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Abstract

Specialized chromatin containing CENP-A nucleosomes instead of H3 nucleosomes is found at all centromeres. However,
the mechanisms that specify the locations at which CENP-A chromatin is assembled remain elusive in organisms with
regional, epigenetically regulated centromeres. It is known that normal centromeric DNA is transcribed in several systems
including the fission yeast, Schizosaccharomyces pombe. Here, we show that factors which preserve stable histone H3
chromatin during transcription also play a role in preventing promiscuous CENP-ACnp1 deposition in fission yeast. Mutations
in the histone chaperone FACT impair the maintenance of H3 chromatin on transcribed regions and promote widespread
CENP-ACnp1 incorporation at non-centromeric sites. FACT has little or no effect on CENP-ACnp1 assembly at endogenous
centromeres where CENP-ACnp1 is normally assembled. In contrast, Clr6 complex II (Clr6-CII; equivalent to Rpd3S) histone
deacetylase function has a more subtle impact on the stability of transcribed H3 chromatin and acts to prevent the ectopic
accumulation of CENP-ACnp1 at specific loci, including subtelomeric regions, where CENP-ACnp1 is preferentially assembled.
Moreover, defective Clr6-CII function allows the de novo assembly of CENP-ACnp1 chromatin on centromeric DNA, bypassing
the normal requirement for heterochromatin. Thus, our analyses show that alterations in the process of chromatin assembly
during transcription can destabilize H3 nucleosomes and thereby allow CENP-ACnp1 to assemble in its place. We propose
that normal centromeres provide a specific chromatin context that limits reassembly of H3 chromatin during transcription
and thereby promotes the establishment of CENP-ACnp1 chromatin and associated kinetochores. These findings have
important implications for genetic and epigenetic processes involved in centromere specification.
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Introduction

Centromere formation is influenced by both genetic and epi-

genetic processes (reviewed in [1,2,3,4,5,6]). The fundamental

feature that defines active centromeres resides at the chromatin

level; the presence of specialized chromatin in which histone H3 is

replaced by the conserved H3 variant CENP-A (CenH3). CENP-

A is highly enriched at active centromeres and is indispensible for

centromere function. CENP-A chromatin provides a platform for

recruiting kinetochore proteins which in turn direct CENP-ACnp1

targeting and retention; thus CENP-A chromatin serves as an

epigenetic mark allowing propagation of centromeres at specific

loci [1,5,7].

Fission yeast (Schizosaccharomyces pombe) centromeres provide an

excellent model for dissecting the mechanism of CENP-A

chromatin assembly [8]. CENP-ACnp1 chromatin assembles on 7-

10 kb central domain regions which, as at mammalian centromeres,

are surrounded by heterochromatin formed by methylation of

histone H3 lysine 9 [5]. We previously showed that flanking

heterochromatin is required to establish CENP-ACnp1 on the central

domain of naı̈ve plasmid-based minichromosome DNA [9,10].

However, once established, CENP-ACnp1 chromatin is propagated

in the absence of the adjacent heterochromatin. The epigenetic

nature of CENP-ACnp1 assembly in fission yeast is underscored by

the findings that neocentromeres can form at subtelomeric regions

and centromeres can be inactivated on dicentric chromosomes

[11,12]. The assembly of CENP-ACnp1 chromatin at novel

secondary sites could be beneficial for the rescue of acentric

chromosomes but detrimental if activated on normal chromosomes.

Dicentric chromosomes are highly unstable and thus mechanisms

must operate to suppress assembly of CENP-ACnp1 chromatin at

such secondary sites (reviewed in [6]). Related to this, CENP-A is

overexpressed and more CENP-A is incorporated at centromeres in

some tumor cells [13,14]. CENP-A overexpression can trigger
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neocentromere formation resulting in dicentric chromosomes and

consequential genome instability that drives tumor progression

[15,16,17]. Thus mechanisms that prevent promiscuous deposition

of CENP-A into non-centromeric chromatin are important for

preventing genome instability and provide insight into the processes

that normally allow CENP-A deposition.

Accumulating evidence in several organisms indicates that

transcription occurs at centromeres and neocentromeres [18,

19,20,21,22,23], however it is unclear how transcription might

influence CENP-A deposition mechanistically. Recently, we

demonstrated that non-coding RNAs are transcribed by RNA

polymerase II from the central CENP-ACnp1 chromatin domains

of fission yeast centromeres [24]. It is well known that advancing

RNAPII promotes the disassembly of nucleosomes in its path and

this mediates the eviction of H3.1 and its replacement with H3.3

in metazoa (reviewed in [25,26]). Similarly, transcription-coupled

nucleosome disassembly may allow the exchange of H3 for CENP-

A within centromeres. At promoters, chromatin remodeling and

histone acetylation destabilize or remove nucleosomes to allow

transcription factors and RNAPII access to the DNA template.

During transcriptional elongation, nucleosomes in front of

RNAPII are transiently disassembled and histone chaperones,

such as FACT (Facilitates chromatin transcription) and Spt6, act

to recycle the dissociated histones so that the same histones are

reassembled in nucleosomes behind elongating RNAPII

[27,28,29]. Moreover, acetylation of nucleosomes ahead of

RNAPII appears to facilitate the passage of RNAPII through

chromatin, but this acetylation must be removed to restore

chromatin to its original stable state within coding regions. In

Saccharomyces cerevisiae, the Rpd3S histone deacetylase (HDAC)

complex deacetylates histones in coding regions [30,31]. The

integrity of transcribed chromatin has been shown to be weakened

in cells with defective FACT, Spt6 or Rpd3S and as a consequence

cryptic transcription initiates from within coding regions to

produce spurious intragenic transcripts [28,31,32]. S. pombe Clr6

Complex II (Clr6-CII) performs the same function as S. cerevisiae

Rpd3S and is composed of related subunits (Clr6, Pst2, Cph1,

Cph2, Alp13, Prw1; Clr6 = Rpd3) [33].

Here we investigate the contribution of factors that govern

nucleosome dynamics during RNAPII transcription to CENP-

ACnp1 deposition. We find that defects in FACT and Clr6-CII,

which normally restore H3 chromatin integrity during RNAPII

transcription, cause increased CENP-ACnp1 incorporation at non-

centromeric loci when CENP-ACnp1 levels are elevated. FACT

mutants show a strong phenotype, severely disrupt H3 chromatin

integrity on RNAPII genes and promote widespread mis-

incorporation of CENP-ACnp1. In contrast, cells with defective

Clr6-CII display a more subtle disturbance of H3 chromatin

integrity and allow increased CENP-ACnp1 incorporation at more

specific locations, including subtelomeric regions. Remarkably,

Clr6-CII mutants allow the de novo assembly of CENP-ACnp1 and

kinetochore proteins on plasmids carrying centromeric central

domain DNA alone and thus circumvent the requirement for

flanking heterochromatin in the establishment of CENP-ACnp1

chromatin. We propose that CENP-ACnp1 chromatin can assem-

ble de novo on particular genomic regions when the integrity of

H3 chromatin fails to be restored during transcription-induced

chromatin reconfiguration. By extrapolation, at endogenous

centromeres, specific chromatin contexts such as flanking hetero-

chromatin (provided by repetitive elements) or pre-established

centromeric chromatin may alter nucleosome dynamics during

RNAPII transcription to facilitate the replacement of H3 by

CENP-ACnp1.

Results

FACT mutants are hypersensitive to CENP-ACnp1

overexpression
FACT is composed of two evolutionarily conserved subunits,

Spt16 and Pob3 (SSRP1 in human) [34,35]. In budding yeast both

FACT subunits are essential, but fission yeast requires only Spt16

for survival [36]. Thus, Spt16 performs the major functions of

FACT in fission yeast. To fully assess whether FACT modulates

CENP-ACnp1 deposition in fission yeast, we generated temperature

sensitive (ts) alleles of spt16+. Cells with a defect in mechanisms that

prevent inappropriate CENP-ACnp1 deposition in non-centromer-

ic chromatin are expected to be sensitive to CENP-ACnp1

overexpression. We noticed that elevated CENP-ACnp1 levels

(OE-CENP-ACnp1) exacerbate the ts phenotypes in spt16-18 cells

(Figure 1A; for generation of spt16-ts alleles see Figure S1A). Since

different spt16 alleles and pob3D also exhibit sensitivity, this

phenotype is not allele or subunit specific (Figure 1B and 1C). The

effect was greater when CENP-ACnp1 was expressed from the

stronger promoter nmt41 (nmt promoters are described in [37]).

The nmt41 promoter produces 4-fold more GFP-CENP-ACnp1

than the weaker nmt81 version (Figure 1D). The level of OE-

CENP-ACnp1 expressed from nmt41-GFP-cnp1+ and nmt81-GFP-

cnp1+ is comparable in wild-type (wt) and spt16-18 cells (Figure 1D).

This interaction is specific to CENP-ACnp1 since spt16-18 cells are

not sensitive to elevated expression of histone H3 (Figure 1A; see

[38]).

