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Abstract
Compressible flow based image registration operates under the assumption that the mass of the
imaged material is conserved from one image to the next. Depending on how the mass
conservation assumption is modeled, the performance of existing compressible flow methods is
limited by factors such as image quality, noise, large magnitude voxel displacements, and
computational requirements. The Least Median of Squares Filtered Compressible Flow (LFC)
method introduced here is based on a localized, nonlinear least squares, compressible flow model
that describes the displacement of a single voxel that lends itself to a simple grid search (block
matching) optimization strategy. Spatially inaccurate grid search point matches, corresponding to
erroneous local minimizers of the nonlinear compressible flow model, are removed by a novel
filtering approach based on least median of squares fitting and the forward search outlier detection
method. The spatial accuracy of the method is measured using ten thoracic CT image sets and
large samples of expert determined landmarks (available at www.dir-lab.com). The LFC method
produces an average error within the intra-observer error on eight of the ten cases, indicating that
the method is capable of achieving a high spatial accuracy for thoracic CT registration.
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1. Introduction
Deformable image registration (DIR) has many applications within the field of medical
imaging, including (see [1] for a review) ventilation imaging [2,3], brain mapping [4], and
cardiac motion estimation [5]. Regardless of the application, the goal of a DIR method is to
produce an accurate spatial mapping that relates the position of the underlying anatomy
represented by each voxel within a given reference image to its corresponding position
within a target image. DIR methods were first developed for computer vision applications
[6] where fluctuations in image intensities are primarily caused by lighting changes or
shadows. As such, most DIR methods are based on the assumption that the imaged material
will maintain its intensity throughout the deformation. For images depicting compressible
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fluid flow, or equivalently, a conserved mass deformation, the continuity (mass
conservation) equation is a more appropriate model that allows for voxel intensity variations
[5,7].

Within the context of thoracic CT registration, compressible flow DIR methods have been
shown to produce spatially accurate deformations [7,8]. However, existing methods are
limited by factors such as image quality, noise, large magnitude voxel displacements, and
computational requirements. The compressible flow methods described in [5,7,9–12] are
based on differential equation models that require approximations to spatial and temporal
image derivatives. In the presence of image noise, the accuracy of spatial derivative
approximations are known to suffer [13]. Moreover, temporal image derivatives, which are
typically approximated by simply subtracting the reference image from the target image, are
suspect in image pairs depicting large magnitude displacements. The methods described in
[14,15] are based on a nonlinear compressible flow model that does not require temporal
image derivatives. However, those approaches do require the application of a gradient-based
optimization algorithm, such as Newton's Method, Steepest Descent, or Levenberg-
Marquardt (see [16] for an over view), in order to obtain a numerical solution. Applying a
gradient-based optimization algorithm to an image registration problem necessarily requires
either finite difference approximations to spatial image derivatives, or a continuous (such as
B-spline [17]) representation of the image data. Furthermore, each iteration of a gradient-
based algorithm requires a large scale linear system solve (with exception of Steepest
Descent). The compressible flow 4D trajectory modeling method introduced in [8] utilizes
gradient based optimization. But, because of the trajectory formulation, does not require
large scale linear system solves. However, the method still requires a B-spline representation
of the image data. Optimal control-based registration methods have been shown to be
effective on two dimensional image sets [18,19], but the computational cost associated with
the 3D or 4D extensions of such methods would be prohibitively expensive.

The DIR method introduced here, referred to as Least Median of Squares Filtered
Compressible Flow (LFC), is based on describing the motion of a single voxel with a locally
defined, nonlinear least squares, compressible flow voxel motion model. The model easily
lends itself to a simple grid search (block matching) optimization strategy, and therefore
does not require the approximation of image derivatives to obtain a numerical solution. A
well known drawback to this type of basic block matching search strategy is the possibility
of computing an erroneous point match, corresponding to a spatially inaccurate local
minimizer of the nonlinear voxel motion formulation. In order to provide robustness to the
grid search solves, the method utilizes a novel point match filter, based on least median of
squares fitting and the "forward search" [20–22] outlier detection method. A globally
defined deformation map is generated from the filtered point matches using Moving Least
Squares interpolation [23].

