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Abstract
Phylogenetic comparative methods may fail to produce meaningful results when either the
underlying model is inappropriate or the data contain insufficient information to inform the
inference. The ability to measure the statistical power of these methods has become crucial to
ensure that data quantity keeps pace with growing model complexity. Through simulations, we
show that commonly applied model choice methods based on information criteria can have
remarkably high error rates; this can be a problem because methods to estimate the uncertainty or
power are not widely known or applied. Furthermore, the power of comparative methods can
depend significantly on the structure of the data. We describe a Monte Carlo based method which
addresses both of these challenges, and show how this approach both quantifies and substantially
reduces errors relative to information criteria. The method also produces meaningful confidence
intervals for model parameters. We illustrate how the power to distinguish different models, such
as varying levels of selection, varies both with number of taxa and structure of the phylogeny. We
provide an open-source implementation in the pmc (“Phylogenetic Monte Carlo”) package for the
R programming language. We hope such power analysis becomes a routine part of model
comparison in comparative methods.
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1. Introduction
1.1. Are phylogenies informative?

Since their introduction into the comparative method over two and a half decades ago,
phylogenetic methods have become increasingly common and increasingly complex.
Despite this, concern persists about the ubiquitous use of these approaches (Price, 1997;
Losos, 2011). From a statistical perspective these concerns can be divided into two
categories: (a) Do we have appropriate models that reflect the biological reality of evolution
and represent meaningful hypotheses, and (b) Do we have adequate data to fit these models
and to choose between them? The models have been greatly improved since their
introduction, and can now account for stabilizing selection (Hansen and Martins, 1996),
multiple optima (Butler and King, 2004), and differing rates of evolution across taxa
(O'Meara et al., 2006) or through time (Pagel, 1999; Blomberg et al., 2003); but little
attention has been given to this second concern about data adequacy. In this paper, we
highlight the importance of these concerns, and illustrate a method for addressing them.

cboettig@ucdavis.edu (Carl Boettiger).

NIH Public Access
Author Manuscript
Evolution. Author manuscript; available in PMC 2013 July 01.

Published in final edited form as:
Evolution. 2012 July ; 66(7): 2240–2251. doi:10.1111/j.1558-5646.2011.01574.x.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



It can be difficult to accurately interpret the results of comparative methods without
quantification of uncertainty, model fit, or power. Most current comparative methods do not
attempt to quantify this uncertainty; consequently it can be easy for inadequate power to
lead to false biological conclusions. For instance, below we illustrate how estimates of
phylogenetic signal (Gittleman and Kot, 1990) using the λ statistic (Pagel, 1999; Revell,
2010) can reach opposite conclusions (from no signal λ = 0 to approximately Brownian, λ
≈ 1) when applied to different simulated realizations of the same process. We also show that
model selection by information criteria can prefer over-parameterized models by a wide
margin. On the other hand, when a simpler model is chosen, it may be difficult to determine
whether this merely reflects a lack of power. In both cases, the results can be correctly
interpreted by estimating the uncertainty in parameter estimates and the statistical power
(ability to distinguish between models) of the model selection procedure.

Here we provide one solution to these problems using a parametric bootstrapping approach
which easily fits within the framework used by many comparative methods approaches. As
comparative methods rely on explicit models, this is easily implemented by simulating under
the specified models. For the problem of uncertainty in parameter estimation, the bootstrap
is a well-established and straightforward method (Efron, 1987). A few areas of comparative
methods have used a similar approach: for instance, phylogenetic ANOVA (Garland et al.,
1993) calculates p values of the test statistic by simulation under Brownian motion. A
similar approach was later introduced in the Brownie software (O'Meara et al., 2006) to
generate the null distribution of likelihood ratios under Brownian motion, and applied in
Revell and Harmon (2008), which showed the distribution can deviate substantially from χ2,
and a similar approach is applied in Revell and Collar (2009). Unfortunately, such
approaches have never become a common in comparative analyses. Here, we describe a
method due to Cox (1962) and used by others (Goldman, 1993; Huelsenbeck and Bull,
1996), that can be used in place of information criteria for model choice, allowing
estimation of power and false positive rates, and can provide good estimates of confidence
intervals on model parameter estimates. While simulations are often performed when a new
method is first presented, this practice rarely becomes routine. By providing a simple R
package (“pmc”, phylogenetic Monte Carlo) for the method outlined, we hope Monte Carlo
based model choice and estimates of power become common in comparative methods.

To set the stage, we will review common phylogenetic models and describe the Monte Carlo
approach to model choice. We then present the results of our method applied to example
data and discuss its consequences.