Marker genes placed in the central domain of fission yeast

centromeres are normally silenced and mutations affecting CENP-

ACnp1 deposition exhibit decreased silencing [39]. Silencing of

ura4+ in the central domain (cnt1:ura4+) is largely unaffected in

pob3D cells and in spt16-ts alleles at the permissive temperature

(25uC) (Figure S1B and S1C). Factors involved in CENP-ACnp1

deposition at centromeres often show genetic interactions when

combined with defects in CENP-ACnp1 itself [39]. However, pob3D
does not display reduced growth when combined with cnp1-87

which has a relatively weak mutation in CENP-ACnp1 (Figure

S1D). One explanation for the sensitivity of FACT mutants to

Author Summary

Centromeres are the chromosomal locations at which
kinetochores, the machinery that directs chromosome
segregation, are assembled. In most eukaryotes, centro-
mere location is epigenetically determined, meaning that
the underlying DNA sequence does not dictate where they
are formed. The genome is packaged in particles called
nucleosomes, composed of histone proteins. Centromere
DNA is wrapped around unusual nucleosomes that differ
from those elsewhere in the genome because the histone
H3-like CENP-A replaces the normal histone H3 compo-
nent. We used fission yeast to investigate where CENP-
ACnp1 nucleosomes are formed in cells containing excess
CENP-ACnp1 and how the formation of these non-centro-
meric CENP-A nucleosomes is controlled. H3 nucleosomes
are disassembled and reassembled during transcription by
RNA polymerase II (RNAPII). We show that the normal
process of reassembling robust H3 chromatin on RNAPII
genes is required to prevent CENP-ACnp1 assembly in its
place. Centromeres allow a low level of RNAPII transcrip-
tion, and our analyses suggest that DNA sequences and
chromatin contexts at centromeres may limit the activities
required to stabilize and reassemble H3 chromatin during
transcription in order to promote the establishment of
CENP-ACnp1 chromatin and associated kinetochores.

FACT Is Required to Define CENP-A Assembly Sites

PLOS Genetics | www.plosgenetics.org 2 September 2012 | Volume 8 | Issue 9 | e1002985



elevated CENP-ACnp1 levels but the lack of an interaction with

CENP-ACnp1 mutants is that FACT is required to prevent the

promiscuous incorporation of CENP-ACnp1 in place of H3 at non-

centromeric locations and is not directly involved in maintaining

CENP-ACnp1 chromatin at centromeres. The mis-incorporation of

CENP-ACnp1 at other locations in FACT mutants may cause cell

lethality by interfering with normal chromatin-based processes

such as transcription or possibly due to the induction of ectopic

kinetochores.

Spt16 is required to maintain the integrity of H3
chromatin on RNAPII genes

It is well known that FACT is required for the RNAPII

transcription-coupled reassembly of chromatin on transcription

units in S. cerevisiae [40,41]. However, although the reassembly of

chromatin on transcribed templates with recycled histones is

defective in spt16 mutants, the assembly of chromatin from the free

histone pool remains active so that new histones can be

incorporated. Indeed, the elevated loss of nucleosomes from

transcription units in spt16 mutants enhances their replenishment

with new histones from the free pool [40]. Thus FACT normally

prevents the incorporation of free histones by recycling pre-

existing histones in template-associated nucleosomes during

transcription. Our previous analyses indicate that CENP-ACnp1

and H3 can compete for incorporation into chromatin at

centromeres [38]. If FACT mutants cause elevated turnover of

H3 nucleosomes on RNAPII-transcribed templates in S. pombe

then this might provide the opportunity for CENP-ACnp1 to

replace H3 in non-centromeric transcribed chromatin.

We first tested if, as in S. cerevisiae, FACT is also required for the

reassembly of chromatin on genes transcribed by RNAPII in S.

pombe. The detection of shorter sense and antisense transcripts

initiated from within open reading frames (ORFs) is a hallmark of

defective RNAPII transcription-coupled chromatin reassembly

[28,31,32]. Clr6-CII is the S. pombe equivalent of Rpd3S in S.

cerevisiae and microarray expression profiling previously indicated

the presence of antisense transcripts from a set of genes in S. pombe

cells with defective Clr6-CII [33]. We reasoned that the same

genes may display a similar defect in FACT mutants and selected

three genes (SPBC197.11, pot1+ and msh1+), for northern analyses

in wild-type (wt), spt16-18 and pst2D (Pst2; Sin3-related Clr6-CII

subunit) cells (Figure 2A). Probes complementary to 39 region of

these genes detect short, abnormal transcripts in cells with

defective Spt16 or Pst2 (Figure 2B and 2C) and the transcript

sizes suggest that they originate from within the ORFs. Clr6-CII

preferentially targets transcribed regions to suppress aberrant

transcription initiation, whereas Clr6 complex I (Clr6-CI) acts at

promoters [33]. Consistent with this, spurious intragenic tran-

scripts are detected in cells lacking other Clr6-CII subunits (cph1D,

alp13D) but not in mutants that specifically affect Clr6-CI (pst1-1;

Figure 2C).

To directly determine if chromatin integrity is compromised in

S. pombe cells with defective FACT we measured the levels of H3

Figure 1. Overexpression of CENP-ACnp1 causes toxicity in
FACT mutants. (A) Viability of wild-type (wt) and spt16-18 cells
expressing additional CENP-ACnp1 or H3 at low (nmt81-CENP-ACnp1,
nmt81-H3) or medium (nmt41-CENP-ACnp1, nmt41-H3) levels compared
to empty vector. Cells were grown at 27uC which is semi-permissive for
spt16-18. Phloxine B plates stain dead cells red. (B) Viability of wt, pob3D
and spt16-17 cells expressing additional CENP-ACnp1 at low (nmt81-

CENP-ACnp1) or medium (nmt41-CENP-ACnp1) levels compared to empty
vector at indicated temperatures. (C) Viability of wt and spt16-18 cells
expressing GFP-CENP-ACnp1 from integrated pREP41-GFP-cnp1+ (nmt41-
GFP-CENP-Acnp1) compared to no GFP-CENP-ACnp1 control. (D) Western
analysis of GFP-CENP-ACnp1 levels in wt and spt16-18 cells expressing
GFP-CENP-ACnp1 under endogenous, nmt81 or nmt41 promoter (upper
panel). The intensities of GFP-CENP-ACnp1 and TAT-1 (alpha-tubulin)
signals were measured using LICOR Odyssey Infrared Imaging System
software (Li-COR Bioscience) and the relative intensities of GFP-CENP-
ACnp1/TAT-1 were quantified (bottom panel). GFP-CENP-ACnp1 was
expressed for 24 h at 25uC before harvest.
doi:10.1371/journal.pgen.1002985.g001

FACT Is Required to Define CENP-A Assembly Sites
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Figure 2. Spt16 is required to suppress cryptic transcription initiation and nucleosome loss at RNAPII genes. (A) Schematic of genes
and positions of RNA probes (arrow) used in Northern analysis. (B) Northern analyses of transcripts from SPBC19C7.11, pot1+ and msh1+ genes. RNA
was extracted from cells grown at 25uC (wt, spt16-18), 32uC for 6 h (wt, pst2D) or 36uC for 1 h (wt, spt16-18) after shift from 25uC. Arrow indicates full-
length transcripts. (C) Northern analysis of transcripts from SPBC19C7.11. Cells were grown at 36uC for 2 h after shift from 25uC (wt, spt16-ts) or at 32uC
for 6 h after shift from 25uC (wt, pst2D, cph1D, alp13D, pst1-1), as indicated. (D) ChIP analysis of H3 levels at act1+ and pot1+ in wt and spt16-18 cells
grown at 36uC for 1 h after shift from 25uC (top). ChIP analysis of H2B levels at act1+ and pot1+ in wt and spt16-18 cells expressing H2B-FLAG or
untagged H2B (bottom). Enrichment is reported as % IP. Error bar indicates S.D. from 3 biological replicates. (E) Genome browser view showing ChIP-
chip occupancy profiles for H3 in wt (blue) and spt16-18 cells (red). The relative ratio (spt16-18/wt) is indicated in black. Data on the Y-axis are
presented in log2 scale and the X-axis shows genome positions in base pairs. Open reading frames (ORFs) are displayed as boxes and colored
according to transcription levels (highly transcribed genes in red, medium transcribed genes in green and low transcribed genes in blue). (F) Average
gene analysis for the ratio of H3 occupancy in spt16-18 mutants versus wt. Genes are aligned at transcription start site and divided into four groups
dependent of their transcription levels. Data on the Y-axis are presented in log2 scale and the X-axis shows position relative to start (bp). Values for
gene expression were calculated using Podbat based on the RNA data from a previous study [61,62]. The gene expression value ranged between 5
and 15, and genes were assigned into categories based on this value. Five categories were made: very high (.14) (n = 37), high (12–14) (n = 591),
medium (10–12) (n = 1726), low (8–10) (n = 1904) and very low (,8) (n = 815). n = number of genes in each group. Error bars represent 99%
confidence intervals.
doi:10.1371/journal.pgen.1002985.g002

FACT Is Required to Define CENP-A Assembly Sites
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and H2B on the pot1+ gene where aberrant intragenic transcripts

were readily detected in spt16-18 cells. We also analyzed the act1+

gene, which is highly transcribed and thus associated nucleosomes

are likely to be more dynamic. ChIP analyses indicated that the

levels of histones are dramatically reduced on act1+ in spt16-18 cells

compared to wild-type cells (Figure 2D). A modest reduction of

histone levels is also observed on pot1+ in spt16-18 cells. This

suggests that Spt16 is required to maintain H3 nucleosomes on

act1+ and pot1+. To further assess loss of chromatin integrity from

RNAPII genes in spt16-18 cells, we performed genome-wide

analyses of H3 association in wt and spt16-18 cells. We observed a

widespread decrease in the relative levels of H3 on RNAPII genes

in spt16-18 cells (Figure 2E). The reduction of H3 levels on

RNAPII genes in spt16-18 cells is correlated with their level of

transcription (Figure 2F). Thus, as in S. cerevisiae, FACT is required

to maintain canonical H3 nucleosomes on genes during transcrip-

tion by RNAPII.