In accordance with the DIR validation framework presented in [24], the spatial accuracy of
the LFC method is measured using ten thoracic CT inhale/exhale image pairs and large sets
of expert-determined landmark point pairs. All validation data (including images and expert-
determined landmarks) used in this study are publically available online at
www.dir-lab.com.

2. Methods
The LFC method is composed of two main components: 1) a localized, nonlinear least
squares, compressible flow voxel motion model, and 2) a point match filter based on least
median of squares fitting and forward search outlier detection. After describing each

Castillo et al. Page 2

Phys Med Biol. Author manuscript; available in PMC 2013 August 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.dir-lab.com


component in section 2.1. and 2.2, we derive the full LFC method in section 2.3. Our
numerical implementation of the method is discussed in section 2.4.

2.1 Localized Nonlinear Compressible Flow
Assuming the image pair to be registered, P0(x) and P1(x), are snapshots of an unknown
density function ρ(x(t),t), t ∈[0,1], the compressible flow (mass conservation) continuity
equation is defined in terms of the density function as:

(1)

where v represents the apparent velocity of the flow depicted in the images. Methods based
on the differential equation model (1), such as those described in [5,7,9–12], are dependent
on approximations to the partial derivatives of ρ. These approximations are typically
computed by applying finite differences to the image data contained in P0(x) and P1(x).
Consequently, most differential equation based methods are susceptible to poor image
quality and noise. The integrated form of (1), derived in [14,15] for use in 2D image
registration, does not require temporal image derivative information, and is defined as

(2)

where D(x) is the unknown displacement field. DIR methods based on (2) typically employ
a gradient-based optimization routine to compute a numerical solution to a large-scale
nonlinear optimization problem. Rather than utilize (2) within a standard global DIR
framework, we propose adjusting the model to fit within the locally regularized DIR
framework first introduced in [25] for standard optical flow.

Locally regularized DIR methods are based on using the image information contained in a
local neighborhood to articulate a well-posed least squares problem describing the motion of
a single voxel. A full DIR is recovered from the localized approach by either solving the
least squares problem for every voxel in the image domain or by solving the problem for a
subset of voxels and then interpolating the results to obtain a globally dense field. The
nonlinear compressible flow voxel motion-intensity model can be adapted to fit within the
localized DIR framework by first applying the natural log to formulation (2) and rearranging
terms to obtain:

(3)

Compressible flow formulation (3) describes the motion of a single voxel x in terms of the
unknown displacement vector d = D(x). However, formulation (3) only provides one
equation for the three unknown components of d and can be viewed as an underdetermined
system. An over-determined system can be obtained by incorporating the image information
contained in a local voxel neighborhood Nε(x), centered on x with radius ε, into the model.
The unknown displacement d is then described as a least squares fit:

(4)

The difficulty in solving the nonlinear least squares problem (4) is in computing the
divergence of the displacement field D. Since D is unknown, a manner for approximating
the divergence of D using only the image information contained in Nε(x) is required.
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Following the approach used in [7] for the differential equation form (1), the contribution of
the div(D(x)) term can be approximated by an auxiliary variable ϕ:

(5)

In this way, both the displacement of x and the divergence of the displacement field
evaluated at x are described as a nonlinear least squares fit over the image information
contained in the voxel neighborhood Nε(x).

An examination of the objective function R for problem (5) reveals that for any fixed
displacement value d̃, there is unique value ϕ* such that:

(6)

and,

(7)

This follows from the fact that (6) represents a simple linear least squares problem, the
solution of which is given by (7). Thus, for any displacement vector d̃, the optimal value of
ϕ that yields the smallest value in R is given by (7). Substituting this result into (5) yields a
localized nonlinear compressible flow formulation that only depends on the unknown
displacement d:

(8)

Considering that image data is inherently discretized into a voxel grid, an exhaustive grid
search optimization scheme is an appropriate strategy for computing a numerical solution to
problem (8). Assuming the unknown displacement vector to be integer valued: d =
(d1,d2,d3)T ∈ ℕ3, the grid search solution is described as:

(9)

where B(s) = {d : −s ≤ di ≤ s}, represents a bounding box of length 2s centered at the origin.
The solution to (9) is obtained by simply evaluating R̂ at each integer grid point contained in
the bounding box. As such, the grid search approach does not require approximations to
image derivatives or a continuous representation of the image data.

