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Obstructive sleep apnoea syndrome (OSAS)
is highly prevalent in adults and constitutes
an independent risk factor for cardio-
vascular morbidities including arterial
hypertension, coronary artery disease, heart
failure and stroke (Somers et al. 2008).
However, the underlying mechanisms are
complex and not entirely understood.
Earlier studies have mostly focused on
sympathetic activation (SA) resulting from
the apnoeic events during sleep. Increased
SA was documented in OSAS during both
sleep and wakefulness (Carlson et al. 1993).
Sympathetic activation combined with the
apnoeas-related swings in intrathoracic
pressure were suggested to promote hyper-
tension in OSAS (Somers et al. 2008).
In recent years research has focused on
intermittent hypoxia (IH)-related oxidative
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stress and concomitant inflammation.
This was based on the notion that
the recurrent nocturnal cycles of
hypoxia–re-oxygenation are analogous
to cycles of ischaemia–reperfusion, thus
promoting increased reactive oxygen
species (ROS) resulting in oxidative stress
and tissue injury (Lavie, 2003).

A large body of evidence supports
increased ROS/oxidative stress in OSAS. It
was shown in leukocytes (Dyugovskaya et al.
2002), and in lipids and proteins of plasma,
and could be moderated by treatment.
Increased oxidative stress was also shown
in animal models mimicking sleep apnoea
(Lavie & Lavie, 2009).

Excess ROS affects the vasculature
by directly and irreversibly damaging
various bio-molecules, resulting in
altered biological functions. ROS can
also disrupt key signalling pathways
in the arterial wall by promoting
inflammatory/immune functions through
nuclear factor-κB (NF-κB) activation and
its downstream genes, namely, adhesion
molecules and inflammatory cytokines
(Lavie & Lavie, 2009). Up-regulated
NF-κB (Htoo et al. 2006), adhesion
molecules and inflammatory cytokines
were noted in leukocytes as well as in
plasma of OSAS patients (Lavie, 2003;
Lavie & Lavie, 2009). Moreover, OSAS
blood leukocytes and endothelial cells
display an activated pro-inflammatory/
pro-thrombotic phenotype with increased
avidity and cytotoxicity towards end-
othelial cells (Dyugovskaya et al. 2002,
2003, 2008). Notably also, leukocytes
from healthy subjects exposed to IH in
vitro, which is devoid of SA, expressed a
pro-inflammatory/pro-thrombotic pheno-

type (Dyugovskaya et al. 2002, 2008,
2011). Thus, the increased ROS in
OSAS induces inflammation which in
turn increases ROS formation, hence,
creating a vicious cycle of oxidative
stress/inflammation promoting endothelial
dysfunction and atherosclerosis, and
consequently cardiovascular sequelae
(Lavie, 2003).

Which of the two pathophysiological
mechanisms, sympathoexcitation or
oxidative stress/inflammation, is the
key player inducing most of the cardio-
vascular sequelae in OSAS? We argue
that ROS/oxidative stress is the initiator
and therefore mainly responsible for
the cardiovascular morbidities. Our
argument relies primarily on a large body
of evidence demonstrating that increased
ROS, produced in various tissues, induces
SA and concomitant hypertension. Also,
oxidative stress was shown to promote end-
othelial dysfunction and atherosclerosis.
Additionally, oxidative stress is a prominent
feature of co-morbidities which frequently
aggregate with OSAS and may therefore
amplify its cardiovascular impact.

Sympathetic activation is enhanced
by oxidative stress and attenuated
by antioxidants