CENP-ACnp1 accumulates at non-centromeric locations in
cells with defective FACT

Normally, cells express low levels of CENP-A and this together

with robust and specific mechanisms involving centromere associ-

ated assembly factors maintains CENP-A exclusively at centro-

meres. In order to determine if defective FACT function allows the

incorporation of CENP-ACnp1 at non-centromeric locations, we

compared the levels of CENP-ACnp1 on act1+ and pot1+ genes in

wild-type and spt16-18 cells expressing additional CENP-ACnp1.

CENP-ACnp1 incorporation into the chromatin covering pot1+, but

not act1, was substantially increased in spt16-18 relative to wild-type

cells expressing excess CENP-ACnp1 (nmt41-cnp1+; Figure 3A). The

spt16-18 mutation alone or OE-CENP-ACnp1 in wild-type cells does

not significantly affect the levels of CENP-ACnp1 on pot1+. The

increased accumulation of CENP-ACnp1 on pot1+ compared to act1+

in spt16-18 cells is intriguing since H3 occupancy is more severely

reduced on act1+ (Figure 2D). The act1+ gene is very highly

expressed and even in wild-type cells it retains a relatively low level

of H3. We surmise that, like H3, CENP-ACnp1 cannot stably

assemble on highly transcribed genes such as act1+ in spt16-18 cells

due to its continual removal. But on genes such as pot1+ that are

transcribed at intermediate levels, H3 or CENP-ACnp1 can be stably

incorporated from the free histone pool.

It is well established that CENP-A chromatin serves as a

platform for assembly of kinetochore proteins at centromeres [42].

The expression of additional CENP-ACnp1 in FACT defective

spt16-18 cells results in a modest but reproducible reduction in the

association of the CENP-CCnp3 kinetochore protein with centro-

meres (Figure 3B). One explanation is that the pool of endogenous

CENP-CCnp3 is limited and the promiscuous incorporation of

CENP-ACnp1 at many non-centromeric locations leads to the

redistribution of this CENP-CCnp3. However, CENP-CCnp3 levels

were not observed to increase on act1+ or pot1+ in spt16-18

expressing additional CENP-ACnp1 (nmt41-cnp1+; Figure 3B).

Other regions in the genome may accumulate higher levels of

CENP-ACnp1 allowing them to attract CENP-CCnp3 away from

centromeres. To explore this possibility, we compared the

genome-wide distribution of overexpressed CENP-ACnp1 in wild-

type and spt16-18 cells. The absolute levels of CENP-ACnp1

association were quantified across the genome using ChIP-chip. In

spt16-18 cells expressing excess CENP-ACnp1 (nmt41-cnp1+), a 1.7

fold global increase in chromosomal levels of CENP-ACnp1 occurs.

The most notable accumulation relative to wild-type cells is

observed on the euchromatic regions adjacent to centromeric

heterochromatin (Figure 3C and Figure S2; also see Table S1 for

CENP-ACnp1 and H3 enrichment at selected genes). To further

evaluate this, we conducted a genome-wide data-driven search for

regions of CENP-ACnp1-chromatin association. Regions of at least

1 kb in length and with more than 2-fold increase in CENP-ACnp1

signal above genome-wide average were selected. 168 regions were

identified, and 96 of these were within 100 kb of centromeres (Red

boxes; Figure 3C), i.e. 57% of regions found in 4.8% of the

genome. This was found to be highly significant (p,10-84,

hypergeometric distribution). ChIP-qPCR analyses confirm that

high levels of CENP-ACnp1 accumulate on prm1+ (high expression

class) and tip41+ (very low expression class) which are proximal to

cen1 and cen3, respectively (Figure 3D). Increased association of

CENP-CCnp3 is detected on tip41+ in spt16-18 OE-CENP-ACnp1

cells, indicating that other kinetochore proteins can be recruited to

some non-centromeric sites (Figure 3D). Only genes with internal

cryptic transcriptional start sites will generate short aberrant

intragenic transcripts. Indeed, short cryptic transcripts are not

readily detected from prm1+ and tip41+ in spt16-18 cells and pst2D
cells (Figure S3A). Also, short cryptic transcripts were not evident

from act1+ (Figure S3B). Thus, it is unlikely that cryptic

transcription itself is the primary cause of H3 loss or CENP-

ACnp1 incorporation in FACT mutants. ChIP-chip analyses show

that the levels of H3 and CENP-ACnp1 are lowest on transcribed

genes with high levels of expression and this decreases further in

spt16-18 cells compared to wild-type cells (Figure S4). Even within

centromere proximal regions where overexpressed CENP-ACnp1 is

preferentially assembled in spt16-18 cells, very highly transcribed

genes do not allow CENP-ACnp1 accumulation (Figure 3E and 3F).

This supports the conclusion that genes with low to intermediate

levels of RNAPII transcription permit more stable incorporation of

CENP-ACnp1 in the absence of FACT function.

Centromere activity is required for the incorporation of
excess CENP-ACnp1 in centromere proximal regions

The preferential accumulation of CENP-ACnp1 close to centro-

meres in FACT defective spt16-18 cells overexpressing CENP-

ACnp1 may be dependent on centromeric heterochromatin or on the

presence of an active centromere. Centromeric heterochromatin is

completely dependent on clr4+, encoding the only H3K9 methyl-

transferase in S. pombe, which is non-essential. We have previously

shown that heterochromatin is required for the de novo assembly of

CENP-ACnp1 on nearby centromeric DNA. However, increased

CENP-ACnp1 association was still detected on prm1+ in spt16-18 cells

overexpressing CENP-ACnp1 that lack Clr4 (clr4D; Figure 3G).

Therefore to determine if the accumulation of CENP-ACnp1 is

directed by the presence of an active centromere, we used cd60 cells

in which the normal cen1 was deleted and a neocentromere formed

in the tel1R subtelomeric region [12]. In these cells, enrichment of

CENP-ACnp1 on prm1+ (,20 kb away from the cen1 deletion) is

significantly reduced in spt16-18 cells overexpressing CENP-ACnp1

but the association of CENP-ACnp1 with the non-centromeric pot1+

gene is unaffected (Figure 3G). The 40 kb deletion in cd60 cells,

completely removes both the central CENP-ACnp1/kinetochore and

heterochromatin domains from cen1. This indicates that it is the pre-

assembled centromere-kinetochore, rather than heterochromatin,

that promotes the assembly of CENP-ACnp1 over adjacent

euchromatin in FACT defective spt16-18 cells. Pre-assembled

centromeres must attract excess CENP-ACnp1 and deposition

factors which aid the assembly of CENP-ACnp1 chromatin over

nearby euchromatin when it becomes permissive for CENP-ACnp1

incorporation in cells with compromised FACT function.

FACT Is Required to Define CENP-A Assembly Sites
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Figure 3. Spt16 prevents promiscuous incorporation of CENP-ACnp1. (A) ChIP analysis of CENP-ACnp1 levels at endogenous centromeres (cc1/
3), act1+ and pot1+ in wt and spt16-18 cells in the absence or presence of OE-CENP-ACnp1 (nmt41-cnp1+; pREP41-cnp1+ integrated at ars1 locus). Cells

FACT Is Required to Define CENP-A Assembly Sites
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Cells with defective Spt6 are sensitive to CENP-ACnp1

overexpression
If RNAPII transcription-coupled nucleosome reassembly acts

to exclude CENP-ACnp1 from incorporation at non-centromeric

regions, then other mutants affecting this process should also allow

mis-incorporation of CENP-ACnp1. In S. cerevisiae, the Spt6 chaperone

also acts to reassemble nucleosomes within ORFs following tran-

scription [28]. Our analyses demonstrate that S. pombe cells bearing

the spt6-1 mutation [43] are also sensitive to elevated CENP-ACnp1

levels (Figure S5A). In addition, spt6-1 also allows this CENP-ACnp1 to

accumulate at non-centromeric regions (Figure S5B). Thus both the

FACT and Spt6 chaperones, which are required to maintain

chromatin integrity on genes following transcription by RNAPII, are

implicated in preventing the misincorporation of CENP-ACnp1 when

it is expressed at elevated levels.

FACT is required for the preferential incorporation of
CENP-ACnp1 at specific locations

Neocentromeres can form at subtelomeric regions in S. pombe

following removal of the normal centromere [12]. The expression

of additional CENP-ACnp1 in wild-type cells also allows its

accumulation over these telomere adjacent regions (Castillo et al

in preparation; see Figure S6A). This suggests that subtelomeric

regions possess particular features that make them favorable

substrates for CENP-ACnp1 assembly. Interestingly, our ChIP-chip

analyses reveal that CENP-ACnp1 does not accumulate over

subtelomeric regions in FACT defective spt16-18 cells expressing

additional CENP-ACnp1, even though they are normally preferred

sites for the accumulation of additional CENP-ACnp1 in wild-type

cells (Figure 3C - subtelomeric CENP-ACnp1 accumulation does

not increase in spt16-18 relative to wild-type cells). This suggests

that FACT is not normally active, or is unable to prevent CENP-

ACnp1 deposition, at wild-type subtelomeric regions.