2.2 Least Median of Squares Filtering
Within the context of DIR, grid search optimization applied to a locally defined least squares
problem, such as (8), can be classified algorithmically as a block matching registration
approach (see [13,26] for basic overviews). Block matching methods approximate the
underlying deformation by computing point matches representing optimal (according to a
given image similarity metric) corresponding regions in the reference image and target
image. Though robust to image noise and large magnitude voxel displacements [13], block
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matching methods are still susceptible to the issues associated with nonlinear, nonconvex
optimization; namely, convergence to erroneous local minima.

The grid search (block matching) optimization procedure is not guaranteed to find the most
spatially accurate point match for two main reasons. First, the grid search result depends on
the search window, which may or may not include the correct minimizer. Second, due to the
nature of deformable transformations, there is no guarantee that the strongest numerical
minimizer corresponds to the most spatially accurate point match. Consequently, existing
block matching methods typically compute a full DIR from the generated point match data
by employing an interpolation scheme designed to dampen the contributions of erroneous
point matches (as in [27]). Other approaches for alleviating the effects of inaccurate point
matches (often referred to as outliers) include parameter sensitivity [28] analysis and local
thresholding [29] which are more heuristic in nature and also difficult to generalize. In the
case of rigid registration, least squares trimming [30] has been shown to be effective for
obtaining the transformation while remaining robust to outliers [31]. This strategy has been
incorporated into an iterative deformable registration framework [27], but the method relies
on a global regularization strategy to smooth out a series of local affine approximations, in
addition to multiple block matching runs. Rather than simply dampen the effects of outliers
or apply a heuristic thresholding, we propose utilizing two robust statistical tools known as
"least median of squares" (LMS) and the "forward search method" to identify and remove
potentially inaccurate point matches altogether.

LMS is a data fitting formulation that determines the fit function by minimizing the median
of the absolute residuals, whereas standard least squares fitting minimizes the sum of
squared residuals. Specifically, the LMS fit of a function f parameterized by the coefficient

vector q for the data sets , is defined as:

(10)

The LMS formulation can robustly estimate q for data sets containing up to 50% outliers, as
opposed to standard least squares fitting which can be severely affected by just a few points
with large magnitude errors [32]. The fitting function f is typically chosen to be a
polynomial of degree n, with the choice of n depending on the nature of the data set X,Y. In
this case, the data set X represents a set of voxel locations within the reference image
domain, and Y is obtained by solving problem (8) for each voxel location contained in X
using grid search optimization.

The least median of squares filtering approach presented here is based on adapting the LMS
framework to classify and remove potential outliers in the grid search computed point match
data. The remaining "outlier-free" points can then be confidently interpolated to obtain a full
DIR. Therefore, unlike the previous methods based on least squares trimming [27,31], our
interest is not in the actual solution q to problem (10), but rather the data points that most
contribute to it. The forward-search statistical tool can be used to determine precisely this
type of information.

The forward-search method (see [20–22] for a more detailed description) is an iterative
procedure for outlier detection that has been shown to be an effective technique for
computing LMS fits [33]. The method begins by first finding an initial subset of m outlier-
free point matches from the full data set X,Y. This subset, denoted X(m),Y(m), is easily
generated by the random sampling method described in [32], and requires that the value of
m be greater than or equal to the number of parameters required by the fitting model. The
least squares fit to the data contained in X(m),Y(m) serves as the initial estimate q(m) of the
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LMS solution. After initialization, the method moves forward to a larger subset by applying
the estimated solution q(m) to the full data set X,Y and finding the m+1 points with the
smallest squared residuals. These m+1 points comprise the new subset X(m+1),Y(m+1), and
their least squares fit represents the corresponding LMS solution estimate q(m+1). This
process is repeated resulting in a sequence of point match subsets X(k),Y(k), k = m,m+1,m
+2,…,M, each with a corresponding LMS estimate q(k).