1.2. Common phylogenetic models
Comparative phylogenetics of continuous traits commonly uses a collection of simple
stochastic models of evolution; we briefly review these here to fix ideas and notation. All
models we consider take as given an ultrametric phylogenetic tree whose branch lengths
represent evolutionary divergence times; extant taxa are represented by the tips of the tree.
We will assume that the tree is known without error. For convenience we will in all
examples choose time units so that the tree height is one unit. For each extant taxon we have
a trait value (say, the species mean) for some continuous trait such as body size, and
represent the collection of trait values across extant taxa as the vector X. The joint
distribution of these trait values is given by specifying the ancestral trait value X0 at the root
of the tree, by describing the stochastic process of trait evolution along branches of the tree,
and assuming that evolution on separate branches proceeds independently.

Let Yt be the value of our trait at time t along some branch. The simplest and most common
model for the evolution of the trait Yt is a scaled Brownian motion (Felsenstein, 1985),
which can be represented by the stochastic differential equation:
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(1)

in which Bt is standard Brownian motion, and σ is the rate parameter. Under this model, the
trait value evolves as a random walk starting from the ancestral state X0, and upon reaching
each node in the phylogeny, the process bifurcates into two independent Brownian walks.
This Brownian motion (BM) model is completely defined given a phylogeny and two
parameters: the initial state X0 and the parameter σ, which is usually interpreted as the rate
of increase in variance.

A closely related model introduced in a comparative phylogenetics context by Hansen
(1997) is the Ornstein-Uhlenbeck (OU) model, for which trait evolution Yt along each
branch follows the Ornstein-Uhlenbeck process, which is described by the following
stochastic differential equation

(2)

Here Brownian motion is modified to have a central tendency towards a preferred trait value
θ, usually interpreted as a optimum trait value under stabilizing selection. The strength of
stabilizing selection increases linearly with distance from the optimum θ, controlled by the
parameter α. When α = 0, this model reduces to the BM model. Both evolutionary models
are described in more detail elsewhere, e.g. Butler and King (2004).

Many variations of these basic models are also common – for instance, it may be desirable
to allow the diversification rate parameter σ in the BM model to vary in some way over time
(Blomberg et al., 2003; Harmon et al., 2010; Pagel, 1999) or across the phylogeny (O'Meara
et al., 2006). Similar extensions can be applied to the OU model – we will later consider the
example of Butler and King (2004) which allows the optimum trait value θ to differ among
different branches or clades. One can illustrate which branches of a phylogeny are permitted
to have independently estimated values of the optimum trait by “painting” them different
colors indicating where the model is allowed to change (Butler and King, 2004).

Another commonly used variation is Pagel's λ (Pagel, 1994; Freckleton et al., 2002), which
was introduced as a test of phylogenetic signal – the degree to which correlations in traits
reflect patterns of shared ancestry. The model underlying Pagel's λ is the simple Brownian
motion along the phylogeny as above, except that the phylogeny is modified by shortening
all internal edges by a multiplicative factor of λ, which reduces the resulting correlations
between any pair of taxa by a factor λ, and adjusting terminal edges so the tree remains
ultrametric. The parameter λ can then be estimated by maximum likelihood. Estimates near
unity are taken to indicate high phylogenetic signal, while estimates near zero indicate that
other processes such as natural selection have erased this “signal” of common descent.

2. Methods
2.1. Uncertainty in parameter estimates

To demonstrate the perils of inadequate data without estimates of uncertainty, we open with
an example of a phylogenetic test using Pagel's λ statistic that also serves to illustrate the
estimation of uncertainty in parameter estimates (e.g. confidence intervals). We illustrate
that on a small tree, estimates of λ can differ greatly from the parameter used in the
simulations. In practice, the danger is that an estimate of λ near zero may arise by chance
because the tree is too small, not because the phylogeny is unimportant to the evolution of
the trait. Larger phylogenies, on the other hand, generally allow greater accuracy.
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In Figure 1(a) we show the empirical distribution of the maximum likelihood estimate of λ
for 1000 data sets simulated under a model with moderate phylogenetic signal, λ = 0.6, and
σ = .03. The estimates were performed on the Geospiza data using functions available in
pmc in conjunction with the R package geiger (Harmon et al., 2008). The phylogeny, data,
and script for the analysis are included in pmc. We see that for datasets coming from this
small phylogeny, the maximum likelihood statistic  is a poor estimator for the true value of
λ. The most common estimate is , which is usually interpreted to mean that the
phylogeny contains little information. The next most common estimate is . Note that this
is the upper bound set on λ by the fitting algorithm. It is clear that we must thus be cautious
what we conclude based on values of λ estimated on this phylogeny.