The mechanisms by which oxidative
stress induces SA and hypertension were
primarily described in rodents using
neuronal, renal and vascular tissues.
Cumulative evidence implicated increased
ROS production in the development
of hypertension through increased
sympathetic outflow in various autonomic
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brain nuclei (Datla & Griendling, 2010;
Hirooka, 2011; Chan & Chan, 2012), and
in cardiac-autonomic signalling (Danson &
Paterson, 2006). Angiotensin II (AngII) is
a potent stimulant for ROS formation. Its
overproduction was shown to contribute
to the development of hypertension and
cardiovascular diseases through ROS.
Systemic and direct infusion of AngII to
the rostral ventrolateral medulla (RVLM)
increases NADPH oxidase-dependent ROS
production and hypertension. AngII also
stimulates other ROS-generating systems
such as xanthine-oxidase, uncoupled nitric
oxide synthase (NOS) and mitochondria
(Lee & Griendling, 2008). Selective
deletion of superoxide dismutase-3 further
increased the AngII-induced increase in
heart rate, blood pressure, inflammatory
leukocyte infiltration and vascular ROS
(Lob et al. 2010). Additionally, inducible
NOS-dependent ROS production in RVLM
increased SA and blood pressure (Kimura
et al. 2005). The antioxidant tempol, which
decreased ROS in hypertensive rats, also
decreased arterial pressure, heart rate
and sympathetic nerve activity (Shokoji
et al. 2003). Increased ROS mediated by
endothelin-1 (ET-1) was also shown in
sympathetic ganglia of hypertensive rats,
indicating that a redox change in the
environment of sympathetic ganglia may
activate sympathetic neurons resulting in
vasoconstriction and hypertension (Dai et
al. 2004). Thus, both AngIIb and ET-1 were
implicated in ROS formation accompanied
by vasoconstriction and hypertension in rat
vasculature. Importantly, similar findings
were described in clinical studies showing
increased ROS, decreased antioxidant
enzyme activity and a preventive effect of
antioxidants in hypertension, suggesting
that enhanced oxidative stress is a risk
factor for hypertension in humans (Abdilla
et al. 2007; Lee & Griendling, 2008).

Oxidative stress was also shown to
promote hypertension in animal models
treated by chronic IH through increased
ET-1 production. Tempol treatment pre-
vented the increase in blood pressure,
lowered oxidative stress and plasma ET-1
(Troncoso Brindeiro et al. 2007). Exposure
to chronic IH also induced hypoxic sensing
in rat adrenal medulla via increased
ROS. This resulted in adrenal medulla
catecholamine efflux, and elevated blood
pressure and plasma catecholamines that
were prevented by antioxidants (Kumar
et al. 2006). Likewise, blood pressure,
plasma noradrenaline, and oxidative stress

markers were increased by chronic IH in
wild-type mice and could be reversed by
a potent antioxidant. In partially deficient
hypoxia inducible factor (HIF)-1α mice,
chronic IH did not increase blood pressure,
noradrenaline, or oxidative stress, thus,
implicating ROS and HIF-1α activation
in the development of hypertension by
IH (Peng et al. 2006). Also, carotid body
sensitivity to oxygen levels in IH-treated
mice required HIF-2α redox regulation
to restore autonomic functions, and pre-
vent hypertension and elevated plasma
noradrenaline (Peng et al. 2011). Data from
patients with OSAS are mostly in agreement
with the animal studies. Both AngII and
ET-1 were shown to increase in OSAS and
were correlated with blood pressure (Moller
et al. 2003). These findings suggest that in
OSAS, oxidative stress could be one of the
mediating factors between IH, AngII, ET-1
and hypertension.

Endothelial dysfunction and early
signs of atherosclerosis

Endothelial dysfunction is a documented
prognostic marker of atherosclerosis. It is
greatly affected by oxidative stress that alters
vascular function and tone and decreases
nitric oxide bioavailability (Schulz et al.
2011), as was also noted in OSAS patients
(Lavie et al. 2003). Severity dependent
endothelial dysfunction is prevalent in
normotensive OSAS patients (Kato et al.
2000) and is improved by vitamin C infusion
(Grebe et al. 2006) or allopurinol treatment
(El Solh et al. 2006), suggesting pre-
dominant involvement of oxidative stress.
Moreover, an increase in oxidative stress
markers as well as decreased endothelial
NOS activity was directly shown in venous
endothelial cells harvested from OSAS
patients (Jelic et al. 2008). Additionally, early
signs of atherosclerosis, such as increased
pulse wave velocity, carotid diameter and
intima-media thickness, were reported to
be severity dependent in normotensive
co-morbidity free OSAS patients (Drager
et al. 2005).

Oxidative stress in aggregating
co-morbidities

A great number of conditions and
co-morbidities such as hypertension,
insulin resistance, diabetes mellitus, hyper-
lipidaemia and endothelial dysfunction
which promote cardiovascular morbidities

through ROS-dependent mechanisms, also
aggregate with OSAS. These may further
exacerbate oxidative stress in OSAS (Lavie
& Lavie, 2009).

In summary, although sympathoexcitation
plays a major role in the cardiovascular
sequelae of OSAS, it should be recognized
that it is initiated in response to increased
ROS formation and oxidative stress,
resulting from the nightly occurrence of IH.
Thus, OSAS-related ROS formation should
be considered a novel therapeutic target
for preventing cardiovascular morbidities in
OSAS.
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Readers are invited to give their views on this
and the accompanying CrossTalk articles in
this issue by submitting a brief comment.
Comments must not exceed 250 words,
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in the centre panel on the HighWire site.
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