To explore the relationship between FACT and CENP-ACnp1

permissive regions further we examined the effect of defective FACT

function on the association of CENP-ACnp1 with centromeric DNA in

both its normal context and at an ectopic location. CENP-ACnp1

normally assembles on the central domain regions of centromeres due

to kinetochore-mediated CENP-ACnp1 recruitment and/or mainte-

nance mechanisms. Centromeric heterochromatin also aids the

assembly of CENP-ACnp1 chromatin at centromeres [9,10]. Howev-

er, in addition to these extrinsic influences, central domain DNA itself

may possess intrinsic sequence-driven features that promote CENP-

ACnp1 assembly. To examine this, we constructed a strain in which

the entire 8.6 kb from the central domain of cen2 was inserted at the

euchromatic ura4+ locus (ura4+-int-cc2). This separates central domain

DNA on which CENP-ACnp1 chromatin normally assembles from

flanking heterochromatin (Figure S6B). In cells expressing additional

CENP-ACnp1 we detected substantially greater levels of CENP-ACnp1

over ura4+-int-cc2 than on the non-centromeric act1+ or pot1+ loci

(Figure S6C). This indicates that even when central domain DNA is

placed outside the context of a normal centromere it has an innate

ability to attract CENP-ACnp1. We conclude that cc2 central domain

DNA must possess particular features that promote CENP-ACnp1

incorporation. However, in FACT defective spt16-18 cells the central

domain loses its ability to preferentially attract CENP-ACnp1 so that it

is drawn away and accumulates on pot1+ and ura4+-int-cc2 at similar

levels (Figure S6D). This implies that when FACT function is

compromised some genes present the same features as those

presented by the central domain regions so that they become

equivalently competent in attracting excess CENP-ACnp1. The

central domain and subtelomeric regions must share specific features

that attract CENP-ACnp1 and both lose this exclusivity when FACT is

defective.

To further examine the role of FACT in restricting the

sequences on which CENP-ACnp1 is normally incorporated, we

used strains with small (1.7 kb; cnt1:ura4+) or large (4.7 kb;

cnt1:bigura4+) gene insertions of non-centromeric DNA in the

central domain of cen1 (Figure 4A) [38]. In wild-type cells

expressing normal levels of CENP-ACnp1, CENP-ACnp1 was highly

enriched on the small ura4+ gene (cnt1:ura4+; Figure 4B), whilst

four-fold less CENP-ACnp1 was detected over ura4+ in cnt1:bigura4+.

Thus, the large non-centromeric DNA insertion is a relatively poor

substrate for CENP-ACnp1 deposition even though it is placed in

an environment conducive for CENP-ACnp1 assembly. However,

in FACT defective cells increased CENP-ACnp1 assembles on

cnt1:bigura4+; similar to the levels detected on the smaller cnt1:ura4+

insertion or the endogenous cen2 central domain (cc2). The relative

enrichment of CENP-CCnp3 on ura4+ and cc2 is essentially identical

to that of CENP-ACnp1 in all cases (Figure 4C). RT-PCR analysis

shows that transcription of ura4+ from cnt1:ura4+ or cnt1:bigura4+ is

not significantly affected in spt16-18 cells (Figure S7). This suggests

that altered nucleosome dynamics rather than transcriptional

activity causes increased CENP-ACnp1 incorporation on bigura4+ in

FACT mutants. These analyses demonstrate that FACT usually

acts to prevent the incorporation of CENP-ACnp1 on non-

centromeric DNA such as RNAPII genes and in its absence the

sequence specificity for the assembly of CENP-ACnp1 on central

domain DNA and subtelomeric regions is abolished. The

observation that FACT does not prevent CENP-ACnp1 incorpo-

ration at endogenous cen2 central domain suggests that FACT

activity is normally inhibited or limited at native centromeres to

favor CENP-ACnp1 deposition within centromeric DNA. Similarly

FACT activity must be excluded from, or counteracted in,

subtelomeric regions to allow CENP-ACnp1 incorporation.

were grown at 36uC for 1 h after shift from 25uC. (B) ChIP analysis of CENP-CCnp3 in the same samples. (C) ChIP-chip: relative CENP-ACnp1 levels in
spt16-18 cells compared to wt. ORFs are displayed as grey boxes. Regions of at least 1 kb in length and with .2-fold increase in CENP-ACnp1 signal
above genome-wide average are colored red. Data on the Y-axis are presented in linear scale. Blue: running average signal/100 probes. Grey: signal
for individual probes. (D) ChIP analyses of CENP-ACnp1 and CENP-CCnp3 levels at prm1+ and tip41+. Error bars indicate S.D. from 3 biological replicates.
(E) Average gene analysis for the ratio of CENP-ACnp1 occupancy in spt16-18 versus wt cells (with OE-CENP-ACnp1). Genes within 100 kb of centromeres
were selected and divided into four groups dependent of their relative transcription levels and aligned at their transcriptional start sites. Data on the
Y-axis are presented in log2 scale and the X-axis shows position relative to start (bp). Values for gene expression were calculated using Podbat based
on the RNA data from a previous study [61,62]. The gene expression value ranged between 5 and 15, and genes were assigned into categories based
on this value. Five categories were made: very high (.14) (n = 37), high (12–14) (n = 591), medium (10–12) (n = 1726), low (8–10)(n = 1904) and very
low (,8) (n = 815). n = number of genes in each group. Error bars represent 99% confidence intervals. (F) Genome browser view showing relative
enrichment of CENP-ACnp1 at cen1-proximal regions (spt16-18/wt; with OE-CENP-ACnp1). Data on the Y-axis are presented in linear scale. Boxes are
ORFs; red: genes with very high expression levels. (G) ChIP analysis of CENP-ACnp1 levels at prm1+, pot1+, endogenous centromeres (cc1/3) and a
neocentromere region (tel1R) in wt, clr4D and cd60 (neocentromere strain; cen1 DNA deleted) cells containing either spt16+ or spt16-18 allele and all
with OE-CENP-ACnp1 (nmt41-cnp1+). Note: centromere primers (cc1/3) detect both cen1 and cen3 and thus CENP-ACnp1 enrichment at cc1/3 in cd60
represents CENP-ACnp1 levels at cen3 only. In all ChIP analyses, enrichment is reported as % IP.
doi:10.1371/journal.pgen.1002985.g003
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Stable maintenance of CENP-ACnp1 chromatin at
centromeres requires functional FACT

Our above analyses indicate that FACT activity blocks the

deposition of CENP-ACnp1 at non-centromeric locations. Howev-

er, CENP-ACnp1 remains at centromeres in FACT defective cells

and is not dispersed across the genome unless additional CENP-

ACnp1 is expressed (Figure 3A and 3D). Thus, a strong propagation

mechanism must remain operational at centromeres to maintain

CENP-ACnp1 and prevent the redistribution of this limited CENP-

ACnp1 pool when FACT function is compromised. The Mis6 and

Mis18 kinetochore proteins have been shown to be required to

replenish CENP-ACnp1 at centromeres [44,45]. Mutations in Mis6

(mis6-302) or Mis18 (mis18-262) exhibited synthetic lethality when

combined with a deletion of the gene encoding the small subunit

FACT (pob3D) at semi-permissive temperatures (Figure 5A). In

contrast, defective Mis12 (mis12-537), an essential kinetochore

protein not involved in CENP-ACnp1 maintenance [45], does not

genetically interact with pob3D. In addition, mutations in CENP-

ACnp1 (cnp1-87) or its chaperone Scm3 (scm3-15) do not exhibit

synergistic phenotypes in combination with pob3D since they must

impair the deposition of CENP-ACnp1 regardless of the genomic

location [38,46,47]. We also found that deletion of the gene

encoding Sim3 (sim3D), the NASP (N1/N2)-related CENP-ACnp1

chaperone [48], relieves the lethal effect of CENP-ACnp1

overexpression in FACT defective pob3D cells (Figure S8). This

implies that Sim3 participates in the promiscuous deposition of

CENP-ACnp1 in FACT defective cells. Since Pob3 is also involved

in heterochromatin integrity, the synergistic phenotype of pob3D
mis6-302 and pob3D mis18-262 double mutants could be due to

defective heterochromatin rather than altered CENP-ACnp1

deposition [36]. However, this possibility is excluded because

mis6-302 does not display synergistic phenotypes when combined

with clr4D which abolishes heterochromatin (Figure 5B).

Consistent with the observed genetic interaction between Mis6

and Pob3 mutants, the levels of CENP-ACnp1 and CENP-CCnp3 at

centromeres were found to be significantly reduced in pob3D mis6-

302 cells compared to the pob3D or mis6-302 single mutants

(Figure 5C and 5D). Thus, when the mechanism for CENP-ACnp1

maintenance at centromeres is compromised, CENP-ACnp1 is

released and the lack of FACT function allows its redistribution to

non-centromeric sites. However, in pob3D mis6-302 cells, the

association of CENP-ACnp1 with non-centromeric genes such as

pot1+ and prm1+ is not elevated, probably because the redistribu-

tion and dilution of the limited endogenous pool of CENP-ACnp1

over many non-centromeric sites is below the level of detectability.

A low level of additional CENP-ACnp1 (nmt81-CENP-ACnp1)

partially rescues the lethality of pob3D mis6-302 cell at 32uC (Figure

S9; Note: additional CENP-ACnp1 reduces pob3D viability). This

reinforces the conclusion that the observed synthetic lethality of

the pob3D mis6-302 double mutant cells results from reduced levels

of CENP-ACnp1 at centromeres.