Repeating this exercise on successively larger data sets makes it clear that this is a problem
of insu cient data. With a simulated tree of 281 tips, the estimated values are closely
centered around the true value, as shown in Figure 1(b).

The amount of data required to be informative will depend not only on the size and topology
of the tree but also on the question being asked. For instance, it may be impossible to
distinguish moderately different values of λ, which is very difficult to estimate accurately.
However, it may be feasible to estimate other parameters on smaller phylogenies than this
281 taxa example. For instance, using the same 13 taxa Geospiza phylogeny, we can
estimate the diversification rate parameter σ much more precisely, as shown in Figure 1(c).

A natural way to report the uncertainty associated with a parameter estimate is construct a
confidence interval, which is rarely performed in the literature but can easily be done by
parametric bootstrapping. Given the parameter estimate, a confidence interval can be
estimated by simulating a large number of datasets using the known phylogeny and the
estimated parameter, and re-estimating the parameter on each simulated dataset (e.g. see
Diciccio and Efron, 1996). The distribution of the re-estimated parameters is used to
construct the confidence interval; e.g. the 2.5 to the 97.5 percentile gives a 95% confidence
interval. For the example shown in Figure 1(b), our estimate of λ on the Yule tree with 281
tips, the 95% confidence interval would be (0.45, 0.69). For the parameter σ, Figure 1(c)
shows that the confidence interval is (0.007, 0.059). Given the noisy nature of parameters
estimated from phylogenies we recommend that confidence interval should routinely be
reported, and to facilitate this, have implemented this as pmc∷confidenceIntervals.pow.
Confidence intervals could also be estimated from the curvature of the likelihood surface,
but these can be unreliable and problematic to compute.

2.2. The Monte Carlo approach
Knowing when the data are sufficiently informative is also crucial when comparing different
models. To do this, we introduce a Monte Carlo-based method, described below. Suppose
we have a dataset X for which we wish to determine which of two models, model 0 or model
1, is the better description. Each model is specified by a vector of parameters, Θ0 and Θ1
respectively, which can assume values in the spaces Ω0 and Ω1 respectively. We tend to
imagine that model 1 is the more complex model, though in general they need not be nested.

Let  be the likelihood function for model 0, let  be the

maximum likelihood estimator for Θ0 given X, and let ; and define , , L1
similarly for model 1.

The statistic we will use is δ, defined to be twice the difference in log likelihood of
observing the data under the two MLE models,
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(3)

For simplicity we will refer to this as the likelihood ratio. Larger values of δ indicate more
support for model 1 relative to model 0. It is natural to use the difference in log-likelihoods
as a statistic to choose between the models (Neyman and Pearson, 1933), as do information
criteria such as AIC. To do this we need to know, for instance, how large should δ be before
we decide that model 1 is much closer to the truth than is model 0. Many common methods
proceed to approximate the distribution of δ asymptotically. For instance, if the models are
nested in a manner that does not force a parameter to its boundary value, this statistic has
asymptotically the χ2 distribution with degrees of freedom equal to the difference in the
number of parameters. These asymptotic approximations for phylogenetic comparative
analyses are often inadequate for phylogenetic comparisons. Instead, we can estimate the
distribution of δ under either model directly from Monte Carlo simulation. This method
seems to have been first suggested in the statistical literature by Cox (1961, 1962) and
applied to mixture models by McLachlan (1987). It has been previously applied to the case
of estimating phylogenies from sequence data by Huelsenbeck and Bull (1996); see also
Goldman (1993).

To estimate the distribution of δ under model 0 and the estimated parameters ( ), we
proceed as follows. First simulate n datasets X1, …, Xn independently from model 0 with

parameters . For each 1 ≤ k ≤ n, let  be the maximum likelihood estimator of the

parameters Θ0 of model 0 for dataset Xk, and likewise let  be the MLE under model 1.
Then we compute the likelihood ratio statistic for the kth data set,

, and examine the empirical distribution of δ1, …,
δn. We can also estimate the distribution of δ under model 1 in the same way.

There are two things to note about this procedure. First, the Monte Carlo datasets are

simulated at the maximum likelihood parameters  and , which are in turn estimated
from the same dataset X. So if, for instance, the models are nested and the simpler is correct,

then one would expect model 0 at  to be quite similar to model 1 at . Secondly, it is
necessary when computing the Monte Carlo values δk to re-estimate the maximum

likelihood parameters, rather than using the original parameters  and  – simply

computing  would lead to a much less powerful test
(Hall and Wilson, 1991). The reason for this is somewhat subtle (see McLachlan, 1987), and
is related to the first point. For further suggestions on obtaining a reliable estimate of the
distributions, see Efron (1987) and Diciccio and Efron (1996).