The proposed forward search LMS filter determines a filtered subset of point matches from
the original data set X,Y using the sequence of parameter estimates and subsets generated by
the forward search iteration. The filtered set is defined as Xk*,Yk*, where:

(11)

Put simply, the forward search LMS filter takes the original point match data X,Y as input,
and returns the forward search generated subset that produces the best LMS parameter
estimate. As described in [20–22], the forward search iteration systematically ranks the
points in the data set X,Y according to their consistency with the parameterized fit model.
Thus, points fitting to the model poorly are included in the estimation subsets towards the
end of the iteration. Since the forward search LMS point filter (11) returns the subset that
minimizes the LMS objective function, the filter retains the point matches fitting best to the
model. Consequently, potential outliers are removed.

Naturally, the filter's performance depends in part on the choice of the parameterized
function space. Considering that a polynomial of degree n defined on ℝ3 requires the
identification of (n+1)(n+2)(n+3) / 6 parameters, the task of finding an outlier free data
subset for initializing the forward search becomes increasingly difficult for higher-order
fitting models. However, the goal of applying the filter is not to obtain an accurate
approximation of the underlying deformation, but rather to determine the data points most
consistent with one another. Thus, it is not necessary to incur the computational cost of
filtering the entire input data set X,Y with a high order model suitable for a full DIR
recovery. Instead, a strategy where the filter is applied to a series of smaller image
subregions is a more practical alternative.

Under the mild assumption that the deformation field can be well approximated locally by a
low order polynomial, the filter, utilizing a low order polynomial, can be applied to each
subdomain contained in a decomposition of the full image domain. The union of the
resulting filtered point sets obtained from each subdomain can then be interpolated
confidently to recover the full DIR. This domain decomposition approach preserves the
nonlinearity inherent to the underlying spatial transformation since the LMS filter only
determines the points that are consistent with one another, leaving the data itself unaltered.
Figures 1 and 2 illustrate the results of applying the filter to a data set of grid search
computed point matches. The numerical implementation of the domain decomposition
strategy is detailed in section 2.4.

2.3 Filtered Compressible Flow
The nonlinear least squares compressible flow formulation (8) provides a means for
computing the displacement of a given voxel using simple grid-search optimization. Though
robust to image noise and large magnitude deformations, the approach is susceptible to the
effects of spatially inaccurate local minima. As the name suggests, the Least Median of
Squares Filtered Compressible Flow (LFC) method described here utilizes the forward
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search least median of squares filter (11) to weed out the potentially erroneous point
matches obtained by solving problem (8) with the grid search procedure (9).

LFC Algorithm—Given an image pair P0,P1, and a fitting function parameterized by the
vector q, the LFC algorithm is as follows:

1. Define a set of uniformly spaced voxel locations  on P0.

2. For i = 1, 2,3,…,M, compute di for the voxel location xi by solving problem (8)
with the grid search procedure (9) and set yi = xi + di.

3. Determine the filtered data set X*,Y* by applying the forward-search LMS filter

(11) to the data set .

4. Compute the fully dense displacement field by applying moving least squares
interpolation to each voxel on the image grid using the filtered point match set
X*,Y*.

The LFC method is inherently point based, as such the first step of the algorithm simply
determines the voxel locations in P0 on which to operate. For example, the set X might
represent the voxels located on a coarse image grid. Our current implementation of the LFC
method, as illustrated in Figure 3, generates the input source point set X using a simple dart
throwing algorithm [34,35] applied to an input image mask. This approach ensures that X
contains uniformly spaced voxel locations within a region of interest. However, despite the
initial spatial structure placed on X, there is no a priori knowledge of which points will be
filtered out by the forward search LMS filter. Consequently, the filtered source point set X*

is not guaranteed to posses any spatial structure.

The filtered data X*,Y* represents an unstructured point cloud sampling of an underlying
deformation. As such, interpolating the filtered sets X*,Y* to generate a full DIR requires an
interpolation procedure that does not depend on structured input data. A similar problem
arises in computer aided design where the goal is to recover closed shapes and surfaces from
unstructured geometric point cloud data acquired by digital scanning devices. The moving
least squares interpolation method is known to be robust and effective [23,36,37] for
reconstructing surfaces from unorganized point clouds, and has also been shown to be
effective for image registration applications [7,8,38]. Thus, the final step of the LFC method
is to reconstruct a fully dense displacement field from the point cloud X*,Y* by applying
moving least squares interpolation.