Accumulation of CENP-ACnp1 at non-centromeric regions was

not detectable in FACT defective spt16-18 cells expressing normal

CENP-ACnp1 levels after short-term inactivation (1 h at 37uC;

Figure 3D). The redistribution of CENP-ACnp1 in spt16-18 cells

may require a longer time period or cell cycle progression. To test

this possibility, we examined the CENP-ACnp1 redistribution in

spt16-18 cells expressing normal CENP-ACnp1 levels after

prolonged incubation at a semi-permissive temperature (24 h at

27uC). Under these conditions we detect reduced levels of CENP-

ACnp1 and CENP-CCnp3 at centromeres and an increased

association of both proteins with the cen1 proximal gene prm1+

(Figure 5E and 5F). Thus endogenous CENP-ACnp1 can be

Figure 4. Spt16 prevents efficient assembly of CENP-ACnp1 chromatin on large non-centromeric DNA inserted within the central
domain. (A) Schematic of cnt1:ura4+ and cnt1:bigura4+. (B) ChIP analysis of CENP-ACnp1 at ura4+ and endogenous centromere (cc2) in the indicated
strains. ura4+/cc2: relative enrichment of CENP-ACnp1 at ura4+ compared to cc2. Cells were grown at 36uC for 1 h after shift from 25uC. (C) ChIP analysis
of CENP-CCnp3 in the same samples. Data for two biological replicates (#1 and #2) are presented. Enrichment is reported as % IP.
doi:10.1371/journal.pgen.1002985.g004
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Figure 5. Pob3 genetically interacts with Mis6 and Mis18 and is required to maintain CENP-ACnp1 at endogenous centromeres in
mis6-302 cells. (A) Viability of cells bearing pob3D combined with mutants affecting centromere function (cnp1-87, scm3-15, mis6-302 and mis12-537)
relative to wt cells and single mutants. Cells were spotted on plates containing Phloxine B at indicated temperatures. (B) Viability of wt and mutant
cells bearing a combination of mutations in Pob3, Mis6 and Clr4 (pob3D, mis6-302, clr4D, pob3D mis6-302, pob3D clr4D, clr4D mis6-302 and pob3D
clr4D mis6-302). (C) ChIP analysis of CENP-ACnp1 at endogenous centromeres (cc1/3), pot1+ and prm1+ in the indicated strains. Cells were grown at
25uC, shifted to 30uC for 17 h after shift from 25uC. (D) ChIP analysis of CENP-CCnp3 in the same samples. (E) ChIP analysis of CENP-ACnp1 levels at
endogenous centromeres (cc1/3) and prm1+ in wt and spt16-18 cells grown at 27uC (semi-permissive for spt16-18) for 24 h. (F) ChIP analysis of CENP-
CCnp3 in the same samples. Enrichment is reported as % IP. Error bars indicate S.D. from 3 biological replicates.
doi:10.1371/journal.pgen.1002985.g005
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redistributed from centromeres in cells not overexpressing CENP-

ACnp1 when FACT function is impaired for a sustained period. We

conclude that FACT contributes to the stable maintenance of

CENP-ACnp1 chromatin at centromeres by preventing the

aberrant deposition of CENP-ACnp1 at non-centromeric locations.

Loss of Clr6 complex II (Rpd3S) allows limited
redistribution of CENP-ACnp1

Our analyses indicate that both FACT and Clr6-CII are

required to maintain chromatin integrity on transcribed genes, as

indicated by the appearance of short aberrant intragenic

transcripts, when their function is compromised (Figure 2B and

2C). To determine if Clr6-CII is also required to maintain H3

chromatin and prevent CENP-ACnp1 mis-incorporation ChIP

analysis was performed on cells lacking Clr6-CII subunits (pst2D
and cph1D). Unlike FACT defective spt16-18 cells, no reduction in

H3 occupancy was observed on highly transcribed genes in pst2D
cells compared to wild-type cells (Figure 6A and Figure S10A).

Loss of Clr6-CII function may only affect H3 chromatin

accessibility and not nucleosome occupancy. In S. cerevisiae lack

of Rpd3S HDAC has also been found to affect chromatin integrity

but not histone occupancy [31,49]. Thus Clr6-CII and Rpd3S

have a more subtle impact on the integrity of chromatin associated

with RNAPII transcribed genes in both yeasts. Consistent with

this, S. pombe pst2D cells are not hypersensitive to the expression of

excess CENP-ACnp1 (Figure 6B). Thus defective Clr6-CII may not

induce the widespread mis-incorporation of CENP-ACnp1 with

associated loss of viability. Indeed in pst2D cells expressing

additional CENP-ACnp1, high levels of CENP-ACnp1 and CENP-

CCnp3 were detected on tip41+, but not on the pot1+ or prm1+ genes

(Figure 6C). Furthermore, analysis of the genome-wide distribu-

tion of CENP-ACnp1 in pst2D versus wild-type cells overexpressing

CENP-ACnp1 revealed that the mis-incorporation of CENP-ACnp1

is far less prevalent in pst2D than spt16-18 cells (Figure S10B).

However, as with FACT defective spt16-18 cells, the most notable

accumulation of CENP-ACnp1 in pst2D Clr6-CII deficient cells was

observed over the euchromatic regions proximal to centromeres.

Interestingly, a low but consistent increase in CENP-ACnp1 levels

also occurred over subtelomeric regions of chromosomes 1 and 2

where FACT was found not to affect CENP-ACnp1 incorporation

(Figure S10B and Figure 3C). It seems likely that Clr6-CII activity

is generally not required to suppress replacement of H3

nucleosome with CENP-ACnp1 nucleosome. However, in partic-

ular regions such as subtelomeric domains, where the activity of

FACT in promoting H3 assembly appears limited, or in regions

proximal to centromeres which are prone to CENP-ACnp1

assembly; the activity of the Clr6-CII HDAC may normally be

required to suppress histone exchange by transcription-coupled

deacetylation of resident H3 nucleosomes.

Clr6 Complex II (Rpd3S) prevents the assembly of CENP-
ACnp1 chromatin on centromeric central domain DNA

The endogenous levels of CENP-ACnp1 in wild type cells are

insufficient to permit its accumulation at non-centromeric regions.

The expression of additional CENP-ACnp1 allows its incorporation

at more non-centromeric locations in cells with defective FACT or

Clr6-CII. However, wild-type CENP-ACnp1 levels are sufficient to

allow CENP-ACnp1 chromatin and functional kinetochores to be

assembled de novo over extra centromeric central domain DNA

introduced on plasmid-based minichromosomes. In these de novo

establishment assays heterochromatin is normally required to

promote the assembly of CENP-ACnp1 chromatin on adjacent

central domain DNA [10]. We tested if mutations that allow

CENP-ACnp1 incorporation at non-centromeric locations when

CENP-ACnp1 is overexpressed alter the requirements for de novo

CENP-ACnp1 assembly on centromeric DNA in the absence of

CENP-ACnp1 overexpression. Plasmids bearing only central

domain DNA with no heterochromatin forming repeat sequences

are usually unable to assemble CENP-ACnp1 upon introduction

into wild-type cells (pcc2; Figure 6D) [10]. Surprisingly, CENP-

ACnp1 and the kinetochore proteins CENP-CCnp3 and CENP-

KSim4 were readily detected over the central domain of pcc2

following its transformation into pst2D cells (Figure 6E, 6F, 6G).

This effect is specific for centromeric central domain DNA since

CENP-ACnp1 and CENP-CCnp3 were not significantly enriched on

the plasmid borne ura4+ gene (Figure 6E and 6F). It is also specific

to Clr6-CII mutants since CENP-ACnp1 and CENP-CCnp3

assemble on the central domain of pcc2 in cells lacking subunits

of Clr6-CII/Rpd3S (pst2D and cph1D), but not Clr6-CI (pst1-1;

Figure S10C). Defects in FACT/Spt16 or Spt6 function did not

permit the assembly of CENP-ACnp1 on pcc2 (Figure S10D and

S10E). Importantly, ChIP analysis shows that pst2D does not

induce H3K9 methylation on the pcc2 plasmid, indicating that the

de novo CENP-ACnp1 chromatin assembly pcc2 in pst2D cells is not

induced by aberrant heterochromatin formation (Figure S11).

The distinct impact of mutations in Clr6-CII compared to

FACT or Spt6 in the pcc2 de novo assembly assay is indicative of

competition between the distinct genomic loci affected by these

mutations for the limited pool of endogenous CENP-ACnp1.

Defective FACT function results in widespread loss of H3

chromatin and this renders a large fraction of the genome

receptive for CENP-ACnp1 incorporation. Under these circum-

stances the normal limited pool of free CENP-ACnp1 is broadly

distributed and CENP-ACnp1 cannot be specifically recruited and

assembled de novo on the newly introduced pcc2 (Figure 7A and

7B). In contrast, cells with defective Clr6-CII function have a more

subtle alteration in H3 chromatin integrity and this allows CENP-

ACnp1 to be incorporated into particular regions that possess

intrinsic properties which favor CENP-ACnp1 deposition, such as

pcc2 and subtelomeric regions (Figure 7C). We conclude that the

defect in restoring H3 chromatin integrity after RNAPII

transcription that results from loss of Clr6-CII function removes

an impediment to the efficient CENP-ACnp1 assembly onto its

preferred substrate, central domain DNA, and this bypasses the

need for flanking heterochromatin. It follows that flanking

centromeric heterochromatin may impose particular constraints

on chromatin disassembly/reassembly events associated with

central domain transcription in order to reduce H3 nucleosome

stability and promote CENP-ACnp1 assembly in its place.

Discussion

In most eukaryotic organisms, centromere identity is deter-

mined epigenetically. However, certain DNA elements such as

human a-satellite repeats are the sites where endogenous

centromeres are normally located [1,5]. Moreover, the introduc-

tion of a-satellite repeat DNA allows the de novo assembly of

functional centromeres [50]. Thus these repeat elements represent

preferred substrates, suggesting that their underlying DNA

sequence plays some role in specifying the location of centromeres

[6]. Previously, we demonstrated that central domain DNA at

normal centromeres in fission yeast is transcribed by RNAPII [24].