2.3. Model selection
If we suppose model 0 is “simpler” than model 1, it is natural to regard model 0 as the “null”
and test the hypothesis that the data came from model 0. To do this, we would compare
where the observed difference in log likelihoods δ for the original data falls relative to the
distribution under model 0. The proportion of the simulated values larger than δ provides an
approximation to the p-value for the test, the probability that a difference at least as large
would be seen under model 0. (Because the datasets Xk are all simulated at the estimated

parameters  this strictly applies only for the hypothesis test between the maximum-
likelihood estimated models, and is not the p-value when comparing the composite
hypothesis represented by the original model with unspecified parameters (see McLachlan,
1987).) If we choose, say, δ* so that 95% of the simulated values δ1, …, δn fall below δ*,
and choose to reject model 0 if δ > δ*, then we have a test of the null hypothesis that model
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0 is true, with a false positive probability of approximately .05 under model 0. If we then
want to know about the statistical power of this test – the probability that we correctly reject
model 0 when the data came from model 1 – we would turn to the distribution of δ under
model 1. If we have chosen δ* as above, then the amount of this distribution to the left of δ*
approximates the probability of rejecting model 0 when the data are produced by model 1 –
the power of the test.

The procedure we have described is motivated by classical hypothesis testing, but is only
one way to use the information provided by the empirical distributions of δ.

3. An example using Anolis data
3.1. The anoles data

To illustrate the concerns about phylogenetic information in comparative methods, we shall
revisit a classic data set of mean body size for 23 species of Anolis lizards from the Lesser
Antilles, which has been used to introduce other comparative phylogenetic approaches (e.g.
Butler and King, 2004, familiar to many who have used the ouch package). The phylogeny
reconstruction used here (Losos, 1990) is based upon morphological (Lazell, 1972) and
protein-electrophretic (Gorman and Kim, 1976) techniques rather than the more recent
phylogenies based on mitochondrial sequences (Schneider et al., 2001; Stenson et al., 2004),
which have substantial differences. As our purpose is simply to illustrate the approach, we
continue to use older tree familiar to the readers of earlier work (Losos, 1990; Butler and
King, 2004).

Identification of branches or clades of a phylogenetic tree that show significantly different
evolutionary patterns can illuminate key elements about the origin and maintenance of
biodiversity. Butler and King (2004) demonstrated how the existence of different adaptive
optima in character traits on different parts of a phylogenetic tree could be detected. They
assumed that evolution of the trait along each branch followed the Ornstein-Uhlenbeck
model, but that different branches could have different optima (the parameter θ). The
branches that must share a common value of θ are represented by a “painting” of the tree;
three possibilities for the Anolis tree that we later investigate are shown in Figure 3. Any
branch of a given color must have the same optimum trait value, each of which is estimated
by the fitting algorithm. The remaining parameters α and σ are shared across the entire tree.

To confirm that the proposed pattern of heterogeneity (the painting) is justified by the data,
it is necessary to compare between possible paintings and possible assignments of model
parameters to each part of the painting. We seek to identify (a) which model best describes
the data and (b) whether we have sufficient data to resolve that difference?

3.2. Models for the Anolis phylogeny
To illustrate the approach we consider a total of five models for the Anolis data set. The first
two models apply the same model of evolution to the entire tree (i.e. a one-color painting) –
either Brownian motion (BM) (Edwards and Cavalli-Sforza, 1964; Felsenstein, 1985), with
two parameters; or the Ornstein-Uhlenbeck process (OU.1) (Felsenstein, 1985; Hansen,
1997), with three.

The remaining three models extend these simple cases by introducing heterogeneity in the
model, allowing the trait optimum to vary across the tree as indicated in Fig 3. The OU.3
model of Figure 3(a) has three optima, and corresponds to the character displacement
hypothesis (Losos, 1990), which predicts three different optimum body sizes – an
intermediate optimum on islands having only one species, and a larger and a smaller
optimum for islands with two species of lizards. The island size determines to which
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optimum the tips or extant species are assigned, while the ancestral states are constructed by
parsimony as per Butler and King (2004). To these three models (BM, OU.1, and OU.3)
analyzed by Butler and King (2004) we add two more to illustrate possible outcomes. OU.4,
Figure 3(b) hypothesizes four optima corresponding to four separate clades. The fifth model
OU.15 is intentionally arbitrary and overly complex, assigning a unique optimum to each
species in the top two clades for a total of 15 optima. We apply these methods to determine
which model best fits the data and whether the data are sufficiently informative to
distinguish between them.