2.4 Numerical Implementation
The bulk of the computational workload associated with the LFC method is represented by
the second step of the algorithm, namely computing the grid-search solution for a given set
of voxel locations. However, due to the decoupled nature of block matching DIR, the grid-
search step easily lends itself to a parallel implementation. Similarly, the moving least
squares interpolation procedure required by the final step of the algorithm is also inherently
parallelizable. Our current implementation of both the grid search procedure and the moving
least squares interpolation utilizes the parallel computing power of Graphics Processing
Units (GPUs). The software is written in the Compute Unified Device Architecture (CUDA)
C programming language [39] for use with the NVIDIA Tesla 2070 GPU.

Our implementation of the forward-search LMS filter employs a simple affine function
model:

Castillo et al. Page 7

Phys Med Biol. Author manuscript; available in PMC 2013 August 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(12)

and, as discussed in section 2.2, is designed to operate on small image subdomains where
the low-order affine model is an acceptable approximation. The K-means clustering
algorithm described in [40] is used to divide the input point set X into K subsets,
representing a spatial decomposition of the image domain. Figure 4 illustrates the results of
a K-means subdomain decomposition. The filter, utilizing the affine function model (12), is
then applied to each subdomain independently. The final filtered point match data set X*,Y*

is then taken to be the union of the filtered sets determined on each subdomain. The dart
throwing algorithm, subdomain generation, and the forward search LMS filter are all
implemented in C++. All experiments listed in the Section 3 were conducted on a Silicon
Mechanics Hyperform HPCg R2504.v2 workstation with two Intel Xeon X5675 Six-Core
3.06GHz processor and an NVIDIA Tesla 2070 GPU.

3. Results
Following the DIR validation framework presented in [24], the spatial accuracy of the LFC
method is measured using large samples of expert-determined landmark point pairs and ten
thoracic CT inhale/exhale image pairs obtained from the publically available database:
http://www.dir-lab.com. A full treatment of the data acquisition, landmark generation, and
statistical characterization of the reference feature pairs is detailed in our prior publications
[8,24]. Tables 1 and 2 summarize the landmark data characteristics for all ten test cases. At
each reference landmark position, the DIR spatial error is computed as the three-dimensional
Euclidian distance (in millimeters) between the corresponding expert-determined target
position and the estimated target position returned by the LFC method.

The LFC method requires the specification of four input parameters: 1) the radius ε of the
local DIR neighborhood Nε(x), defined in formulation (5), 2) the bound for the grid search
window s defined in (9), 3) the number of subdomains K used to decompose the input
source locations (as described in 2.4 and illustrated in Figure 4), and finally the number of
points M contained in the initial point cloud X resulting from the dart throwing algorithm.
Tables 2 and 3 detail the results of applying the LFC method to test case 8 (the case
containing the largest magnitude landmark displacements according to Table 1) using
varying parameter values.

As demonstrated by the average millimeter errors reported in Table 2, the LFC method
produces the best results when the value of K yields subdomains small enough for an affine
function to adequately describe the underlying transformation on each subdomain. For
instance, K=1 filters point matches based on an affine fit applied to the entire image domain.
This produces the poorest spatially accurate result. However, the average error only
fluctuates between 1.14 mm and 1.17 mm for K ≥16 (with the exception of the experiment
where M=9704). Whereas for K ≤ 16, the fluctuations is more pronounced and the average
error varies between 1.67 mm and 1.14 mm. Additionally, the computation time for the filter
is sensitive to K. A larger value of K implies fewer points will be contained in each
subdomain. Every iteration of the forward search method requires sorting the residuals
obtained by applying the fit estimate from the previous iteration to all points matches in the
subdomain. The sorting (our implementation utilizes the well know heap sort), becomes
more expensive as the number of points in the subdomain increases. Thus, larger K (≥16 in
this case) is beneficial for both accuracy and computational efficiency.
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Table 2 also shows that the LFC results are not sensitive to size of the grid search bounding
box, once the size is taken to be large enough to capture the displacement magnitude of the
transformation. For test case 8, s = 7 is insufficient as evidenced by its associated high
average error. This is because the voxel dimensions (as list on www.dir-lab.com) for the
case 8 image data are 0.97×0.97×2.50, meaning that for s = 7 voxels, the grid search box can
only capture displacements with a magnitude of 6.79 mm in the xy-plane and 17.5 mm in
the z-direction. Considering that the average magnitude displacement for case 8 is 15.16
mm, the LFC method cannot accurately recover the transformation given s = 7. In
comparison, the runs with s = 12,17, and 22 produce consistently accurate results.

