4A). However, the GRO-

seq signal on chromosome 4 and within euchromatin was higher

than that in pericentric heterochromatin (p,0.01; Figure 4A).

Next, we assessed polymerase pausing using a pausing index (PI)

that measures the level of polymerase at the 59 end of the gene

compared to that over the gene body [27]. Specifically, we used

the ratio of GRO-seq read density in the first 500 bp of the gene

and the read density of the first 25% of the remaining length of the

gene (for details, see [26]). With a stringent threshold for pausing,

the results indicate that in pericentric heterochromatin and in

euchromatin, the fraction of genes associated with a paused

polymerase is similar, 12.5% and 15.0%, respectively (Figure 4A).

In contrast, only 1.6% of the RNA polymerase-associated

chromosome 4 genes exhibit such pausing, a significantly smaller

percentage than what was observed in either euchromatin or

pericentric heterochromatin (p,0.0005; Figure S7). While the

absolute number of paused genes varies depending on the

threshold, the difference in pausing frequency between chromo-

some 4 and the other genome domains using this analytical

definition was observed over a wide range of PI thresholds

(Figure 4B). This finding is consistent with recent results from

Johannsen and colleagues using the same GRO-seq dataset [19].

We also validated this result using ChIP-chip data from S2 and

BG3 cells with an alternative definition of pausing (see Materials

and Methods; Table S3). The overlap in the genes identified as

exhibiting pausing by these two methods is ,50%, significantly

more than the random expectation (p,1610216, Figure S8).

These data demonstrate that paused polymerase (no matter how

defined) is not uniformly distributed across genomic domains, and

further establish the unique properties of chromosome 4. Whether

the observations on chromosome 4 reflect a difference in the

protein machinery identified with ‘‘classical’’ RNA pol II pausing

(i.e. dependent on NELF and DSIF) or with some other aspect of

RNA pol II regulation (e.g. elongation) remains to be explored.

Given that our observations are based on experimental approach-

es widely used to study pausing, and for convenience, we will refer

to this particular distribution of RNA pol II as ‘pausing’ in the text

below.

Sequence characteristics of chromosome 4 are
congruent with its low level of paused polymerase

Previous work has shown that chromosome 4 is distinct from

other domains in a number of sequence-associated features [4,28].

As various gene features (e.g. sequence composition [29], gene

expression levels [27], and gene ontology [30,31]) have also been

associated with the use of polymerase pausing, we considered

whether these features of chromosome 4 might be correlated with

Figure 2. The relationship between marks of classical heterochromatin and gene expression are altered on chromosome 4. The
strength of correlation between marks is illustrated in this diagram by the color intensity (red - positive correlation; blue - negative correlation). In
pericentric heterochromatin, the black outline demarcates the strong correlation structure observed between H3K9me2, H3K9me3, and HP1a (right).
This strong correlation is not present on chromosome 4; HP1a and H3K9me3 instead are positively correlated with H3K36me3, a mark of elongation,
and the chromosome 4-specific protein POF (left).
doi:10.1371/journal.pgen.1002954.g002
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Figure 3. Metagene analysis shows a unique distribution of chromosomal proteins and histone marks on chromosome 4 genes.
Enrichment (averaged smoothed M-values, Y-axis) for select chromosomal proteins and histone marks is plotted for a 3 kb scaled metagene (bp, X-
axis). The enrichment is examined in three genomic domains: Chromosome 4 (top); pericentric heterochromatin (middle); and euchromatin (bottom)
for active genes (left column) and repressed genes (right). Active genes on chromosome 4 have distinctive signatures of HP1a, POF, and H3K9me3
with highest enrichment levels across gene bodies. The number of genes included is demonstrated at the right corner for each figure. Data from BG3
cells.
doi:10.1371/journal.pgen.1002954.g003
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the observed lack of polymerase pausing. ‘‘Developmental

control’’ genes (gene ontology), which preferentially exhibit

pausing [30,31], occur on chromosome 4 at the same frequency

as in other genomic domains (Table S4), and the average copy

number for chromosome 4 segments in S2 cells is similar to that of

the other autosomes [32]. The low fraction of genes displaying

pausing is also not due to proximity to the centromere: the

percentage of genes displaying pausing within the first 1.2 Mb of

contiguously assembled sequence on chromosome arms 2L, 2R,

and 3L is 13.6% in S2 cells. Genes on chromosome 4 are larger

than those in euchromatin and heterochromatin (median:

8,001 bp vs. 1,907 bp vs. 1,844 bp; Wilcoxon test: p,0.0001,

Figure S9A and S9D), and the average number of exons for genes

on chromosome 4 is higher than for genes in euchromatin and

pericentric heterochromatin (median: 6 vs. 3 vs. 2; p,0.0001;

Figure S9B and S9E). However, larger, more exon-rich genes tend

to have higher PI values (Figure S6E), indicating that this feature

does not contribute to the lack of pausing on chromosome 4.

Genes on chromosome 4 can be biased towards higher expression

levels (e.g. in third instar larvae: p,0.05; Figure S9C; no higher

expression in S2 cells), but this bias is cell type-specific, while the

lack of pausing is observed in all cell types examined. Thus, these

sequence features alone cannot account for the low incidence of

polymerase pausing observed on chromosome 4.

Previous reports have identified several sequences that are

preferentially associated with paused polymerase, including

GAGA factor (TRL) binding motifs, the Inr motif, as well as the

so-called ‘‘pause button’’ (PB) sequence KCGRWCG [29]. We

find that the fraction of promoters with a PB or Inr motif is similar

in euchromatin and on chromosome 4 (Table S5), and thus

unlikely to contribute to the differences we observe in pausing

incidence. In contrast, the fraction of promoters containing TRL

motifs (or their inversions) differs significantly between euchroma-

tin and chromosome 4. While TRL binding sites are observed in

24% of euchromatic promoters, we find TRL binding sites in only

11% of the promoters on chromosome 4 (Table S5; p,2.69e-3;

inverted TRL binding site: 25% vs. 13%, p,4.88e-3). The

underrepresentation of TRL binding sites on chromosome 4 is

reflected also in the significantly lower number of TRL-bound sites

detected in TRL ChIP-chip data. In euchromatin, 33% of

promoters are bound by TRL, while on chromosome 4 only

17% show TRL binding in S2 cells (p,1.52e-3). Thus, the paucity

of TRL binding sites on chromosome 4 might contribute to the

low occurrence of polymerase pausing, but cannot explain it

entirely.

Recently, it has been reported that genes exhibiting polymerase

pausing have a distinct Tm (melting temperature) peak for 9-mers

approximately 25–30 bp downstream of the TSS [33]. Therefore,

we examined Tm values of 9-mers in the TSS-proximal 100 bp of

each D. melanogaster mRNA by a sliding window analysis.

Interestingly, the Tm values for TSS-associated sequences on

chromosome 4 are lower than those on the other chromosomes for

both pausing and non-pausing genes (11.50 degrees vs. 15.03–

15.84 degrees; see Table S6) over the entire 100 bp interval (see

Figure 4C). Thus, chromosome 4 genes show a different sequence

organization at their 59 end, which may contribute to the low

incidence of pausing.

Lack of HP1a alters RNA pol II distribution and decreases
gene expression levels on chromosome 4

Given the low frequency of paused polymerase on chromosome

4, but not in pericentric regions of heterochromatin, we tested the

hypothesis that chromosome 4’s distinct chromatin composition is

responsible for this difference. First, we disrupted the typical

chromatin structure, using third instar larvae lacking HP1a, trans-

heterozygous for Su(var)20504 and Su(var)20505. These trans-

heterozygotes do not produce zygotic HP1a and survive to the

third larval instar by utilizing maternally loaded HP1a protein

and/or mRNA. By the third instar, little detectable HP1a protein

remains, and in ChIP-chip experiments, .95% of peaks observed

in wildtype are absent in the mutants (Figure S10A). RNA pol II

enrichment on chromosome 4 in Su(var)205 mutants is reduced in

the gene bodies, leading to an increase in PI, as RNA pol II now is

relatively more concentrated at the TSS compared to the wildtype

distribution (Figure 5A, compare red [HP1a 2/2] to grey [+/+]).