4. Results
We illustrate several points with four different comparisons, depicted in Figure 4. In each
case, the distribution of δ under each of the two models is shown as the dark-shaded and the
light-shaded curves, and the observed value of δ is marked by the dashed vertical line. We
also construct confidence intervals for the parameters in the same way as we did for the λ
estimates, shown in Table 7. The maximum likelihood parameter values for each model,
estimated from the anoles data, are given in Table 7, and are computed from the original
body size data described in Section 3 using the ouch package of Butler and King (2004)
together with tools from our pmc package. Scripts to perform all analyses shown here are
included in the pmc package. We will be able to determine not only which model is
preferred, but also the certainty of the model choice.

4.1. Quantification of model choice
For a first example, comparing BM to OU.3 (Figure 4(a)), we see that only 2.5% of
simulations under BM have a likelihood ratio δ more extreme than the observed ratio of 15
units seen in the real data (i.e. p = 0.025). The degree of overlap in the distributions reflects
the extent to which the phylogeny is useful to discriminate between the two hypotheses at
these parameter values; in this case the test that rejects the BM model with 5% false positive
rate has a power of 93.6%. Thus we have a direct estimate of both which model is a better fit
and of our power to choose between the models. Note that in our framework we are free to
choose the tradeoff between the false positive and false negative rates. For instance, a 5%
cutoff may be too stringent if it is unnatural to treat either model as a null.

4.2. Information criteria often fail to choose the correct model
For a second example, we compare OU.3 to the over-parameterized model OU.15 (Figure
4(c)). Table 7 shows that the maximum likelihood optimum trait values θ and rate of
divergence σ are similar for the two models, but that the strength of selection α is much
larger for OU.15. From the table of estimated values and confidence intervals, it is clear that
OU.15 has simply divided up each of these broader peaks into finer optima clustered around
the original estimates. The higher value of α in the OU.15 model indicates narrow peaks of
strong selection that result in the much higher likelihood. Despite this, our method will not
select OU.15, since the observed likelihood ratio δ falls below value of δ seen in 18.8% of
simulations under OU.3. Furthermore, this is a powerful test: 98.8% of simulations under
OU.15 produce a δ that falls beyond the 95% quantile of the OU.3 distribution.

We can compare this method to information criteria (e.g. AIC, BIC), which are the standard
tools for model comparison in comparative methods of continuous traits (Butler and King,
2004). Because we have generated simulated datasets under both hypothesized models, it is
straightforward to estimate how often these datasets are misclassified by various information
criteria. The same distributions from Figure 4 are shown with the cutoff given by AIC for
choosing the more complex model in Figure 5. We see that AIC would assign nearly half
(47.7%) of the simulations done under OU.3 incorrectly to the OU.15 model, and that the
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observed data would also be assigned to OU.15. If we evaluate the performance of AIC
when comparing two reasonable models, OU.3 and OU.4, information criteria still prefer the
more complicated model (AIC(OU.3) =−39.6; AIC(OU.4) =−41.3, and BIC(OU.3) =−33.9;
BIC(OU.4) = −34.6), but here we know this may be illusory, since Figure 5 shows that AIC
falsely assigns 44% of simulations produced under OU.3 as coming from OU.4. Sample-size
correction of AIC (AICc, not shown) can be similarly misleading. See the online appendix
for example code to reproduce this figure under each of the different information criteria.

4.3. Applied to non-nested models
The next example compares OU.3 to OU.4, where as mentioned above, the degree of
overlap between the distributions of δ under the two models seen in Figure 4(b) shows that
we have relatively little power to distinguish between the two. Note that since the painting
defining the OU.4 model is not a refinement of the painting defining the OU.3 model, the
two models are not nested. The Monte Carlo approach applies equally well to non-nested
models, unlike the asymptotic derivations commonly used to justify information criteria. We
furthermore do not have to determine the difference in number of parameters, as is required
by AIC, which in some situations is not obvious.

4.4. When the data are insufficient to distinguish between models
The fourth comparison is between the simplest models, BM and OU.1. Figure 4(d) shows
that there is essentially no information to adequately distinguish between them. This should
not be taken as evidence that BM is a better fit, but rather that given the small selection
parameter estimated from the anoles data, we have low power to distinguish OU.1 from BM
on this phylogeny. The strength of selection in the OU model is represented by α in equation
(2), and is measured in units of inverse time since the common ancestor (when the tree
height has been normalized to unity). Hence the maximum likelihood estimate for this
model with a value of α = 0.2 means that correlations between traits that diverged at that
common ancestor will have decayed to only e−0.2 = .81 of what is expected under BM. The
chance we could detect this level of selection at 95% false positive rate (i.e. the power) was
only 7%.