Our implementation of the LFC method allow for anisotropic local neighborhoods to be
used within the grid search. More specifically, the local DIR neighborhood Nε(x) is
represented as a box of size l×l×w centered on x. We refer to this anisotropic local
neighborhood as the match window. Table 3 also demonstrates the LFC's sensitivity to the
match window dimensions. In general, too small a match window does not provide enough
information to compute an accurate grid search point match. Larger match windows, though
more robust, are more computationally expensive. Experimentation reveals that a match
window of size 9×9×5 provides a compromise between computational expense and spatial
accuracy as detailed by Table 3.

Though the bulk of the LFC method's computational workload is associated with the grid
search, because of the GPU implementation, the majority of the method's actual run time is
spent filtering the point matches. For comparison, we also implemented the grid search
routine in C++ using the Open MP parallel library. Table 4 shows the runtimes for the grid
search procedure using the GPU, a single CPU core, and 12 CPU cores in parallel. The GPU
provides a speed up factor of approximately 300 over the single core run (with M=68312
and s = 17). Thus, without the GPU, the grid search time easily dominates the filtering time.
In general, the LFC runtime depends on M and K. However, as demonstrated by Table 2, the
spatial accuracy of the method does not greatly depend on either of these parameters. In fact,
the average error achieved with M = 122657 and K =32 is only marginally better than the
one achieved with M = 9704 and K = 32, despite the fact that the runtime for the former was
857.57 seconds, while the latter ran in 38.09 seconds.

The mean errors and corresponding standard deviations produced by the LFC method for
each individual case are detailed in Table 5. In addition, the parameter sets used to achieve
the results are also given. For comparison, the previously reported spatial errors determined
from the same ten validation test cases for the combined compressible local-global (CCLG)
method [7], the four-dimensional trajectory modeling method (4DLTM) [8], and the GPU
implementation of Therion's Demons algorithm [44], are presented in Table 6. Since
measurements were made for each algorithm using the same reference images and landmark
feature pairs, comparison can be made among the average spatial registration errors. Note
that across all cases, the LFC method produced the smallest average spatial error.

For each of the cases, the Wilcoxon rank sum test was performed to assess the statistical
significance of differences between the LFC spatial accuracy and the intra-observer
measurements, with p-values for each test shown in table 5. Under a null hypothesis that the
distribution of LFC errors is equivalent to the pooled distribution of the observer errors, for
a significance level of 0.05 the LFC errors are statistically equivalent to the observer errors
for case 1,2,3 and 8 and statistically greater for the remaining cases. However, after applying
the Bonferroni multiple-comparison correction to our significance level of 0.05 the
significance level for each of the 10 cases becomes 0.005. Under this correction, the LFC
errors are only statistically greater than the pooled observer errors in cases 6 and 9, with no
significant statistical difference found between the two for any of the remaining cases.
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4. Discussion
The LFC method is designed to compute accurate DIR for compressible flow image pairs
utilizing 1) a localized nonlinear voxel motion model derived from the mass conservation
equation, and 2) a novel point match filter based on least median of squares fitting and the
forward search outlier detection method. The simplicity of the localized compressible flow
formulation allows for the use of derivative free grid-search optimization, an approach
known to be robust to image noise and large magnitude deformations. Considering that grid
search generated point matches are not guaranteed to always be spatially accurate, we apply
a novel point match filter to weed out erroneous point matches. A full DIR is computed from
the resulting filtered point set using moving least squares interpolation. Our implementation
of the LFC method utilizes GPU computing to mitigate the substantial computational
workload represented by the grid search procedure. Given the emergence and growing
popularity of GPU computing within the medical imaging community [41–43], this
requirement is not a prohibitive limitation.