For RNA pol II ChIP-chip data, the PI is defined as the ratio

between the maximum enrichment value around the TSS (+/

2300 bp) and the medium enrichment values over the gene body

Figure 4. Chromosome 4 has a very low incidence of polymerase pausing identified by GRO-seq data. A. The bar graph shows the
percentage of transcripts associated with RNA polymerase (grey) and the percentage of those RNA polymerase-associated genes exhibiting
significant pausing (black) for euchromatin, pericentric heterochromatin, and chromosome 4. A pausing index (PI) threshold value of 10 was used. B.
The low frequency of polymerase pausing observed for chromosome 4 is independent of the PI selected. C. The average Tm of 9-mers downstream of
the TSS for chromosome 4 genes tends to be lower than that of other genes. Tm (Y-axis) of 9-mers in the 100 bp downstream of the TSS (bp, X-axis) is
compared for genes on chromosome 4 (red) to genes classified as either paused (black) or not-paused (grey) by GRO-seq analysis. Data from S2 cells
[23].
doi:10.1371/journal.pgen.1002954.g004
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Figure 5. Lack of HP1a or POF shifts the enrichment pattern of RNA pol II on chromosome 4. A. RNA pol II distribution of expressed genes
on chromosome 4, comparing wildtype (WT) to HP1a (red) and POF (blue) mutants. Chromosome 4 genes are compared to genes with similar
expression levels randomly chosen from the euchromatin on chromosome arm 3R (N = 58 for both). Note the dramatic loss of RNA pol II enrichment
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(600 bp downstream of the TSS to the end of the gene) [31].

Analyzing the changes in RNA pol II distribution separately for the

promoter region and the gene body, we find that only the changes in

the gene body are significant (Figure 5B; p,2.25e-6). The shift to

TSS-biased enrichment is illustrated for several genes in Figure 5D.

While the level of RNA pol II enrichment at the promoter does not

change in the HP1a mutant, the location of the peak shifts by

approximately 68 bp into the gene body, a position suggestive of a

paused polymerase. In total, 54 of 73 genes larger than 600 bp on

chromosome 4 show an increase in PI (calculated as in [31] for ChIP-

chip data, Figure S11), which is significantly different from what we

observe for the remainder of the genome (Figure 5C, p,1.2e-6).

Thus, the shift in RNA pol II distribution is specific to chromosome 4

genes and does not occur at euchromatic genes in general.

Next, we examined the effect of HP1a depletion on gene

expression using RNA-seq data. On chromosome 4, there is a

significant overall decrease in the expression level (Figure S12D;

p,2.26e-6, paired Wilcoxon test; p = 0.205 on chromosome 3R, a

control euchromatic region). Specifically, 67 of 84 genes (,80%)

exhibit decreased expression upon HP1a depletion (Figure 5D) in

contrast to ,60% genome-wide. Expression is significantly

decreased for plexB, ci, CG31998, dpr7, Lin29, zfh2, onecut, mav,

CG11360, Sox102F, unc-13, toy, CG32017, pho, and Caps

(FDR = 0.01), while significantly increased expression is observed

for CG1970, bt, ATPsyn-beta, and Rfabg (FDR = 0.01). Among the

genes showing decreased expression in the HP1a mutant, a group

of ,10 genes also loses H3K36me3 signal relative to wildtype. In

addition, genes on chromosome 4 with decreased expression levels

tend to show depletion of RNA pol II in Su(var)205 [HP1a]

mutants (Figure S11C). The loss in expression after HP1a

depletion indicates that most chromosome 4 genes are behaving

as ‘‘heterochromatic genes’’ by this criterion [34].

Using an RNA-immunoprecipitation technique, Piacentini and

colleagues have identified a set of euchromatic genes regulated by

HP1a in S2 cells [35]. We compared the response of this gene set

to HP1a depletion in HP1a mutant larvae to the response of

chromosome 4 genes (Figure S12). While chromosome 4 genes

show a strong reduction of RNA pol II over the gene bodies in the

absence of HP1a (p,7.52e-7), the putative euchromatic HP1a-

regulated genes show a slight increase in RNA pol II enrichment

(p = 0.02). In addition, the euchromatic gene set did not show a

reduction in gene expression in these larvae [Su(var)20504/

Su(var)20505]. Our exceptional findings for chromosome 4 genes

demonstrate a unique role for HP1a in this domain, affecting RNA

pol II distribution as well as overall gene expression. The data

indicate that the specific, high enrichment of HP1a over actively

transcribed gene bodies on chromosome 4 positively regulates

gene expression, and reduces 59 accumulation of RNA polymerase

at these genes, possibly by promoting elongation and/or by

interfering with pausing.

POF mutants also show an altered RNA pol II distribution
on chromosome 4

We speculated that disrupting chromosome 4’s unique chro-

matin structure by removing POF would also affect the RNA pol

II distribution. Thus, we investigated the relationship between

POF and polymerase pausing using homozygous pof D119 third

instar larvae. pof D119 is a null mutant that lacks the first and part of

the second exon of the POF coding sequence [36]. 79% of POF

enrichment seen in wildtype is absent in pof mutants (Figure S10B).

The gene body POF signal is absent in the mutant, while the

remaining signal is TSS-associated and most likely represents

cross-reactivity. As observed for HP1a mutants, we see a shift from

a broader distribution of RNA pol II in the wildtype to a TSS-

biased enrichment in the pof mutant (Figure 5A and 5B), with a

significant decrease of RNA pol II enrichment over the gene body

(p,2.01e-7). Thus, most genes on chromosome 4 (63 of 73) show

an increase in PI, similar to what we observed in mutants lacking

HP1a (Figure S13). The PI changes on chromosome 4 (relative to

wildtype) are significant (p,3.9e-5), but those for the remainder of

the genome are not (Figure 5C). Also similar to HP1a mutants, this

shift in RNA pol II distribution, specifically the reduction of RNA

pol II over the gene body, is unique to chromosome 4.

To develop a better understanding of the genes undergoing a

shift in RNA pol II distribution in the HP1a and POF mutants, we

examined their association with various chromosomal proteins in

wildtype (Figure S14). We find no exceptional enrichment for any

of the additional chromosomal proteins we examined. Correlating

the change in PI observed for the chromosome 4 genes in the

HP1a and POF mutants with protein enrichment levels yields only

low correlation values, with the highest value being r = 0.39 for

RPD3 (Figure S14B). Together, our data from the HP1a and POF

mutants suggest that chromosome 4 genes specifically respond to

the disruption of their unique chromatin environment. That

environment is dominated by high levels of HP1a over actively

transcribing gene bodies, along with enrichment of POF –

conditions that surprisingly result in RNA pol II enrichment over

the gene bodies and low pausing indices.