What is the weakest level of stabilizing selection on a trait we could reliably detect using
this Anolis phylogeny? To answer this, we repeat the analysis on data simulated using OU.1
models with progressively larger α and estimate the power for each. The results are shown
as the dashed curve in Figure 6(a). Power increases with increasing strength of selection α,
which we can visualize by imagining the darker distribution of Figure 4(d) moving farther to
the right. In the next section, we use this approach of power simulation to understand what
aspects of phylogeny (i.e. shape and size) influence its power to detect a given strength of
selection.

5. Understanding the role of phylogeny shape and size on estimates of
selection

The shape and size of the phylogeny is key to understanding how much information about
evolutionary processes it is possible to extract from characters of taxa at the leaves of the
tree. As an application of the method of obtaining a power curve for the strength of selection
described in section 4.4 we can compare the power curves for trees of different shapes. As
before, we are comparing the single–optimum Ornstein-Uhlenbeck (OU.1) model to the
Brownian motion (BM) model without selection, and computing the power to correctly
choose the OU.1 model at different values of α, if we choose models based on the 95%
quantile of δ under the BM model. Figure 6(a) compares trees simulated from a pure-birth
process with increasing number of taxa, scaled to unit height.
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Number of taxa is not all that matters; Figure 6(b) considers a single (simulated pure-birth)
tree of 50 taxa rescaled so that successively more of the time occurs in the tips and so that
the speciation events occur more distantly in the past. The farther in the past diversification
has occurred, the less informative the tree. This is the rescaling performed by the λ
transformation described in section 1.2. Covariances introduced by different amounts of
shared evolution are crucial for distinguishing slower character diversification rates σ from
stronger selection α. We see that as the branching events occur earlier (smaller λ
transformations), these correlations are harder to detect, so the phylogeny becomes less
informative.

We note that many simulation studies (e.g. Freckleton et al., 2002) are conducted using trees
generated by a pure-birth (Yule) process, which generates phylogenies with more very
shallow nodes than are generally seen in practice. Perhaps counter-intuitively, the presence
of these highly-correlated points makes the phylogenies particularly informative relative to
branching patterns resulting from any density-dependent or niche-filling models. Early
bursts of speciation such as adaptive radiations will tend to generate phylogenies that are
less informative of parameters such as the strength of selection, α. These examples show
that the ability to distinguish between models can depend strongly on the value of the
parameters, the number of taxa, and the shape of the tree. Rather than attempt to draw rules
of thumb from such exercises, we suggest that it is best to perform a power analysis that is
specific to the phylogeny and estimated model parameters being compared.

6. Discussion
We have introduced a general, simulation-based method to choose between models of
character evolution and quantify the power of such choices on a particular phylogeny. While
the methodological underpinnings of this approach are not new, the field of comparative
methods continues to rely almost universally on information criteria. We have illustrated
that the performance of these methods can be remarkably poor, particularly with
insufficiently large or structured phylogenies. The results can provide a clear indication of
when a phylogenetic tree is either too small or too unstructured to resolve differences in the
proposed models.

Though our analysis selects the same model (OU.3) for the anoles dataset as does Butler and
King (2004), we have shown that existing approaches such as AIC Butler and King (as used
in 2004) would have preferred either of our more complex models (OU.4 and OU.15). Our
models are chosen to illustrate various possible outcomes: not only can we choose either the
simpler or the more complex model, but through power simulations we can determine if
choice of simpler model is due to poor fit of the data by the complex model, or simply due
to insufficient data.

Since their introduction in a modeling framework in Felsenstein (1985), phylogenetic
comparative methods have continued to increase in complexity. We provide a simple
method to reliably indicate if the informativeness of the datasets is keeping pace with this
increase in complex models. Through these methods, we can know when the comparison we
are making is too fine for the resolution of the data, as in the BM vs. OU.1 comparison
Figure 4(d), and when increased model complexity is clearly unsupported, as in OU.3 vs.
OU.15 comparison, Figure 4(c). Model choice plays a similar role in many other models in
comparative phylogenetics, such as deciding between the various tree transforms such as λ,
δ, γ, or ACDC, which can benefit from the same attention to whether the data are
adequately informative.
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As shown in section 5, the power to distinguish between two models can depend strongly on
the parameter values, which can be a subtle point and pose difficulties for interpretation. For
instance, if a power analysis is done by simulating under a certain set of parameter values,
but the test is applied to datasets consistent with very different parameter values (a situation
found in Harmon et al., 2010), then it remains a possibility that failure to find evidence for
more complex models results from a lack of power.