Here, we show that factors such as FACT and Clr6-CII, which

actively promote the integrity of H3 chromatin during RNAPII

transcription, suppress the incorporation of excess CENP-ACnp1.

Importantly, we find that FACT blocks the incorporation of

CENP-ACnp1 over large portions of the genome. However this
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Figure 6. Loss of Clr6-CII function promotes assembly of CENP-ACnp1 chromatin at specific loci. (A) ChIP analysis of H3 levels at act1+ in
the indicated strains grown at 32uC. Note: spt16-17 (but not spt16-18) cells are viable at 32uC and thus are grown in parallel with other mutants as a
positive control in this experiment. (B) Viability of wt and pst2D cells expressing additional CENP-ACnp1 at low (nmt81-CENP-ACnp1) or medium (nmt41-
CENP-ACnp1) levels compared to empty vector at 32uC and 36uC. (C) ChIP analyses of CENP-ACnp1 and CENP-CCnp3 levels in wt and pst2D cells at pot1+,
prm1+, tip41+ and endogenous centromeres (cc1/3). Cells were grown at 32uC. (D) Schematic of pcc2 plasmid. pcc2 plasmid contains 8.6 kb cen2
central domain (cc2), ura4+ and sup3-5. (E) ChIP analysis of CENP-ACnp1 levels at cc2 in pcc2 plasmid and at endogenous centromere (cc1/3) in wt and
pst2D cells carrying pcc2. The relative enrichment of CENP-ACnp1 at cc2 compared to endogenous centromere (cc1/3) is presented (cc2 relative to cc1/
3). Enrichment of CENP-ACnp1 at ura4+ in pcc2 is also measured. (F) ChIP analysis of CENP-CCnp3 levels in the same samples. (G) ChIP analysis of Sim4
levels in the same samples. ChIP was performed after 30 and 50 cell doublings at 32uC from the introduction of pcc2. Enrichment is reported as % IP.
Error bars indicate S.D. from at least 3 biological replicates.
doi:10.1371/journal.pgen.1002985.g006
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Figure 7. Summary on the role of factors that promote the integrity of H3 chromatin during transcription in preventing
promiscuous CENP-ACnp1 deposition. (A) In wild-type cells, a limited amount of free CENP-ACnp1 is available to accumulate outside endogenous
centromeres at which kinetochore proteins act to attract CENP-ACnp1. This limited pool of free CENP-ACnp1 can be preferentially deposited to specific
sites such as centromeric central domain (CC) and subtelomeric regions (ST). Intensity of red color on the chromosome and the plasmid represents
relative ‘‘receptiveness’’ of the locus for CENP-ACnp1 incorporation. Bold arrow indicates regions where CENP-ACnp1 incorporation normally occurs
without overexpression (i.e. centromeres). Dashed arrows indicate regions where de novo assembly of CENP-ACnp1 is expected under conditions
where CENP-ACnp1 deposition is stimulated (e.g. when CENP-ACnp1 is overexpressed or flanking heterochromatin is provided). (B) In cells with
defective FACT, non-centromeric regions become permissive to CENP-ACnp1 (indicated by red color all over the chromosome and the plasmid).
Endogenous centromeres drive CENP-ACnp1 assembly at proximal euchromatic regions when they become permissive to CENP-ACnp1 assembly
(indicated by dark red color at centromere-proximal regions). CENP-ACnp1 incorporation when overexpressed is not significantly elevated at CC and ST
in FACT mutants compared to wild-type cells, suggesting that FACT action may be already limited at these sites. Without CENP-ACnp1 overexpression,
the limited pool of free CENP-ACnp1 is distributed to non-centromeric regions and cannot accumulate at normally preferred sites such as CC and ST.
(C) In cells with defective Clr6-CII, only specific regions such as centromere-proximal euchromatic regions, CC and ST become permissive to CENP-
ACnp1. Clr6-CII has a weaker impact on H3 chromatin compared to FACT and thus loss of Clr6-CII function promotes CENP-ACnp1 incorporation only at
regions where CENP-ACnp1 assembly is predisposed (centromere-proximal regions) or FACT action is limited (CC and ST). In Clr6-CII mutants, limited
pool of free CENP-ACnp1 is not distributed and can accumulate at preferred sites, allowing de novo assembly of CENP-ACnp1 chromatin on a plasmid
bearing CC in the absence of flanking heterochromatin.
doi:10.1371/journal.pgen.1002985.g007
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restraint does not operate in genomic regions where CENP-ACnp1

assembly is normally favored i.e centromeres and subtelomeric

regions. These regions accumulate higher levels of CENP-ACnp1 in

Clr6-CII mutants, suggesting a role for transcription-coupled

processes in CENP-ACnp1 assembly at these sites. We propose a

model in which certain DNA sequences and chromatin contexts

have the ability to restrict FACT activity during transcription and

consequently represent hotspots for CENP-ACnp1 assembly (sum-

marized in Figure 7).

Competition between CENP-ACnp1 and H3 for
incorporation into chromatin

CENP-ACnp1 competes with histone H3 for incorporation into

centromeric chromatin [38]. At centromeres, mechanisms which

ensure the maintenance of CENP-ACnp1 act to prevent incorpo-

ration of H3. Similarly, we find that at non-centromeric regions,

mechanisms that maintain H3 nucleosomes during the intrinsically

disruptive process of transcription act to prevent incorporation of

CENP-ACnp1. FACT is involved in several chromatin-based

processes in addition to transcription, and thus it is possible that

promiscuous CENP-ACnp1 incorporation in FACT mutants is

caused by defects in other processes rather than transcription-

coupled nucleosome reassembly [51]. Although this possibility

cannot be ruled out completely, we have observed similar CENP-

ACnp1 phenotypes in cells with defective Spt6 (Figure S5A and

S5B). This supports a direct connection between defective H3

chromatin assembly during RNAPII transcription and promiscu-

ous CENP-ACnp1 incorporation. We propose that CENP-ACnp1 is

opportunistic in nature and its assembly into chromatin is strongly

affected by its availability relative to histone H3 and processes that

promote transcription-coupled recycling of H3 nucleosomes.

When excess free CENP-ACnp1 is available and transcription-

coupled H3 nucleosome assembly is defective, CENP-ACnp1 gains

access to regions from which it is normally excluded. In this

context it should be noted that the N-terminal tail of CENP-

ACnp1 is distinct from that of H3; it lacks the key lysine residues,

K4, K9, K14, K18, K23, K27, and K36. Thus, CENP-ACnp1

is undoubtedly managed differently than H3 with respect to

transcription.

What gives CENP-ACnp1 a selective advantage for incorpora-

tion into non-centromeric regions in FACT defective (spt16-18)

cells? Our observation that H3 occupancy decreases in spt16-18

cells in proportion to transcription rates suggests that H3

incorporation from the free histone pool is not sufficiently effective

to maintain a steady-state level of H3 on transcribed chromatin

templates in spt16-18 cells (Figure 2F). Thus, the maintenance

of H3 chromatin within transcribed regions must be largely

dependent on replication-coupled assembly in S phase and histone

chaperone-mediated reassembly during transcription. It is known

that CENP-A incorporation at centromeres is uncoupled from

replication in human cells and in fission yeast CENP-A incor-

poration can occur in S phase or in G2 phase independently of

replication [48,52]. It therefore seems likely that transcription-

coupled loss of H3 nucleosomes in spt16-18 cells may favor the

incorporation of CENP-A. Given the differences between CENP-

A and H3, CENP-A nucleosomes are likely to react differently to

transcription and persist in situations that cause H3 nucleosomes

to disassemble during transcription. The HDAC Clr6-CII pre-

ferentially targets RNAPII-transcribed regions [33]. In cells that

are defective in Clr6-CII function (pst2D, cph2D), the persistence of

transcription-associated histone acetylation destabilizes H3 nucle-

osomes (as indicated by the exposure of cryptic transcription

initiation sites) and thereby enhances their replacement with

CENP-ACnp1 nucleosomes. The distinct N-terminal tail of CENP-

ACnp1 presumably provides CENP-ACnp1 nucleosomes with greater

stability than H3 nucleosomes during transcription in Clr6-CII

mutant cells. It is also possible that once assembled, CENP-ACnp1

nucleosomes repress transcription and that this reduces nucleosome

turnover and consequently stabilizes CENP-ACnp1 chromatin.

Further analyses are required to reveal exactly how CENP-A

replaces H3 and is stabilized on transcription units.

Genetic and epigenetic processes influencing CENP-
ACnp1 chromatin assembly

The data that we present suggest that defective FACT function

diminishes the distinction between centromeric and non-centro-

meric regions, allowing widespread incorporation of CENP-ACnp1

into transcribed DNA when CENP-ACnp1 is overexpressed. The

central domains from centromeres (ectopically placed cc2 DNA;

Figure S6C) and potential sites of neocentromeres in subtelomeric

regions (Figure S6A) clearly have an innate ability to incorporate

CENP-ACnp1 in wild-type cells that express additional CENP-

ACnp1. However, in FACT mutants, many other genomic locations

become permissive for CENP-ACnp1 incorporation, therefore the

pool of additional free CENP-ACnp1 is distributed over many

chromosomal regions so that preferential incorporation at normal

secondary sites such as ectopic cc2 or subtelomeric regions is

reduced (Figure 3C and Figure S6D). We conclude that central

domain and subtelomeric regions, which naturally favor CENP-

ACnp1 deposition, possess features that reduce or evade FACT

action so that H3 is more readily replaced by CENP-ACnp1.