HP1a recruitment to chromosome 4 occurs by two
mechanisms, one POF-dependent, one POF-independent

It is likely that loss of POF or HP1a has a profound impact on

the overall chromatin composition of chromosome 4, as suggested

by the altered polymerase dynamics. To test this hypothesis, we

investigated the relationship between EGG, POF, HP1a,

H3K9me2, and H3K9me3 in several mutants at the third instar

larval stage. ChIP-chip analysis of pof D119 chromatin reveals that

over 90% of the HP1a enrichment observed on chromosome 4 in

wildtype is abolished, and HP1a is now enriched in scattered peaks

rather than the very broad domains observed in wildtype

(Figure 6B, upper panel); these peaks are absent in profiles from

HP1a mutants. Pericentric heterochromatin of chromosomes X, 2,

and 3 (not normally associated with POF) retains strong

enrichment for HP1a (Figure 6B, lower panel). Furthermore, we

find that the strong HP1a enrichment over active gene bodies seen

on wildtype chromosome 4 is lacking in pof mutant larvae

(Figure 6B and 6D). Interestingly, the HP1a peaks remaining in pof

mutants are located near repeats, with a median distance to

repeats of 38 bp, significantly shorter than the 132 bp expected

under a random distribution derived from chromosome 4 (Figure

in the gene body of the mutants for chromosome 4 genes, but not for the control euchromatic genes. The TSS-proximal RNA pol II peak also changes
in the mutants compared to wildtype, moving approximately 68 bp and 50 bp downstream, respectively. B. Scatter plot showing enrichment of RNA
pol II at the promoter region (+/2500 bp of TSS, top panel) and gene body (bottom panel). In both HP1a and POF mutants, the RNA pol II enrichment
decreases significantly only in the gene body. C. Pausing index (PI) changes specifically on chromosome 4 in HP1a and POF mutants. In both mutants,
PI for chromosome 4 genes increases to a range similar to the other chromosomes. D. Examples of the shift of RNA pol II in four chromosome 4 gene
regions in the mutants. In Pur-alpha, no probes were available from 581 kb–584 kb. E. Fold changes of expression level (FPKM) of chromosome 4
genes in the HP1a mutant compared to the wildtype. Data from third instar larvae.
doi:10.1371/journal.pgen.1002954.g005
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S15A, p,0.001). (Note that our assay is restricted to uniquely

mapping sequences and does not score identical repeats. Due to

the incomplete genome assembly, it is formally possible that some

of the sequences attributed to chromosome 4 also exist in the

unassembled portions of the Drosophila genome.) This finding

indicates that there are two mechanisms recruiting HP1a to

chromosome 4: the majority of the HP1a recruitment is POF-

dependent, but a significant amount of HP1a recruitment is

targeted to repeat clusters, and this recruitment is independent of

POF.

H3K9me2 and H3K9me3 levels are reduced on the
transcribed genes of chromosome 4 in pof D119 mutants

ChIP-chip data also reveal abnormal H3K9 methylation

patterns in pof mutant larvae on chromosome 4 (Figure 6 and

Table S7). In wildtype, H3K9me2 and H3K9me3 are enriched

along chromosome 4, with H3K9me3 enriched most strongly over

transcribed gene bodies, mimicking POF and HP1a. In pof

mutants, the extent of the H3K9me2 and H3K9me3 enriched

domains on chromosome 4 is reduced chromosome-wide by 40%

and 59%, respectively, regardless of wildtype POF enrichment

levels in these domains (POF+/POF2; Table S7). The enrichment

levels of H3K9me2 and H3K9me3 on chromosome 4 are

decreased by 36% and 40%, respectively (Figure 6A), whereas in

pericentric heterochromatin they are slightly increased in the pof

mutant (Figure 6A). H3K9me2 and H3K9me3 enrichment levels

are significantly decreased in actively transcribed regions (37%

and 49% reductions), with little change observed in silent regions

(p.0.05, Figure 6C and 6D). These results indicate that POF has

a positive effect on H3K9me2/3 enrichment only on chromosome

4 and specifically in transcribed domains. The regions of

H3K9me2/me3 enrichment that remain in the pof mutant

correlate well with the remaining HP1a enrichment regions, with

82.8% of the HP1a enriched sequences found embedded in

H3K9me2 regions, and 98% of the HP1a enriched regions

overlapping with H3K9me3 regions. This positive correlation

resembles that observed in pericentric heterochromatin; one now

sees higher levels of HP1a, H3K9me2, and H3K9me3 over the

intergenic and silent gene regions. The overlap suggests that the

remaining H3K9 methylation might serve as a ‘‘seed’’ to recruit

the residual HP1a observed in repeat-rich regions of chromosome

4, but that the recruitment of HP1a to the body of active genes

requires POF. Alternatively, it is possible that HP1a is directly

recruited to repetitive sequences, and can then recruit the

Figure 6. Lack of POF leads to large-scale changes in HP1a and H3K9me2/3 and demonstrates that HP1a on chromosome 4 consists
of POF-dependent and -independent pools. A. Mutations in POF alter H3K9me2, H3K9me3 and HP1a enrichment on chromosome 4.
Enrichment levels (M-values) are shown for H3K9me2, H3K9me3, and HP1a on chromosome 4 (left) and in pericentric heterochromatin (right) in
wildtype (dark color) and pof D119 homozygous mutant (light color) third instar larvae. Error bars: Standard error of the mean (SEM). B. Browser shots
illustrating the loss of HP1a on chromosome 4 (top) in pof D119 homozygous mutant third instar larvae and the retention of high levels of HP1a in
pericentric heterochromatin (bottom panel). The M-value scale (Y-axis) is identical for wildtype and mutant but differs between marks (0–3 for
H3K9me2 and H3K9me3; 0–4 for HP1a). C. Metagene plots showing H3K9me3 and H3K9me2 levels are reduced mainly over active genes on
chromosome 4 in the mutant. Genes on chromosome 4 were divided into transcriptionally active (left column) and transcriptionally silent (right)
based on RNA-seq data. D. The changes in H3K9me2, H3K9me3, and HP1a enrichment induced by the pof mutation correlate with gene features on
chromosome 4. Changes in H3K9me2/me3 and HP1a enrichment (Y-axis: smoothed M-values) are examined separately for TSSs of actively transcribed
genes, gene bodies of active genes, and silent regions on chromosome 4. Error bars: SEM.
doi:10.1371/journal.pgen.1002954.g006
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necessary enzymes for generating the H3K9 methylation in these

domains.

POF deposition is independent of HP1a
Polytene chromosome analysis had suggested that HP1a and

POF enrichment on chromosome 4 are interdependent [22,36]. In

order to verify this at a higher resolution, we carried out POF

ChIP-chip analysis in HP1a mutants. As expected, ,94% of the

HP1a enrichment in wildtype is absent in the trans-heterozygous

mutant third instar larvae (Su(var)20504/Su(var)20505), both in

pericentric heterochromatin and on chromosome 4. However, the

POF distribution and its enrichment levels on chromosome 4 are

unaffected in this mutant strain (p.0.05; Figure 7 and Table S7).

This finding implies that POF recruitment to chromosome 4 is

largely independent of HP1a. Alternatively, HP1a could be

involved in an initial recruitment in the early embryo (when

heterochromatin is formed), but be unessential for maintenance of

POF association.

H3K9me2/3 distributions on chromosome 4 depend
both on HP1a-dependent and independent mechanisms

The significantly altered H3K9 methylation on chromosome 4

in the pof mutants suggests the possibility of a similar effect in

mutants lacking HP1a, leading us to investigate H3K9 methyla-

tion levels on chromosome 4 and in pericentric heterochromatin in

HP1a mutants. We find that both H3K9me2 and H3K9me3 are

significantly decreased in pericentric heterochromatin (p,0.001,

Figure 7A). Significant depletion of H3K9me2 (to 11.1% of

wildtype) and H3K9me3 (to 33.3% of wildtype) is seen on

chromosome 4 as well (Figure 7A and Table S7). With the

exception of the first (centromere-proximal) 70 kb of assembled

chromosome 4 sequence (discussed below), the regions of

H3K9me3 enrichment that remain in the HP1a mutant are

correlated with POF binding sites (69.1% retained in POF-positive

regions while 30.9% retained in POF-negative regions, Table S7).

In contrast, H3K9me2 is lost at similar rates in POF-positive and –

negative portions of chromosome 4. Overall, it appears that HP1a

is required in pericentric heterochromatin and chromosome 4 for

wildtype levels of H3K9 methylation, but that a low level of both

methyl marks is able to persist in the absence of HP1a. We suggest

the possibility that the HP1a-dependent H3K9 methylation is

mediated by the HP1a-interacting H3K9 HMT SU(VAR)3-9

[13], while the residual H3K9 methylation observed in the mutant

is mediated by a different HMT, such as EGG or G9a.