Our results cast doubt on the use of AIC for phylogenetic model selection; however,
mathematically our methods are very similar to information criteria. When applied to a pair
of models, the various information criteria (AIC, BIC, AICc, etc.) give a cutoff for the
likelihood ratio statistic δ that determines which model to choose. Our method can provide
such a cutoff as well, but also allows choice of such a cutoff based on the power-false
positive tradeoff. One use for our methods would be to simply quantify the resolving power
of an AIC-based model choice. A drawback of our method over AIC is that it does not
compare simultaneously many models, instead relying on a collection of pairwise
comparisons. This is a disadvantage particularly when AIC is applied to find the best model
out of many, and the goal is to find a parsimonious predictive model of more complex
reality. However, it seems to us that comparative methods are usually concerned with
rigorously distinguishing between alternative models, and so the goal of model choice is to
describe underlying process rather than to provide plausible predictions. See Burnham and
Anderson (2002) for discussion of a philosophy of model selection using AIC in a predictive
framework.

The procedure we describe is grounded in a familiar maximum-likelihood framework of
model comparison, and the dependence on certain estimated parameter values for each
model poses one of the difficulties for interpretation. A Bayesian approach might compare
models using Bayes factors, thus integrating over all parameter values for each model, and
could be implemented using a reversible jump Markov chain Monte Carlo scheme (Green,
1995). Note, however, that the restriction to fixed parameter values is not necessarily a
limitation, as it allows us to perform such analyses as identifying the weakest level of
selection detectable on a given phylogeny, as in the power curves of Figure 6.

Comparative data, while an integral and powerful tool in evolutionary biology, sometimes
holds only limited information about the evolutionary process. We suggest that the
application of these approaches to specific dataset should routinely be guided by the use of
simulation to assess model choice and power.

6.1. A parallelized package for the computational methods
To compare models using information criteria it is only necessary to fit each model to the
observed data once, while the Monte Carlo approach we describe requires 2n model
simulations and 4n model fits, where n is the number of replicates used. Fortunately, fitting
is both fast and easy to parallelize on modern architectures. Our R package pmc integrates
parallel computation (from the snowfall package) with commonly used phylogenetic model
fitting tools provided in the geiger, ape and ouch packages. The analyses presented in this
paper are included as examples, most of which can be run in minutes when spread over
many processors.

6.2. Guidelines for analysis
We have discussed how to compare models pairwise, and applied the methods to a series of
models for the Anolis dataset. However, we have not discussed what one is to do when
faced with a multitude of models. Here, as in the situation of choosing which variables to
use in a multiple linear regression, there is no single best answer. If there are few enough
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models, by analogy to stepwise addition for linear regression, one could arrange the models
in rough order of complexity, begin with the simplest, and compare each to the next more
complex, stopping when there is insufficient support to choose a more complex model.
Alternatively, one could do all pairwise comparisons, although the results may be difficult to
interpret if there no single model is clearly best. If there are many models, one option would
be to rank all models according to AIC score, and evaluate uncertainty by comparing each
model to the top-ranking few models by our methods. There are many methods and
philosophies of model choice; it is our opinion that a good method of evaluating
uncertainties behind model choice can only aid in this process.
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Figure 1.
(a) Empirical distribution of maximum likelihood estimates of λ for 1000 sets of trait values
simulated on the Geospiza phylogeny with 13 taxa transformed with λ = 0.6, using σ = 0.18.
Most such datasets yielded a maximum likelihood estimate of 0; the mean estimate is

. (b) As above, but simulating trait values on a much larger phylogenetic tree (a
single, simulated Yule tree with 281 tips), again transformed with λ = 0.6. The estimated

values now cluster around the true value, and have mean . (c) The data can be more
informative about some parameters than others: shown is the empirical distribution of
maximum likelihood estimates of the diversification rate σ for the same simulations as in
(a). The mean of the distribution is , matching the value used in the simulations.