Consistent with a role for cis-acting elements, FACT does not

suppress CENP-ACnp1 assembly on the central domain DNA at

endogenous centromeres while it does prevent efficient CENP-

ACnp1 assembly on a large non-centromeric reporter gene insertion

at the endogenous centromere (Figure 4A, 4B, 4C).

Genetic interactions exhibited between Pob3 and Mis6 or Mis18,

along with ChIP analyses, demonstrate that FACT operates to

retain CENP-ACnp1 at centromeres when the CENP-ACnp1 main-

tenance mechanism is weakened because it prevents CENP-ACnp1

incorporation elsewhere (Figure 5A, 5B, 5C, 5D). However, even in

the presence of an intact CENP-ACnp1 maintenance mechanism,

prolonged attenuation of FACT/Spt16 function causes redistribu-

tion of CENP-ACnp1 and CENP-CCnp3 (Figure 5E and 5F). Thus,

the CENP-ACnp1 maintenance mechanism operated by the

kinetochore is not sufficient to allow CENP-ACnp1 maintenance at

centromeres when FACT function is impaired for long periods;

under these conditions, the sequence-driven preference for CENP-

ACnp1 assembly at centromeres is compromised.

Perspective
Human FACT has been shown to interact with CENP-A

nucleosomes [42]. In chicken DT40 cells FACT has been shown to

be required for the deposition of newly synthesized CENP-A, but

not for the maintenance of pre-existing CENP-A, at centromeres

[53]. Although we cannot exclude a direct role for FACT in CENP-

A chromatin assembly at centromeres, our analyses in S. pombe

suggests that defective FACT function indirectly affects CENP-

ACnp1 deposition at centromeres by allowing CENP-ACnp1 mis-

incorporation at non-centromeric locations. This raises the possi-

bility that the depletion of FACT in vertebrate cells may result in

newly synthesized CENP-A being dispersed throughout the genome

so that its incorporation at centromeres is reduced. In this regard,

we predict that factors such as FACT, which are involved in

transcription-coupled chromatin reassembly, will have a conserved

role in preventing the mis-incorporation of CENP-A at non-

centromeric locations in higher eukaryotes. It is possible that at

centromeres CENP-A sequesters/inhibits FACT to reduce its

FACT Is Required to Define CENP-A Assembly Sites
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activity in recycling H3 nucleosomes during RNAPII transcription

through centromeric chromatin. Spt16 is known to directly bind the

N-terminal tails and globular core domain of H3 [54]; it will be

interesting to determine if CENP-ACnp1 competes with H3 for

binding to Spt16.

In C. elegans, CENP-A and centromere activity is distributed

along chromosomes. Recent analyses show that transcription in

the germline acts to exclude CENP-A incorporation in progeny

[55]. In contrast, RNAPII/transcription has been found to be

essential for the efficient binding of CENP-C and normal mitotic

kinetochore function in human cells [56]. Our analyses in S. pombe

suggest a model that reconciles these apparently disparate findings;

RNAPII transcription may normally prevent CENP-A deposition

at genes through the action of H3 nucleosome reassembly

machineries such as FACT, however, when FACT function is

defective, RNAPII transcription may promote CENP-A deposi-

tion. Thus, RNAPII transcription may act either positively or

negatively on CENP-A deposition depending on the functionality

of FACT. In monocentric organisms, it is possible that the

function of FACT or other H3 nucleosome reassembly pathways is

limited at centromeres so that RNAPII transcription at centro-

meres promotes CENP-A deposition.

Neocentromeres are rare in most systems, but they can form at

novel locations in both natural and experimental situations

[4,12,57] Given the link between transcription-coupled nucleo-

some dynamics and CENP-ACnp1 assembly highlighted here, it is

possible that neocentromeres tend to arise at locations where H3

nucleosomes are less robustly maintained, so that CENP-A and

other histones are more frequently incorporated from the free

pool, rather than being recycled. Telomeric chromatin may affect

the dynamics of H3 nucleosomes on sub-telomeric transcription

units so that they are particularly prone to replacement with

CENP-A. Likewise, at centromeres heterochromatin may impose

constraints on H3 nucleosomes stability during transcription to

promote its replacement with CENP-A. The elevated levels of

CENP-A, caused by loss of regulation in cancer cells, may increase

the frequency at which CENP-A chromatin is established,

inducing additional neocentromere formation with resulting in

genome instability [14,17].

Materials and Methods

Cell growth and manipulation
Standard genetic and molecular techniques were followed.

Fission yeast methods were as described [58]. For the strains used

in the experiments, see Table S2. The cnt1:bigura4+ strain contains

the ura4+ embedded within additional DNA consisting of ade6+

sequences inserted within the central domain of cen1 [38]. Note:

The sequence of the ade6+ and ura4+ genes is 61% A/T which is

close to the average A/T content of 64% for the S. pombe genome.

ChIP
ChIP was performed as described using anti-H3 antibody

(ab1791, Abcam), anti-FLAG M2 affinity gel (F2426, Sigma), anti-

CENP-ACnp1 antibody, anti-CENP-CCnp3 antibody and anti-

H3K9me2 antibody and subsequently analyzed by quantitative

PCR (qPCR) [59]. For primers used in qPCR, see Table S3.

Growth of cells overexpressing CENP-ACnp1 for ChIP
analyses

Cells expressing additional CENP-ACnp1 from integrated

pREP41-cnp1+ (nmt41-CENP-ACnp1) or cells with integrated empty

vector were initially grown in rich medium which contains

thiamine to repress the expression of additional CENP-ACnp1. The

cells were then streaked on minimal (PMG) plates which lack

thiamine to allow expression of nmt41-CENP-ACnp1. Subsequently,

cells were grown in PMG liquid medium (without thiamine) at

25uC and shifted to 36uC for 1 h to inactivate Spt16 function

before ChIP analyses.

Plasmid-based assay for assembly of CENP-ACnp1

chromatin
A plasmid (pcc2) carrying central domain sequence (cc2) but not

outer repeat sequence (otr) is introduced into wild-type, pst2D,

cph1D, pst1-1, spt16-6 or spt6-1 cells by electroporation. Transfor-

mants were selected on PMG-ura plates supplemented with low

adenine (1/50th) at 32uC which allow to distinguish cells with

episomal plasmids from those containing integrated plasmids by

the colony color (cells with integrated plasmids form white colonies

whereas those with episomal plasmids form light pink colonies).

The resulting transformants were grown in PMG-ura liquid

medium and analyzed by ChIP-qPCR. To confirm that cells

maintain episomal plasmids and do not accumulate integrated

plasmids, a plasmid stability test was performed at the time of

fixation. Cells (200,2000) were plated onto PMG-ura supple-

mented with low adenine (1/50th) and allowed to form colonies.

Samples exhibiting less than 2% of integrations (i.e. white colonies)

were used for ChIP. To extend the number of cell doublings (to 50

doublings) in wild-type or pst2D cells carrying pcc2 without

increasing the proportion of cells with integrated plasmid, the cells

grown in PMG-ura liquid medium (30 doublings after transfor-

mation) were plated onto PMG-ura supplemented with low

adenine (1/50th). Colonies with light pink color which maintain

episomal plasmids without integration were selected and pooled

together (,200 colonies in total) in PMG-ura liquid medium. Cells

were grown for additional 8 h (50 doublings after transformation)

and subject to ChIP analyses. To confirm that cells maintain

episomal plasmids and do not accumulate integrated plasmids, a

plasmid stability test was performed at the time of fixation as

described above.

Generation of temperature sensitive alleles of spt16+

To screen spt16-ts alleles, DNA fragment containing either 59 or

39 half of spt16+ ORF was mutagenized in vitro using Gene Morph

II random mutagenesis kit (Stratagene). Each end of the

mutagenized fragments was fused with a kanMX6 marker gene

or the upstream (for 59 half; spt16-1 to spt16-12)/downstream

sequences (for 39 half; spt16-13 to spt16-25) of spt16+ ORF by

fusion PCR. The resulting fusion PCR products were further

amplified using nested primers and introduced into wild-type cells

by electroporation. Transformants were selected on plates

containing G418 and temperature sensitive (ts) mutants were

identified among G418-resistant colonies by lethality at 36uC after

replica-plating to plates containing Phloxine B. To confirm that

the temperature sensitivity is caused by mutations in spt16+, a

plasmid rescue experiment was performed. Mutants whose ts

phenotypes are rescued by plasmid expressing wild-type spt16+

were selected for further analyses and the causative mutations

were identified by sequencing. For detailed information on the

spt16-ts alleles, see Table S4.

Northern analysis
Northern analysis was performed as described previously using

in vitro transcribed RNA probes [24]. For details on the primers

used to create the probes, see Table S3.

FACT Is Required to Define CENP-A Assembly Sites
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Western analysis
Western analysis was performed as described previously using

anti-GFP antibody (gift from Kevin Hardwick) and anti-TAT-1

antibody (alpha-tubulin - gift from Keith Gull) [47]. The

intensities of GFP and TAT-1 signals were quantified using

LICOR Odyssey Infrared Imaging System software (Li-COR

Bioscience).

ChIP–chip
DNA was immunoprecipitated as described earlier using 10 ml

of anti-CENP-ACnp1 and 1.5 mg of anti-H3 (ab1791, abcam)

antibody per 100 ml chromatin extract [60]. For microarrays with

spiked-in controls Affymetrix GeneChip Eukaryotic Poly-A RNA

Control Kit was used. RNA from the kit was transcribed into

cDNA using SuperScript II Reverse Transcriptase (invitrogen) and

oligo(dT) primers (invitrogen). The cDNA was diluted 10,000

times and added to the immunoprecipitated samples before round

A and B amplification. Fragmentation, labeling and hybridization

to the Affymetrix GeneChip S. pombe Tiling 1.0FR was performed

by Affymetrix core facility at Novum (BEA) according to

Affymetrix standard protocols. Raw data from Affymetrix (.CEL

format) were normalized with Affymetrix Tiling Analysis Software

(TAS) v1.1 and analyzed and visualized using Podbat [61].