EGG is required for recruitment and/or maintenance of
POF and HP1a at the majority of binding sites on
chromosome 4

The altered H3K9 methylation in mutants lacking POF or

HP1a led us to consider the involvement of the H3K9 HMTs in

generating the distinct chromatin structure of chromosome 4.

EGG is the Drosophila SETDB1 class H3K9 histone methyl-

transferase, and it has been reported to be a major H3K9

methylation-producing methyltransferase on chromosome 4 based

on immunohistochemistry and position effect variegation exper-

iments [20–22,37]. Examining chromatin from homozygous

egg10.1-1a third instar larvae ([21]; null mutants, derived from a

heterozygous stock carrying a GFP balancer), we find a number of

significant changes in enrichment profiles compared to wildtype,

primarily on chromosome 4 (Figure 8A and 8B). Overall levels of

POF were significantly depleted (decreased by 63%, Figure 8A),

with only 18% of binding sites remaining on chromosome 4 (Table

S7). Similarly, the HP1a-enriched regions were reduced by 83.2%

and the level of enrichment of HP1a was decreased by 79% (Table

S7, Figure 8A). These findings are consistent with the depletion of

POF and HP1a seen on egg mutant polytene chromosomes [22].

Interestingly, some strong HP1a binding sites remain, which

suggests that recruitment of HP1a to these sites is independent of

EGG (Figure 8B). 63.9% of the HP1a peaks remaining in egg

mutants coincide with HP1a peaks retained in the pof mutant

(Table S7). HP1a peaks retained in egg mutants (and pof mutants)

are within TE-rich regions (medium distance to a TE is 19 bp

compared to the 135 bp of random expectation, p,0.001, Figure

S15B). Thus, the enrichment profiles from egg mutants suggest that

EGG is required for the majority of the recruitment and/or

maintenance of POF and HP1a at actively transcribed genes, but

not at some repeats.

Loss of EGG protein alters the distribution of H3K9me2
and H3K9me3 on chromosome 4

We also investigated the effects of reduced EGG levels on H3K9

methylation. In egg10.1-1a mutants, we observed a significant

reduction of H3K9me2 and H3K9me3 on chromosome 4

(decreased by 61% and 84%, respectively in Figure 8A, Table

S7). While the overall H3K9me2/me3 level on transcribed genes

of chromosome 4 dropped significantly (Figure 8B), there were

several residual enriched areas, where H3K9me2/me3 was

maintained despite the absence of EGG (22.7%/19.4% enriched

regions remaining respectively, Table S7; Figure 8B, top panel;

and Figure 8D). The remaining H3K9me2 and H3K9me3

enrichment is similar to that observed in the pof mutant

(Figure 6). This finding implies that these residual H3K9me2/

me3 enriched domains are produced by an H3K9 HMT other

than EGG. However, whether this activity is restricted to the

mutant condition or is present in the wildtype as well is currently

unclear and will require further experiments. It is interesting to

note that the residual H3K9me2 enriched regions coincide with

regions of residual HP1a binding in this mutant. As HP1a is

known to bind to H3K9me2/H3K9me3, this finding suggests that

the residual H3K9me2/me3 is capable of recruiting HP1a in the

absence of EGG and POF. Conversely, the presence of HP1a

could recruit an HMT such as SU(VAR)3-9, a known HP1a

binding protein, to the region, resulting in H3K9 methylation.

The ,70 kb closest to the centromere in the assembled
sequence of chromosome 4 is a pericentric-
heterochromatin-like domain where HP1a, H3K9me2,
and H3K9me3 deposition are independent of POF and
EGG

In several of our analyses the most centromere-proximal portion

of the assembled chromosome 4 sequences shows a response to the

depletion of the various proteins that is clearly distinct from that of

the remainder of the chromosome. For example, in chromatin

from third instar larvae lacking POF (pof D119), HP1a, H3K9me2

and H3K9me3 are maintained at a level and density similar to

wildtype in the ,70 kb of assembled sequence adjacent to the

centromere (Figure S16). A similar effect is seen in EGG mutant

larvae - HP1a and H3K9 methylation are reduced along most of

chromosome 4, but maintained in this same ,70 kb region

(Figure 8C). Overall, this domain behaves similarly to the

pericentric heterochromatin regions of chromosomes X, 2, and

3, where mutations in pof and egg do not affect the enrichment of

HP1a and H3K9 methylation. This finding suggests that the

proximal ,70 kb of chromosome 4 can be considered to be

pericentric heterochromatin, with chromatin characteristics dis-

tinct from those of the remainder of distal chromosome 4. Our
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data support the conclusion that enrichment of HP1a, H3K9me2,

and H3K9me3 in pericentric heterochromatin (including the basal

portion of chromosome 4) is established by a different mechanism

than the enrichment of these same marks over active gene bodies

on chromosome 4. Inter-genic clusters of repeats on chromosome

4 are likely to be assembled into heterochromatin by the same

mechanism as that operating in pericentric regions.

Discussion

The genome-wide enrichment profiles of 20 histone modifica-

tions and 25 chromosomal proteins demonstrate the distinct

nature of chromatin on Drosophila chromosome 4. As anticipated

based on the behavior of transgene reporters [10,11,24], we found

that chromosome 4 sequences are almost ubiquitously packaged

with marks commonly associated with heterochromatin,

H3K9me2, H3K9me3, HP1a, and HP2 (Figure 1). The TSSs of

active genes are depleted for these marks (Figure 3). Surprisingly,

‘‘permissive’’ domains, which allow full expression of reporter

genes, were found not to resemble euchromatin, but to show

evidence of Polycomb regulation (associated with H3K27me3 and

PC in some cell types) (Figure 1). The association with Polycomb

marks is cell-type specific; thus, some genes on chromosome 4

appear to be able to switch between the two main silencing systems

in what appears to be a developmentally regulated process. We do

not know the state of the Polycomb regulated domains in the cells of

the eye imaginal disc, where white reporter expression is required

to result in a red eye phenotype. It is possible that in these cells the

Polycomb regulated domains are associated with its activating

antagonist, trithorax, and its partners. However, packaging in the

PC state, which appears to exclude HP1a and H3K9me2/3 in this

situation, is sufficient to allow DNase1 hypersensitive site (DH site)

formation at the genes in these domains in BG3 cells, while such

sites are not evident when the same genes are packaged with HP1a

and H3K9me2/3 in S2 cells (modENCODE data tracks; www.

modENCODE.org). Given that loss of DH site formation has been

observed for the variegating reporter [38], a domain that permits

DH site formation may be sufficient for reporter expression.

Due to the unusual chromatin environment, chromosome 4

genes experience a unique regulatory system and display

decreased polymerase pausing (Figure 4). Mutant analysis

indicates that the RNA pol II distribution pattern is dependent

on HP1a (Figure 5). In mutants lacking HP1a or POF, enrichment

of RNA pol II decreases in the gene bodies, leading to an increase

in PI due to the now strongly TSS-biased RNA pol II distribution

(Figure 5). This shift in RNA pol II seen in pof mutants is

potentially an indirect effect due to the inability to recruit HP1a to

active gene bodies in the absence of POF. Alternatively, both

HP1a and POF together might be required for the wildtype RNA

pol II distribution – and the decrease of polymerase pausing -

normally seen on chromosome 4. How HP1a, and possibly POF,

influence polymerase distribution is still unknown. This influence

might occur at various steps of RNA pol II regulation, either by

interfering with the establishment, maintenance, or resolution of

the paused polymerase, or by promoting elongation. For example,

the Positive Transcription Elongation Factor b (P-TEFb) and

PAF1C act by promoting elongation [39]. On the other hand, Min

and colleagues found that in mouse embryonic stem cells,

‘‘bivalent’’ genes associated with PRC1 and PRC2 display low

levels of polymerase pausing, possibly due to their chromatin

structure [40]. POF’s influence could be mediated by its RNA

recognition motif [16] and its ability to interact with RNA

transcripts [19], leading to a positive effect on gene expression

[19,36]. Our data, however, indicate that POF alone is insufficient

to determine the RNA pol II distribution on chromosome 4 genes,

and that HP1a is vital for their regulation. Thus, further work is

needed to elucidate the exact mechanism of interaction between

POF, HP1a, and the polymerase.