Boettiger et al. Page 14

Evolution. Author manuscript; available in PMC 2013 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Conceptual diagram of the Monte Carlo method for model choice. First, parameters for both
models are estimated from the original data. Then, n simulated datasets are created from
each model at these parameters, and on each dataset, the parameters for both models are re-
estimated and the likelihood ratio statistic is computed. The collection of likelihood ratio
statistics generates the corresponding distribution. This involves a process of 4n fits by
maximum likelihood, instead of only 2 fits required for information criteria.
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Figure 3.
“Paintings” of the Anolis phylogeny specifying which branches are assumed to have a
common value of the trait optimum θ for three different models: (a) OU.3, with three
possible optima from Butler and King (2004); (b) OU.4, with four possible optima; and (c)
OU.15, with a unique optimum for each branch in the upper two clades. The remaining
models, BM and OU.1, fit the same parameters across the entire phylogeny and so are not
shown. Estimated model parameters for each are shown in Table 7.
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Figure 4.
Distributions of the likelihood ratio statistic of equation (3) for four different model
comparisons. In each case the lighter distribution shows the distribution of δ values obtained
by bootstrapping under the simpler of the two models, while the darker distribution shows
the distribution under the more complicated of the two models. 2000 replicates are used for
each distribution. The dashed vertical line indicates the observed value of δ when the
models are fit to the Anolis dataset. (a) BM versus OU.3: the observed likelihood ratio is
much more likely under OU.3. (b) OU.3 versus OU.4: here the distributions overlap more,
indicating that the data are less informative about this more subtle comparison. (c) OU.3
versus OU.15: these distributions have little overlap and the observed ratio falls clearly in
the range of the simpler model. We can conclude that this support for OU.3 is not merely
due to lack of power. (d) BM versus OU.1: the data contain almost no information to
distinguish between these two models at the estimated (small) level of selection α.
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Figure 5.
Error rates for model choice by AIC based on simulation. Shown are the same distributions
of the likelihood ratio statistic δ as in Figure 4. Also shown is the probability that AIC
selects the more complicated model when the simpler is true (“False Positives”, light
shading); and the probability that AIC selects the more simpler model when the more
complicated is true (“False Negatives” error, dark shading).
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Figure 6.
Power to identify stabilizing selection α at a given strength on different phylogenies. Shown
is the empirical probability that data generated with a given α on a given tree will favor a
OU.1 model over BM, based on a cutoff of the likelihood ratio statistic δ chosen to have a
false positive probability of 5%, based on 1000 simulations with σ = 1. (a) Increasing the
number of taxa in the tree (simulated under a birth-death model) increases the power to
detect a given strength of selection. (b) Fixing the number of taxa to 50, we distort the shape
of the simulated tree to one in which most of the branching events occur farther and farther
in the past using Pagel's λ transformation. On trees that are highly distorted (smaller λ) we
have substantially less power to detect any given strength of selection.
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Table 1

Parameter values estimated for the Anolis dataset by maximum likelihood for models with varying number
and location of optima (also see Figure 3), used in the comparisons in Figure 4. These parameter values were
used to produce the simulated datasets in Figures 4 and 5. The values of θ are in order of first appearance, left-
to-right, in Figure 3. The corresponding 95% confidence intervals calculated from the 2000 replicates are also
shown. Note that the optima θ of OU.15 just represent a finer partition of the optima in OU.3.

Model log(L) MLE Parameters 95% CI

BM 17.33 X0 = 2.9,
σ2 = 0.043

(0.14, 0.26)
(2.74, 3.16)

OU.1 15.69 6 = 3.0,
σ2 = 0.048,
α = 0.19

(2.36, 3.56)
(0.028, .13)
(.24, 4.41)

OU.3 24.82 θ = {3.36, 3.04, 2.56},
σ2 = 0.05,
α = 2.61

{(3.20, 3.47), (2.94, 3.11), (2.41, 2.76)}
(0.025, 0.19)
(1.77, 17.98)

OU.4 26.69 θ = {2.97, 3.31, 3.12, 2.63},
σ2 = 0.06,
α = 4.68

{(2.87, 3.05), (3.22, 3.38), (3.02, 3.21), (2.53, 2.74)}
(0.031, 3.39)
(3.34, 384.16)

OU.15 44.17 θ = {2.91, 2.99, 2.98, 3.04, 3.11, 3.35, 2.97, 3.08, 3.19,
3.15, 3.17, 2.81, 3.30, 3.05, 2.62},
σ2 = 0.06,
α = 24.3

{(2.84,2.98), (2.91,3.22), (2.81,3.46), (2.85,3.57)
{(3.04,3.20), (3.28,3.53), (2.80,3.42), (2.30, 352), (2.34,
352), (2.94, 3.84) (2.94,3.85), (2.66, 1.5e6), (3.27,3.38),
(2.98, 3.12), (2.55, 2.67)}
(0.0036, 0.44)
(7.29, 322.92)
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