Examination of the average error summaries provided in Table 6 reveals that in general, the
poorest performing methods were the two partial differential equation based methods:
CCLG and Demon's. Though the CCLG method incorporates a local least squares fitting
into the model to provide robustness to image noise, as discussed in [7], the method's
performance tends to drop off for image pairs depicting large magnitude deformations, as
does the performance of the Demon's algorithm. This result is not surprising since large
magnitude deformations lead to poor approximations of the temporal image derivatives
required by both methods, which in turn degrade the quality of the computed DIR. In the
case of Demon's method, robustness to large displacements can be incorporated by adopting
a multi-resolution scheme, and in fact, the results reported in Table 6 (from [44]) were
obtained using a multi-resolution strategy. As such, Demon's produces better results than
CCLG but does not achieve the accuracy of LFC. In contrast to LFC, the Demon's algorithm
is based on the incompressible flow motion model and also does not guard against spatially
inaccurate local minimizers. However, to what degree these properties contribute to the
spatial error of the Demon's method is not known.

A nonlinear voxel motion model based on mass conservation and trajectory modeling is
employed by the 4DLTM method [8]. As a result, the method does not require temporal
image derivative approximations. However, 4DLTM does require gradient based
optimization of a nonlinear objective function. Consequently, the method is susceptible to
the errors introduced by the optimization solver's convergence to spatially inaccurate local
minima. The forward search least median of squares filter used by the LFC method guards
against spatially inaccurate grid search point matches, a feature the 4DLTM lacks.
Consequently, the average errors for the 4DLTM method are smaller than the differential
equation based methods, but larger than those returned by the LFC method, as reported in
Table 6.

The LFC framework is based on a general point processing approach and is similar in nature
to the types of algorithms used for point cloud processing. Though primarily known as
statistical tools for robust regression analysis, both least median of squares fitting and the
forward search iteration have been shown to be effective tools for reconstructing
discontinuous surfaces, such as edges or corners, from unstructured point cloud data [45].
Within the surface reconstruction procedure, the forward search is used to determine which
points are located along a geometric discontinuity. Similarly, the LFC method utilizes the
forward search method to determine which point matches are erroneous. Because erroneous
point matches are discarded, applying the filter results in "holes" or gaps in the uniformity of
the source point distribution. The moving least squares method is therefore ideal for
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interpolating the set of filtered point matches, since the method does not require any spatial
structure in the data. Considering that moving least squares interpolation, forward search,
and least median of squares fitting have all been previously used to compute surface
reconstructions from unstructured point clouds, the LFC method can be viewed as an
adaptation of a surface reconstruction methodology for use within a DIR framework.
Moreover, the point filter methodology introduced in this work is general in that it can be
applied to any point match dataset.

Conclusions and Future Work
A method for computing compressible flow image registration using grid search determined
point matches and a filtering scheme based on robust statistical tools is presented. The
results of applying the method, referred to as Least Median of Squares Filtered
Compressible Flow, to a validation data set consisting of ten thoracic CT image pairs and
large sets of expert-determined landmark point pairs indicate that the method in general
achieves a high spatial accuracy. Additionally, the LFC method produced spatial errors that
are statistically indistinguishable from human observers on eight out of the ten test cases. An
immediate area of future research is to apply the method to other more challenging CT and
inter-modality data sets, and to compile new manual landmark validation sets for evaluating
spatial accuracy.
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Figure 1.
The effect of applying the forward search least median of squares filter to an input point
match data set. The image on the left illustrates a coronal 3D rendering of the original grid
search point matches. The image on the right illustrates the significantly improved filtered
point match subset. The illustrated results correspond to test case 6 from (Results) section 3.
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Figure 2.
The effect of applying the forward-search least median of squares filter to an input point
match data set. The image on the left illustrates a sagittal 3D rendering of the original grid
search point matches. The image on the right illustrates the significantly improved filtered
point match subset. The illustrated results correspond to test case 6 from (Results) section 3.
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Figure 3.
An example source point cloud set generated by the dart throwing algorithm. (Top left) A
2D coronal slice of the inhale image for test case 6. (Top right) The corresponding 2D
coronal slice of the point cloud generated by the dart throwing algorithm applied to the case
6 lung mask. (Bottom left) A 2D sagittal slice of the inhale image for test case 6. (Bottom
right) The corresponding 2D sagittal slice of the point cloud generated by the dart throwing
algorithm applied to the case 6 lung mask. All lung masks were computed using a simple
histogram segmentation.
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Figure 4.
2D coronal (left) and sagittal (right) slices of the K-means generated subdomain
decomposition corresponding the point cloud shown in Figure 3. The different colors
represent different subdomains. For all examples discussed in the Results (section 3), 32
subdomains were computed.
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Table 1
Landmark Validation Data