Another protein to consider in the regulation of chromatin

structure and RNA polymerase distribution on chromosome 4

genes is JIL-1, which is enriched on chromosome 4 (Figure 1). JIL-

1 is an H3S10 kinase; it limits heterochromatin extent, as in its

absence, HP1a and H3K9me2 spread to new genomic regions

[41–44]. Depletion of JIL-1 overall has little effect on gene

expression [45], with the major effect being on the X chromo-

some, with approximately 10% of the genes affected, based on our

analysis. In contrast, ,5% of the chromosome 4 genes are

affected, less than the percentage of X chromosome genes but

slightly more than seen in the remainder of the genome. As in

HP1a and POF mutants, the expression of the affected genes

decreases. However, given the small number of genes affected by

JIL-1 depletion, the impacts of HP1a/POF depletion are unlikely

to be dependent on JIL-1. This interpretation is supported by the

genetic interaction analysis of JIL-1 and HP1a, which indicates

that their mutations counteract each other’s effects, and that the

spread of H3K9me2 triggered by Jil-1 mutations is not dependent

on HP1a [46].

While HP1a is best known for its role in heterochromatin

formation and silencing, several reports have also linked HP1a to

regulation of transcriptional activity of both heterochromatic and

some euchromatic genes [47–49]. Heterochromatic genes light and

rolled are reported to be dependent on a heterochromatic

environment, and specifically on HP1a, for optimal expression

[34,50], and we find that the majority of the chromosome 4 genes

show a similar dependence (Figure 5D). The distribution of

H3K9me2/me3 at several active heterochromatic genes shows

depletion at the TSS [51], as reported here for chromosome 4

genes. However, it has recently been reported that two chromo-

some 4 genes, CAPS and Dyrk3, lose DNase accessibility at the 59

DH site in the absence of HP1a [52]. Thus, while absence of HP1a

and other silencing marks from the TSS is associated with gene

expression in heterochromatic and chromosome 4 genes, the

presence of HP1a in the domain as a whole appears to be required

for DH site formation at these genes. In contrast, HP1a domains

are prohibitive for DH site formation at the TSSs of eukaryotic

reporter genes inserted into these regions [38].

In euchromatin, we have found HP1a associated with a number

of TSSs, a finding that is supported by the detection of small

amounts of HP1a in chromosome arms of polytene chromosomes

[12]. Others have identified HP1a as a positive regulator of more

than 100 genes, associating with the transcript and apparently

facilitating elongation [35]. HP1a has been reported to interact

Figure 7. Lack of HP1a does not lead to a loss of POF from chromosome 4. A. H3K9me2 and H3K9me3 levels decrease in HP1a mutants,
while POF enrichment is not reduced. The smoothed M-value (Y-axis) is shown for pericentric heterochromatin (right) and chromosome 4 (left)
comparing wildtype (dark color) and trans-heterozygous Su(var)20504/Su(var)20505 mutants. Error bars: SEM. B. Browser shot illustrating the retention
of POF enrichment on chromosome 4 in HP1a mutants (top panel) and depletion of H3K9me2 and H3K9me3 both in chromosome 4 (top) and
pericentric heterochromatin (bottom). The M-value scale (Y-axis) is identical for wildtype and mutant ranging from 0 to 3. C. Changes in H3K9me2,
H3K9me3, and HP1a enrichment at TSSs of actively transcribed genes, over gene bodies of active genes, and in silent regions on chromosome 4 in
HP1a mutant. Error bars: SEM.
doi:10.1371/journal.pgen.1002954.g007
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with dKDM4, an H3K36 demethylase, [53], whose yeast

homologs promote transcript elongation [54]. Thus, there are

precedents for an ‘‘activating’’ role for HP1a, and an interaction

with dKDM4 provides an attractive model for how HP1a might

influence RNA pol II processivity and pausing. However, what

remains to be determined is why polymerase pausing would be

affected specifically on chromosome 4 rather than also affecting

genes in pericentric heterochromatin. We note that while the

overall pericentromeric domains are strongly enriched for HP1a,

one does not see the increase over the gene body observed for the

chromosome 4, and hence these genes do not exhibit the same

contrast between TSS and gene body observed for chromosome 4

genes (Figure 3). POF may play a role in enhancing HP1a

presence at active genes on chromosome 4.

The chromatin structure analysis we present from mutants

lacking POF, HP1a, and EGG is mostly in agreement with

previously published results based on polytene chromosome

analysis. On chromosome 4, lack of POF induces loss of HP1a

[36], H3K9me2 [22], and H3K9me3 (our study). However, our

higher resolution analysis reveals a pool of HP1a, H3K9me2, and

H3K9me3 associated with repeated sequences on chromosome 4

that is independent of POF. Also in contrast to prior findings [36],

our results indicate that POF is maintained on chromosome 4

independent of HP1a, as mutants lacking HP1a still show a

normal POF enrichment pattern. Note that HP1a depletion was

accomplished here by a heteroallelic cross; thus HP1a was present

during the initial assembly of heterochromatin.

It has been postulated that POF is recruited to chromosome 4

from a site close to the centromere of the chromosome, based on

translocation studies [55]. However, the affinity of POF for

transcribed genes leads to an enrichment pattern that changes

from cell type to cell type, arguing against a simple recruitment

and spreading model (comparison of modENCODE data from

Bg3 and S2 cells). Our analysis of mutants (resulting in depletion)

Figure 8. Lack of EGG leads to large-scale changes in POF, HP1a, and H3K9 methylation specifically on chromosome 4. A. Depletion
of EGG alters H3K9me2/3, HP1a, and POF enrichment. Scaled enrichment is shown on chromosome 4 (left) and in pericentric heterochromatin (right)
comparing wildtype (dark color) and egg 10.1-1a homozygous mutant (light color). Error bars: SEM. B. Browser shots showing the reduction of POF,
HP1a, and H3K9me2/3 on chromosome 4 (top panel) and the relatively small change in pericentric heterochromatin observed in egg mutants. The M-
value scale (Y-axis) is identical for wildtype and mutant ranging from 0 to 3. C. The 70 kb proximal region on chromosome 4 shows minimal changes
in POF, HP1a, and H3K9me2/3 levels in egg mutants, distinct from the alterations in the remainder of the chromosome illustrated in B. The M-value
scale (Y-axis) is identical for wildtype and mutant ranging from 0 to 3. D. Changes in H3K9me2/me3, HP1a, and POF enrichment (Y-axis: smoothed M-
values) are examined separately for TSS of actively transcribed genes, their gene bodies, and silent regions on chromosome 4. Error bars: SEM. Data
from third instar larvae.
doi:10.1371/journal.pgen.1002954.g008
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of Su(var)205 (HP1a), egg, and pof products instead suggests a model

where there is a simultaneous requirement for EGG and POF,

which together create conditions to recruit HP1a to active gene

bodies on chromosome 4, presumably utilizing H3K9 methylation

by EGG. EGG and POF are reported to physically interact with

each other in vivo [22], providing a mechanism for this process.

How the complex is targeted to chromosome 4 active genes

remains to be established.

An interesting aspect of our study is that on chromosome 4, the

association between HP1a, H3K9me2, and H3K9me3 is substan-

tially different from what is observed in pericentric heterochro-

matin (Figure 2). The loss of the strong correlation between

H3K9me2 and H3K9me3 on chromosome 4 is likely due to

differences in H3K9 HMTs. While little is known about G9a, both

EGG and SU(VAR)3-9 have been examined in our study and by

others [20–22,56,57]. Both EGG and SU(VAR)3-9 are found on

chromosome 4, but the predominant H3K9 methylation signal

depends on EGG [20–22,37]. Our analysis suggests that

H3K9me2 and H3K9me3 enrichment on chromosome 4 reflects

both HP1a-dependent and HP1a-independent mechanisms.