RT–PCR analysis
RT–PCR using total RNAs prepared with RNeasy mini kit

(Qiagen) was performed as described [24].

Supporting Information

Figure S1 FACT is not required for central core silencing and

does not show genetic interaction with CENP-ACnp1. (A)

Schematic of targeted random mutagenesis in 59 or 39 regions

within spt16+. See additional details in Materials and Methods. (B)

Viability of wt, cnp1-87 and spt16-ts cells with cnt1:ura4+ on N/S

(non-selective), -Ura (uracil lacking) and FOA (counterselective

drug for ura4+ expression) plates at 25uC. (C) Viability of wt, pob3D
and cnp1-87 cells with cnt1:ura4+ on N/S (non-selective), -Ura and

FOA plates at 32uC. (D) Viability of wt, pob3D, cnp1-87 and pob3D
cnp1-87 cells at indicated temperatures.

(TIF)

Figure S2 CENP-ACnp1 accumulates preferentially at centro-

mere proximal regions in spt16-18 cells with overexpression of

CENP-ACnp1. ChIP-chip analyses of relative levels of CENP-

ACnp1 in spt16-18 cells compared to wt in the presence of OE-

CENP-ACnp1 (nmt41-cnp1+) at centromere proximal regions. ORFs

are displayed as grey boxes. Regions of at least 1 kb in length and

with .2-fold increase in CENP-ACnp1 signal above genome-wide

average are depicted with red boxes. Data on the Y-axis are

presented in linear scale. Blue: running average signal/100 probes.

Grey: signal for individual probes.

(TIF)

Figure S3 Detection of cryptic shorter transcripts from prm1+,

tip41+ and act1+. (A) Northern analyses of transcripts from prm1+

and tip41+ gene. (B) Northern analyses of transcripts from act1+

gene. RNA was extracted from cells grown at 25uC (wt, spt16-18),

32uC for 6 h (wt, pst2D) or 36uC for 1 h (wt, spt16-18) after shift

from 25uC. Arrow indicates full-length transcripts.

(TIF)

Figure S4 H3 and CENP-ACnp1 are preferentially incorporated

in genes expressed at low to intermediate levels in spt16-18 cells.

Moving average plots (window size = 100, step size = 1) of H3

(upper panel) and CENP-ACnp1 (lower panel) plotted as a function

of RNA expression in WT (arbitrary units a.u.). H3/CENP-ACnp1

association in spt16-18 cells (red) and WT (black) at 36uC.

(TIF)

Figure S5 Effects of CENP-ACnp1 overexpression in cells with

defective Spt6. (A) Viability of wt, spt6-1 and spt16-20 cells

expressing additional CENP-ACnp1 at low (nmt81-CENP-ACnp1)

and medium (nmt41-CENP-ACnp1) levels compared to empty

vector at 32uC. Note: spt16-20 cells have a semi-permissive

temperature similar to that of spt6-1 and thus are used as a positive

control in this experiment. (B) ChIP analysis of CENP-ACnp1 levels

at prm1+, tip41+ and endogenous centromeres (cc1/3) in wt and

spt6-1 cells in the absence or presence of OE-CENP-ACnp1 (nmt41-

cnp1+). Cells were grown at 36uC for 1 h after shift from 25uC.

(TIF)

Figure S6 CENP-ACnp1 preferentially accumulates at subtelo-

meric regions and ectopically placed central domain DNA when

overexpressed. (A) ChIP-chip analyses of relative levels of CENP-

ACnp1 in wt cells with OE-CENP-ACnp1 (nmt41-cnp1+) compared to

wt cells without OE-CENP-ACnp1. Cells were grown at 36uC for

1 h after shift from 25uC. Data on the Y-axis are presented in log2

scale. (B) Schematic of ectopic cc2 inserted at ura4+ locus (ura4+-int-

cc2). (C) ChIP analysis of CENP-ACnp1 levels at act1+, pot1+ and

ura4+-int-cc2 in wt cells in the absence or presence of OE-CENP-

ACnp1 (nmt41-cnp1+) grown at indicated temperatures. (D) ChIP

analysis of CENP-ACnp1 levels at act1+, pot1+ and ura4+-int-cc2 in wt

and spt16-18 cells in the absence or presence of OE-CENP-ACnp1

(nmt41-cnp1+). Cells were grown at 36uC for 1 h after shift from

25uC.

(TIF)

Figure S7 Expression of ura4+ from cnt1:ura4+ or cnt1:bigura4+ is

not significantly affected in spt16-18 cells. qRT-PCR analyses to

measure the levels of ura4+ transcripts from cnt1:ura4+ or

cnt1:bigura4+ in wild-type and spt16-18 cells. Cells were grown at

36uC for 1 h after shift from 25uC. The relative expression levels

were calculated as the value of ura4+ expression relative to act1+.

These values (ura4+/act1+) were further normalized to those of

respective wild-type (relative to wt). Error bars indicate S.D. from

2 biological replicates.

(TIF)

Figure S8 Loss of Sim3 relieves the toxic effects of CENP-ACnp1

overexpression in pob3D cells. Viability of wt, pob3D, sim3D and

pob3D sim3D cells expressing additional CENP-ACnp1 at low

(nmt81-CENP-ACnp1) or medium (nmt41-CENP-ACnp1) levels

compared to empty vector. Cells were grown at 25uC, 32uC or

36uC. Phloxine B plates stain dead cells red.

(TIF)

Figure S9 Low level overexpression of CENP-ACnp1 partially

rescues the lethality of pob3D mis6-302 cells. Viability of wt, pob3D,

mis6-302, pob3D mis6-302 and cnp1-1 strains expressing additional

CENP-ACnp1 at medium (nmt41-CENP-ACnp1) or low (nmt81-

CENP-ACnp1) levels compared to empty vector at 25uC or 32uC.

(TIF)

Figure S10 Defective function of Clr6-CII allows assembly of

CENP-ACnp1 chromatin at specific locations. (A) Average gene

analysis for the ratio of H3 occupancy in pst2D mutants versus wt.

Genes are aligned at transcription start site and divided into four

groups dependent of their transcription levels. n = number of genes

in each group. Error bars represent 99% confidence intervals. (B)

ChIP-chip analyses of relative CENP-ACnp1 levels in pst2D cells

compared to wt in the presence of OE-CENP-ACnp1 (nmt41-cnp1+).

ORFs are displayed as grey boxes. Regions of at least 1 kb in

FACT Is Required to Define CENP-A Assembly Sites
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length and with .2-fold increase in CENP-ACnp1 signal above

genome-wide average are colored red. Data on the Y-axis are

presented in linear scale. Blue: running average signal/100 probes.

Grey: signal for individual probes. (C) ChIP analyses of CENP-

ACnp1 and CENP-CCnp3 levels at pot1+ and cc2 in pcc2 plasmid

compared to endogenous centromere (cc1/3) in wt, pst2D, cph1D
and pst1-1 cells carrying pcc2. Cells were collected after 30 cell

doublings at 32uC from the introduction of pcc2. Error bar

indicates standard deviation from 3-4 independent biological

experiments. (D) ChIP analyses of CENP-ACnp1 and CENP-CCnp3

levels at pot1+ and cc2 in pcc2 plasmid compared to endogenous

centromere (cc1/3) in wt and spt16-6 cells carrying pcc2. Error bar

indicates standard deviation from 3 independent biological

experiments. (Note: we find that most of spt16-ts alleles including

spt16-18 do not allow efficient propagation of pcc2 plasmid and

thus a specific allele (spt16-6) which allows propagation of pcc2 is

used in this particular assay.) (E) ChIP analyses of CENP-ACnp1

and CENP-CCnp3 levels at pot1+ and cc2 in pcc2 plasmid compared

to endogenous centromere (cc1/3) in wt and spt6-1 cells carrying

pcc2. Error bar indicates standard deviation from 3 independent

biological experiments.

(TIF)

Figure S11 Loss of Clr6-CII function does not induce H3K9

methylation on pcc2 plasmid. (A) Schematic of pcc2 plasmid.

Regions amplified by primer pairs used in ChIP-qPCR (cc2, ura4+

and vector - a region on the plasmid backbone) are indicated as

short black bars. (B) ChIP analyses of H3K9 methylation

(H3K9me2) levels at cc2, ura4+ and vector in pcc2 in wt and

pst2D cells carrying pcc2. (C) ChIP analyses of H3K9me2 levels at

chromosomal act1+ and dg in the same samples. dg represents a part

of heterochromatic centromere outer repeats and thus serves as a

positive control for H3K9me2 ChIP. ChIP was performed after 30

and 50 cell doublings at 32uC from the introduction of pcc2.

Enrichment is reported as % IP. Error bars indicate S.D. from 4

biological replicates.

(TIF)

Table S1 Relative enrichment of CENP-ACnp1 and H3 in spt16-

18 versus wild-type cells (at 36uC) at selected genes from ChIP-

chip data and their relative RNA expression levels (at 30uC;

transcription levels were categorized as in Figure 2F).

(DOC)

Table S2 List of strains.

(DOC)

Table S3 List of primers.

(DOC)

Table S4 List of spt16-ts alleles.

(DOC)
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