A summary of the expert determined landmarks for the ten validation inhale and exhale thoracic CT image
pairs. All data is available publically at: www.dir-lab.com. The first column indicates the number of reference
landmarks per case. The second column gives average (and standard deviation) reproducibility of feature
registrations in units of mm, as described in [7,8,24]. The average (and standard deviation) displacement
magnitudes for the set of reference landmark feature pairs are shown for the set of 10 CT image pairs utilized
in this study are given in the last column. The distances are reported in units of mm.

Case
Number

Number of
Landmarks

Intra-observer
Error

Avg. (Std.)
Magnitude
Displacement

1 1280 0.85 (1.24) 4.01 (2.91)

2 1487 0.70 (0.99) 4.65 (4.09)

3 1561 0.77 (1.01) 6.73 (4.21)

4 1166 1.13 (1.27) 9.42 (4.81)

5 1268 0.92 (1.16) 7.10 (5.15)

6 419 0.97 (1.38) 11.10 (6.98)

7 398 0.81 (1.32) 11.59 (7.87)

8 476 1.03 (2.19) 15.16 (9.11)

9 342 0.75 (1.09) 7.82 (3.99)

10 435 0.86 (1.45) 7.63 (6.54)
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Table 3
Sensitivity to Match Window and Grid Search Bound

The LFC method was applied to test case 8 using several different sets of input parameters.

Match Window
Dimensions

S (voxels) Grid Search
Time

M* Avg. (Std.)
Error

9×9×5

7 5.64 17068 7.84 (9.97)

12 18.62 16428 1.12 (1.23)

17 44.51 15805 1.12 (1.16)

22 89.36 15965 1.17 (1.30)

5×5×5 17 16.52 15162 2.63 (2.26)

9×9×3 17 24.91 15659 1.24 (1.20)

11×11×5 17 49.66 16431 1.14 (1.23)

M* denotes the number of acceptable point matches returned by the filter and the average error is given in millimeters. For all experiments in the
table, K =32 and M = 30647.
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Table 4
GPU vs. CPU Grid Search Run Time

A comparison of the runtimes for the GPU based grid search and CPU based grid search is given. For these
experiments, the match window was set to 9×9×5 voxels and s = 17. CPU sequential indicates that only one
processor was used to compute the search whereas the CPU parallel run used 12 processors.

M GPU CPU Sequential CPU Parallel

9704 15.29 3495.45 284.61

68312 97.50 2.94×104 2089.62
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Table 6

Summary is shown of previously reported spatial accuracies derived using the publically available reference
data set utilized in this study for spatial accuracy assessment of the LFC method. Since measurements were
made for each algorithm using the same reference images and landmark feature pairs, comparison can be
made among the average spatial registration errors. Results for the algorithms listed are reported in [7,8,44].

Case
Number

LFC CCLG Demons 4DLTM

1 0.85 (1.00) 1.02 (1.03) 1.10 (1.09) 0.97 (1.02)

2 0.74 (0.99) 1.29 (1.22) 1.00 (1.15) 0.86 (1.08)

3 0.93 (1.07) N/A 1.32 (1.21) 1.01 (1.17)

4 1.33 (1.51) N/A 2.42 (2.48) 1.40 (1.57)

5 1.14 (1.25) 2.50 (1.91) 1.82 (1.87) 1.67 (1.79)

6 1.04 (1.05) N/A N/A 1.58 (1.65)

7 1.03 (1.01) N/A N/A 1.46 (1.29)

8 1.11 (1.18) N/A N/A 1.77 (2.12)

9 1.04 (1.00) N/A N/A 1.19 (1.12)

10 1.05 (1.10) N/A N/A 1.59 (1.87)
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