H3K9me2 and H3K9me3 enrichment on chromosome 4 reflects

an EGG-dependent mechanism to modify the histone over the

body of the genes, and an EGG-independent mechanism to

modify the histone associated with repeat sequences (Figure 8).

Presumably the latter reaction is carried out by SU(VAR)3-9. We

suggest that this activity of SU(VAR)3-9 was missed in the

polytene chromosome studies of Su(var)3-9 mutants [13], as EGG

appears to be responsible for ,80% of the H3K9me2/me3 signal

on chromosome 4 in our analysis. Currently, it is unclear how the

HMT activities on chromosome 4 are coordinated. In HeLa cells,

several H3K9 HMTs interact with each other [58], thus providing

potential mechanisms for coordination. However, how the

enzymes on Drosophila chromosome 4 produce the H3K9me2

and H3K9me3 enrichment pattern as well as the active gene-

specific increase in H3K9me3 remains to be discovered.

The available data suggest the following model for the assembly

of chromatin on chromosome 4 and regulation of the genes in this

domain (Figure 9). Two mechanisms recruit HP1a to chromosome

4, one dependent on POF and EGG, the other independent of

these components. POF is required for the recruitment of HP1a

and H3K9 methylation in gene bodies of actively transcribed

genes, and EGG appears to be required for significant recruitment

or stabilization of POF. POF in turn interacts with the nascent

transcript, positively affecting transcript output. Neither POF nor

EGG is required for the recruitment of HP1a and the presence of

H3K9me2/me3 at repeat clusters (and silent genes) on the

chromosome 4. These findings suggest that the same general

mechanisms that result in heterochromatic packaging of repeti-

tious, TE-derived DNA in pericentric heterochromatin are at work

here as well. Studies in plants and some fungi suggest that small

RNAs play a role in targeting heterochromatin formation, and

there is growing evidence for such a mechanism establishing

heterochromatin patterns in the germline and early embryo of

Drosophila [59,60]. However, direct targeting of one of the

heterochromatin components by other means (such as direct DNA

recognition) remains a possibility. The analysis above clearly shows

that chromosome 4 is a mosaic of HP1a-associated domains, with

each of the two modes of assembly detected here potentially

impacting gene expression.

Materials and Methods

Datasets used are listed in Table S1 (cell lines) and Table S2

(mutants). Flybase version 5.12 was used for all analyses.

Additional details on materials and methods can be found at

www.modENCODE.org.

Fly stocks and culture conditions
Fly stocks were maintained on standard cornmeal media at

25uC with 70% humidity [61]. Mutant third instar larvae lacking

HP1a were recovered from a cross of flies carrying the Su(var)20504

allele [62] over a GFP balancer to flies carrying the Su(var)20505

allele [62] over a GFP balancer by selecting for lack of GFP.

Mutant third instar larvae lacking POF were recovered from a

homozygous stock of the pof D119 allele [36]. Mutant third instar

larvae lacking EGG were recovered from a heterozygous stock

carrying the egg10.1-1a allele [21] over a GFP balancer by selecting

for larvae lacking GFP.

Cell lines
S2-DRSC cells (stock #181) and ML-DmBG3-c2 cells (stock

#68) were obtained from the Drosophila Genome Resource

Center. Both cell lines are grown at 25uC with 70% humidity

according to modENCODE protocols. S2-DRSC cells were

grown to a density from 106 to 107 cells/ml in Schneider’s media

supplemented with 10% FCS (fetal calf serum), and ML-DmBG3-

c2 cells were grown to a density from 26106 to 1.26107 cells/ml

in Schneider’s media supplemented with 10% FCS and 10 mg/ml

insulin.

Antibody characterization
All antibodies used for ChIP experiments were characterized

using immunoblotting or immunofluorescence to ensure the

specificity of the antibody to recognize the histone modification

or chromosomal protein in question. Validation protocols for

histone antibodies were described in detail in a recent article and

consisted of a test for cross-reactivity with non-histone Drosophila

proteins as well as a test for modification specificity [63]. Other

chromosomal proteins were tested by two methods, immuno-

blotting or immunofluorescence, to check for cross-reactivity with

non-target proteins. By western blot analysis, an antibody

Figure 9. A model illustrating the two mechanisms proposed
for HP1a assembly on chromosome 4. In active transcribed
regions, POF and EGG are recruited, which leads to high levels of HP1a
across the gene body (left). Details are unknown; POF is not reported to
interact directly with HP1a, so other protein partners may be involved,
in addition to HP1a binding to H3K9me2/3. The chromatin complex
containing POF, HP1a and other partners has a general positive effect
on RNA pol II – possibly by affecting transcription elongation -
specifically on chromosome 4. In silent, repeat-rich regions, which lack
POF enrichment, H3K9me marks deposited by a second histone
methyltransferase (presumably SU(VAR)3-9) lead to a POF-independent
assembly of HP1a–containing chromatin (right). Note that neither EGG,
POF, nor SU(VAR)3-9 are known to interact directly with DNA; the
binding described occurs in a chromatin context.
doi:10.1371/journal.pgen.1002954.g009
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meeting the following two criteria was considered passed: 1) a

band of the correct size was detected in the wildtype sample,

accounting for more than 50% of the total signal in the lane; 2)

the intensity of the specific band decreases to less than 50% in

mutants or knockdown samples. If immunoblots were unsuccess-

ful, immunofluorescence was used as a characterization measure.

For immunofluorescence tests, an antibody meeting the following

two criteria were considered passed: 1) the immunofluorescence

pattern must conform to expectations (for example, nuclear

staining for a chromatin protein); 2) no immunofluorescence

signal is detected in mutants. Some antibodies were considered

validated if their ChIP profiles were consistent with those of a

second, validated antibody to the same protein or to a known

complex member. Antibody characterization data are part of the

metadata provided with each dataset; they are available at www.

modENCODE.org.

Chromatin immunoprecipitation and microarray
processing

Protocols for the preparation of formaldehyde cross-linked

chromatin from cultured cells, ChIP conditions, and array

hybridization conditions are described in a recent article by

Kharchenko and colleagues [14]. For all analyses, heterochroma-

tin/euchromatin border positions previously defined by

H3K9me2 enrichment were used [15].

Data analysis
Processing of ChIP–chip data. The M-value (log2 ratio of

signal intensities between ChIP and input) was calculated for each

array dataset. Data normalization and identification of regions (or

peaks) with significant enrichment were performed as described in

Kharchenko et al [14]. At least two biological replicates were

performed for each ChIP profile included in the analysis. The

independent biological replicates were considered consistent if

their target lists overlapped more than 75% or if the top 40% of

the targets in each replicate had more than 80% in common. For

correlation and other analyses, 500 bp bins were used to average

the enrichment levels. For the heatmap visualization, metagene

profiles were obtained with a scaled gene body of 3 kb. The

extended regions of +/22 kb from the TSS and TES were

included.

Chromatin states model. The five-state chromatin annota-

tions (based on the K-means algorithm) for the heterochromatin

regions in BG3 and S2 cells were obtained from [15]. The number

of states in this model was derived by combining states with similar

enrichment patterns after starting with a higher number of states.

Gene expression analysis. RNA-seq data for BG3 cells, S2

cells, and third instar larvae from Cherbas and colleagues were

used for this analysis [64]. Reads Per Kilobase of exon model per

Million mapped reads (RPKM) was calculated for each gene.

Based on the distributions of expression levels, genes with an

log10(RPKM+1).0.6 were considered expressed for BG3 and S2

cells; the threshold was log10(RPKM+1).0.4 for third instar

larval data. This definition of expressed genes was used throughout

the paper, e.g. in metagene analyses.

Polymerase pausing analysis. For GRO-seq analysis, the

pausing index (PI) was calculated according to the method

developed by Larschan and colleagues [26], defining the PI of a

gene as the ratio of signal at the 59end (first 500 bp) to the first

25% of the remaining gene body. For our analysis, genes were

divided into three groups: euchromatin, pericentric heterochro-

matin, and chromosome 4 using the border positions for S2 cells

defined by Riddle et al. [15]. A PI threshold value of 10 was used.

To confirm these findings, we also estimated occurrence of

pausing from ChIP-chip data using the PI proposed by Zeitlinger

and colleagues [31], defined as the ratio between the maximum

enrichment value around TSS (+/2300 bp) and the medium

enrichment values over the gene body (600 bp downstream of TSS

to the end of the gene) (Table S3B). Genes with a PI.4 are

considered paused by this method. Genes shorter than 500 bp as

well as overlapping genes were excluded from the analysis.

Significance was determined using a permutation test. To compare

method 1 and method 2, the per transcript data from method 1

was converted to per gene data, and overlap was estimated by

comparing the top scoring 1,000, 1,500, and 2,000 genes. The

overlap is 41% for 1,000 genes, 46% for 1,500 genes, and 50% for

2,000 genes.

For GO analysis, we used the GOToolBox (http://genome.crg.

es/GOToolBox/) to compare the 76 chromosome 4 genes with

GO annotation to the whole genome reference [65]. A

hypergemetrical test with Bonferroni correction was used to

determine significance. For motif analysis, the fraction of

promoters including a pause button motif (KCGRWCG) [29]

was determined using CisGenome [66] with a window of +/

260 bp around the TSS. Significance was determined using a

permutation test. For the TRL (GAGA), inverted TRL, and Inr

motifs, a window of +/2200 bp around the TSS was used. The

Tm analysis was carried out as described by Nechaev and

colleagues [33].

Mutant analysis. Differential gene expression comparing

HP1a depletion to wildtype was performed using RNA-seq data

(GEO accession GSE39083). RNA was prepared from third instar

larvae using Trizol according the manufacturer’s recommenda-

tions. rRNA-depleted cDNA libraries suitable for Illumina

sequencing were prepared and sequencing was carried out by

the Genome Technology Access Center (GTAC) at Washington

University. FPKM (Fragment per Per Kilobase of exon model per

Million mapped reads) values for each gene were calculated using

the output from CuffLinks [67]. The cutoff value between

expressed/silent genes was log2(FPKM+1) = 1.4. To obtain

statistical significances of gene expression changes, we used several

independent tools: BaySeq [68], EdgeR [69], and DESeq [70].

The set of genes detected in all analyses as significant was used for

analysis. Pausing index for HP1a and POF mutants was calculated

as described in [31].

To compare enrichment levels of H3K9me2, H3K9me3, POF

and HP1a in various mutants with those in wildtype, we

normalized the profiles using noise level signals as proposed in

[71]. For each profile, the scaling factor was calculated as the ratio

of the median absolute deviation to the lagged differences between

mutant and WT. This is defined as median|dWT
i - median(dWT

i)|/

median|dMutant
i - median(dMutant

i)|, where dWT
i = xWT

i+1 - xWT
i, ,

and xWT
i, is the log-ratio of the ith probe in WT data. Similarly,

dMutant
i = xMutant

i+1 - xMutant
i, xMutant

i, is the log-ratio of the ith probe

in mutant data. The M-value profiles were then normalized by the

factors. For RNA pol II profiles, we performed quantile

normalization.

Supporting Information

Figure S1 Enrichment of histone marks and chromosomal

proteins in S2 cells. A. Enrichment levels for the novel chromatin

marks reported here are mapped onto the five main combinatorial

chromatin states for heterochromatin as defined in Riddle et al

2011 [15]. Histone marks are shown in panel 1, chromosomal

proteins in panel 2. Repeat enrichment and expression status for

each state are shown in panel 3. Panel 4 illustrates the relationship
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of state and gene structure, while panel 5 shows enrichment/

depletion for each chromosome arm. B. Karyotype view of the

assembled heterochromatic domains defined by the five combi-

natorial chromatin states in A. State A: grey; state B: green; state

C: purple; state D: blue; state E: orange. The enlarged view of

chromosome 4 shows the large fraction of sequences associated

with transcriptionally active TSS and elongation (states B, C, D).

(PDF)

Figure S2 Domains on chromosome 4 supporting strong

reporter expression are under control of the Polycomb/trx system.

A. Red panels: Enrichment profiles for HP1a (bottom), PC

(Polycomb; middle), and their overlay (top) for S2 cells. Blue

panels: Enrichment profiles for HP1a, PC, and their overlay for

BG3 cells. Genes are shown below in black. Red triangles mark

the four domains that support full hsp70-white expression [region 1

near ci (2M-1020; 79,754), region 2 at position 436,655 (7M-201),

region 3 near zfh2 (e.g. 2M-371; 522,600), and region 4 within sv

(4M-1030; 1,119,408) [10,24]]. X-axis: Position along chromo-

some 4 in bp (centromere to the left). Y-axis: Smoothed M-values.

B. hsp70-white reporter lines with variegating eye phenotype are

excluded from regions associated with PC, and DNase I

hypersensitive sites (DHS) are associated with genes in the PC

domains. For hsp70-w reporters, red bars denote insertions with

red eye phenotype (full expression), while black bars denotes

insertions with variegating eyes.

(PDF)

Figure S3 Distribution of chromosomal proteins and histone

marks unique to chromosome 4 in S2 cells. Metagene analysis for

the enrichment (averaged smoothed M-values, Y-axis) for selected

marks is plotted against position relative to the TSS for a 3 kb

scaled metagene (bp, X-axis). The enrichment is examined

separately for active (left) and repressed (right) genes in three

genomic domains, chromosome 4 (top panel), pericentric hetero-

chromatin (middle panel), and euchromatin (bottom panel), with

the number of genes for each category illustrated at the right

corner.

(PDF)

Figure S4 Chromosome 4 genes exhibit unique chromatin

marks compared to genes in heterochromatin and euchromatin in

BG3 cells. Same analysis as shown in Figure 3, now with the same

number of genes (N) as present on chromosome 4 randomly

chosen from heterochromatin (Hetero) and euchromatin (Eu) as

controls.

(PDF)

Figure S5 Chromosome 4 genes exhibit unique chromatin

marks compared to genes in heterochromatin and euchromatin in

S2 cells. Same analysis as shown in Figure S3, now with the same

number of genes (N) as present on chromosome 4 randomly

chosen from heterochromatin (Hetero) and euchromatin (Eu) as

controls.

(PDF)

Figure S6 Heatmap showing the enrichment of select chromo-

somal proteins and histone marks at genes on chromosome 4,

compared to heterochromatin and euchromatin. A. BG3 cells. B.

S2 cells. The region around the TSS and TTS (+/2500 bp) is not

scaled, while the gene body is scaled. Therefore, only genes longer

than 1 kb are considered here. Enrichment is shown in red,

depletion in blue. Eu - euchromatin. Hetero - heterochromatin.

(PDF)

Figure S7 Histogram of the expected incidence of RNA pol II

pausing on chromosome 4. Permutation analysis shows that the

low pausing incidence on chromosome 4 is significantly different

from that expected based on the pausing occurrence in

euchromatin (A. p,3e-5) and pericentric heterochromatin (B.

p,0.00024).

(PDF)

Figure S8 Overlap between genes identified genome-wide as

pausing by the GRO-seq analysis and the RNA pol II ChIP-chip

analysis. The PI was calculated according to [26] (GRO-seq data;

blue) or [31] (RNA pol II ChIP-chip; green).

(PDF)

Figure S9 Gene features in chromosome 4, pericentric hetero-

chromatin, and euchromatin. A. Genes on chromosome 4 are

slightly larger than genes in euchromatin and heterochromatin

(with a median of 8,001 bp vs. 1,907 bp vs. 1,844 bp). B.

Chromosome 4 genes tend to have more exons than genes in

euchromatin and pericentric heterochromatin (with a median of 6

vs. 3 vs. 2). C. Expression levels in different genomic domains are

similar. Expression magnitude [log10(RPKM+1), Y-axis] is

compared between euchromatin, pericentric heterochromatin,

and chromosome 4. The expression levels are slightly higher on

chromosome 4 compared to euchromatin. D. Longer genes exhibit

higher PI, which indicates RNA polymerase is biased toward TSS.

The PI was calculated from GRO-seq data [26]. E. Genes with

more exons tend to show higher PI. The PI was calculated as in

[31] using ChIP-chip data.

(PDF)

Figure S10 Validation of ChIP-chip HP1a and POF enrichment

peaks. A. Fraction of HP1a peaks reduced in HP1a mutants (third

instar larvae). 96% of peaks are significantly reduced. X-axis: M-

value of HP1a peaks in WT; Y-axis: fraction of peaks reduced in

the mutants. B. Fraction of POF peaks reduced in POF mutants

(third instar larvae). 79% of peaks are significantly reduced. X-

axis: M-value of POF peaks in WT; Y-axis: fraction of peaks

reduced in the mutants.

(PDF)

Figure S11 Effect of HP1a depletion on RNA pol II pausing

index. A. Ratio of the PI in mutants lacking HP1a compared to

wildtype. The PI is defined as the ratio between the maximum

enrichment value around TSS (+/2300 bp) and the medium

enrichment values over the gene body (600 bp downstream of TSS

to the end of the gene) [31]. 53 of 74 genes show an increase in PI,

indicated by a ratio larger than 1. B. Histogram of RNA pol II

level fold changes in HP1a mutants (log 2; average per gene) for

genes on chromosomes 2, 3, and X (bottom panel) and genes on

chromosome 4 (top panel), illustrating a decrease of RNA pol II

levels for chromosome 4 genes. C. Relationship between RNA pol

II level changes (Y-axis, in log 2) and expression level changes (X-

axis, in log 10) of chromosome 4 genes in HP1a mutants compared

to wildtype. Data points with x,0 and y,0 correspond to genes

where both RNA pol II and expression levels decrease upon HP1a

depletion (67 of 84 genes on chromosome 4; r = 0.4, Pearson

correlation coefficient).

(PDF)

Figure S12 HP1a-regulated euchromatic genes respond differ-

ently to HP1a depletion than chromosome 4 genes. A. RNA pol II

distribution in wildtype (WT) and HP1a mutants is compared for

chromosome 4 genes and HP1a-regulated genes identified by

Piacentini and colleagues [35]. The promoter region (left) and

gene body (right) are examined separately. B. Bar graphs

illustrating the same data as in A. C. Expression changes observed

in HP1a mutants for HP1a-regulated genes identified by

Piacentini et al. compared to chromosome 4 genes. D. Expression
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changes observed in HP1a mutants comparing chromosome 3R

genes to chromosome 4 genes.

(PDF)

Figure S13 Effect of POF depletion on RNA pol II. A. Ratio of

the pausing index in pof mutants and wildtype. The PI is defined as

the ratio between the maximum enrichment value around TSS

(+/2300 bp) and the medium enrichment values over the gene

body (600 bp downstream of TSS to the end of the gene) [31]. 63

of 74 genes on chromosome 4 show an increased PI. B. Histogram

of RNA pol II level fold changes in pof mutants (log 2; average per

gene) for genes on chromosomes 2, 3, and X (upper) and genes on

chromosome 4 (lower), illustrating a decrease of RNA pol II levels

for chromosome 4 genes.

(PDF)

Figure S14 Relationship between protein enrichment on

chromosome 4 genes and their PI change observed in mutant

lacking HP1a. A. Heatmap illustrating protein enrichment (red –

enrichment, blue – depletion) for genes are ordered by their PI

changes in HP1a mutants (in grey below enrichment panel). Data

source: Third instar larvae. B. Histogram illustrating the

correlation between the enrichment of select proteins at chromo-

some 4 genes with the PI change in HP1a mutants.

(PDF)

Figure S15 Residual HP1a in pof and egg mutants is associated

with repeated sequences. A. Histogram showing the distance

between residual HP1a and repeats in pof mutants. The observed

distance is significantly smaller than the expected distance based

on permutation analysis (38 bp vs. 132 bp, p,0.001). B.

Histogram illustrating the distance between residual HP1a and

repeats in egg mutants. The observed distance is significantly

smaller than the expected distance based on permutation analysis

(19 bp vs. 135 bp, p,0.001).

(PDF)

Figure S16 Heterochromatic marks are maintained at wildtype

levels in the ,70 kb of assembled sequence adjacent to the

centromere in larvae lacking POF (pof D119). ChIP results from

wildtype and mutant larvae are compared. The first panel shows

RNA-seq data from wildtype larvae. X-axis: position along

chromosome 4 in bp; Y-axis: ChIP enrichment for HP1a (top),

H3K9me2 (middle), and H3K9me3 (bottom).

(PDF)

Table S1 Description of ChIP datasets. Overlap of top 40%

peaks – for the replicate experiments, overlap between the top

40% of peaks is calculated, with peaks calls based on p-value

enrichment scores. Overlap based on size-adjusted threshold – for

replicate experiments, overlap between the peaks is determined

with peaks calls based on p-value enrichment scores and adjusted

for the number of peaks called in each experiment. Correlation

coefficient r – correlation coefficient is calculated from the log10 p-

value enrichment scores of the two replicate experiments. When

more than two replicate datasets were available, the average

correlation coefficient is reported.

(XLS)

Table S2 Description of ChIP datasets from mutants. Overlap

of top 40% peaks – for the replicate experiments, overlap between

the top 40% of peaks is calculated, with peaks calls based on p-

value enrichment scores. Overlap based on size-adjusted threshold

– for replicate experiments, overlap between the peaks is

determined with peaks calls based on p-value enrichment scores

and adjusted for the number of peaks called in each experiment.

Correlation coefficient r – correlation coefficient is calculated from

the log10 p-value enrichment scores of the two replicate

experiments. When more than two replicate datasets were

available, the average correlation coefficient is reported.

(XLSX)

Table S3 Polymerase pausing is rare on chromosome 4. Genes

with paused RNA pol II have been identified by two methods. A.

Polymerase pausing determined by GRO-seq analysis in S2 cells

(Method 1). B. Genes with paused polymerase are identified solely

based on ChIP-chip mapping of RNA pol II ([31]; Method 2). The

percentage of paused genes is reported relative to the number of

genes associated with RNA pol II. Note: In the table below, in A,

the analysis is carried out on a per transcript basis. Thus, the total

number of ‘‘genes’’ is inflated as some genes have multiple

different transcripts and TSSs.

(DOCX)

Table S4 Developmental control genes are not depleted among

chromosome 4 genes. GO term analysis demonstrates that the

following terms are significantly enriched among chromosome 4

genes (p,0.05). No terms are significantly depleted.

(DOCX)

Table S5 The frequency of GAGA factor motifs, but not the

pause button sequence, is underrepresented in chromosome 4

promoters. PB - Pause button. GAGA factor (TRL) binding motif

– TRL motif. Inverted GAGA factor binding motif – iTRL motif.

(DOCX)

Table S6 The average Tm of 9-mer sequences downstream of

TSSs on chromosome 4 is significantly lower than on other

chromosomes. The minimum (min.), median, mean, and maxi-

mum (max.) melting temperature (Tm, uC) for 9-mer sequences in

the first 100 bp downstream of all unique TSSs in the D.

melanogaster genome are compared by chromosome arm.

(DOCX)

Table S7 HP1a and H3K9me2/3 enriched regions on chromo-

some 4 in wildtype, pof D119, Su(var)205, and egg10.1a mutant third instar

larvae. Significantly enriched regions based on smoothed M-value

profiles (FDR = 1e-3) are compared between wildtype and mutant.

Note that the magnitude of the enriched peaks is not considered. POF+
region: POF enriched region in wildtype; POF- region: No POF

enrichment in wildtype. HP1a+ region: HP1a enriched region in

wildtype; HP1a- region: No HP1a enrichment in wildtype.

(DOCX)
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